inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Rerefinement of the crystal structure of SnTe0.73(2)Se0.27(2) from single-crystal X-ray diffraction data

crossmark logo

aCentro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Avenida San Miguel 3605, Talca 3480112, Chile, and bUniversidad de Chile, Facultad de Ciencias, Departamento de Química, Casilla 653, Santiago, Chile
*Correspondence e-mail: agaldamez@uchile.cl

Edited by M. Weil, Vienna University of Technology, Austria (Received 29 June 2022; accepted 14 July 2022; online 19 July 2022)

Compounds of the solid solution series SnTe1–xSex, derived from pristine SnSe and SnTe, are considered as thermoelectric lead-free materials. The crystal structure re-refinement of NaCl-type SnTe0.73 (2)Se0.27 (2) is based on single-crystal X-ray diffraction data and results in higher precision of the bond length [Sn—(Te,Se) = 3.0798 (3) Å] compared to a previous report on basis of powder X-ray data [Krebs & Langner (1964[Krebs, V. & Langner, D. (1964). Z. Anorg. Allg. Chem. 334, 37-49.]). Z. Anorg. Allg. Chem. 334, 37–49].

3D view (loading...)
[Scheme 3D1]

Structure description

Lead chalcogenides have proven to exhibit an excellent performance as thermoelectric materials. However, due to the current environmental regulations, generating lead-free materials with thermoelectric properties becomes necessary. In this regard, semiconductors of the solid-solution series SnTe1–xSex have the potential to be good lead-free thermoelectric materials at mid/high temperatures (Banik & Biswas, 2014[Banik, A. & Biswas, K. (2014). J. Mater. Chem. A, 2, 9620-9625.]). Characterization of phases in the SnTe1–xSex system on the basis of powder X-ray diffraction data has been reported previously (Krebs & Langner, 1964[Krebs, V. & Langner, D. (1964). Z. Anorg. Allg. Chem. 334, 37-49.]; Totani et al., 1968[Totani, A., Okazaki, H. & Nakajima, S. (1968). Trans. Metall. Soc. AIME, 2426, 709.]; Liu & Chang, 1992[Liu, H. & Chang, L. (1992). J. Alloys Compd. 185, 183-190.]; Ariponnammacl et al., 1996[Ariponnammal, S., Venkateswaran, C. & Natarajan, S. (1996). Phys. Status Solidi B, 197, K1-K4.]; Majid & Legendre, 1998[Majid, M. & Legendre, B. (1998). J. Therm. Anal. 54, 963-990.]; Banik & Biswas, 2014[Banik, A. & Biswas, K. (2014). J. Mater. Chem. A, 2, 9620-9625.]). The powder patterns were indexed in the cubic crystal system, revealing an NaCl-type crystal structure. The reported unit-cell parameters (Liu & Chang, 1992[Liu, H. & Chang, L. (1992). J. Alloys Compd. 185, 183-190.]) of SnTe0.9Se0.1 and SnTe0.75Se0.25 are a = 6.2433 Å and a = 6.2188 Å, respectively. The SnTe1–xSex (x = 0 to 0.15) samples could be viewed as solid solutions that obey Vegard's law (Banik & Biswas, 2014[Banik, A. & Biswas, K. (2014). J. Mater. Chem. A, 2, 9620-9625.]). The parameter a of the cubic unit cell increases from approximately 6.23 to 6.27 Å with decreasing Se content x, as determined from the powder pattern.

Here, we report the crystal structure rerefinement of the solid solution with composition SnTe0.73 (2)Se0.27 (2) from single-crystal X-ray diffraction data. The crystal structure of SnTe0.73 (2)Se0.27 (2) likewise adopts the NaCl type (Fig. 1[link]) with an inter­mediate value of a [6.1595 (5) Å] between those of the binary compounds SnTe (6.314 Å) and SnSe (5.99 Å), which is attributed to the different radii of Te and Se. The cell parameter reported by Liu & Chang (1992[Liu, H. & Chang, L. (1992). J. Alloys Compd. 185, 183-190.]) of a = 6.2188 Å for SnTe0.75Se0.25 at room temperature is somewhat higher than that of SnTe0.73 (2)Se0.27 (2) determined at 150 K. The present study allowed for a higher precision with respect to the bond lengths in SnTe0.73 (2)Se0.27 (2), which is Sn—(Te,Se) = 3.0798 (3) Å.

[Figure 1]
Figure 1
A view of the NaCl-type crystal structure of SnTe0.73 (2)Se0.27 (2). Displacement ellipsoids are drawn at the 50% probability level.

Synthesis and crystallization

Single crystals of the title compound were obtained seren­dipi­tously by application of the high-temperature ceramic method. Powders of silver (99.99%), tin (99.99%), bis­muth (99.999%), selenium (99%) and tellurium (99%) were weighted in an molar ratio of 1:2:1:2.5:2.5. All manipulations were carried out under an argon atmosphere. The reaction mixture was sealed in an evacuated silica ampoule and placed in a programmable furnace (Figueroa-Millon et al., 2018[Figueroa-Millon, S., Álvarez-Serrano, I., Bérardan, D. & Galdámez, A. (2018). Mater. Chem. Phys. 211, 321-328.]). The ampoule was slowly heated from room temperature to 1023 K at a rate of 333 K min−1 to the maximum temperature and held for 7 d, followed by slow cooling to room temperature at a rate of 278 K h−1. The reaction product consisted of a gray metallic powder (yield ∼99%) accompanied by black octa­hedrally shaped single crystals (yield ∼1%) that were manually separated for the X-ray diffraction study. The refined composition of the measured crystal is SnTe0.73 (2)Se0.27 (2).

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 1[link]. For the shared chalcogenide site, the sum of site occupation factors (SOF) was constrained to 1, and the anisotropic displacement parameters were constrained to be the same. The crystal under investigation consisted of two domains with approximately equal contribution to the intensity data. The integration procedure showed that the reflections of each domain were clearly separated. For the final intensity data only one domain was used.

Table 1
Experimental details

Crystal data
Chemical formula SnTe0.73Se0.27
Mr 233.28
Crystal system, space group Cubic, Fm[\overline{3}]m
Temperature (K) 150
a (Å) 6.1595 (5)
V3) 233.69 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 23.61
Crystal size (mm) 0.10 × 0.08 × 0.07
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.103, 0.205
No. of measured, independent and observed [I > 2σ(I)] reflections 396, 33, 33
Rint 0.042
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 1.49
No. of reflections 33
No. of parameters 4
Δρmax, Δρmin (e Å−3) 1.92, −1.84
Computer programs: COLLECT (Bruker, 1997-2004[Bruker (1997-2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]), DIRAX/LSQ (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]), EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: Collect (Bruker, 1997-2004); cell refinement: DIRAX/LSQ (Duisenberg et al., 2003); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Tin tellurium selenide top
Crystal data top
SnTe0.73Se0.27Mo Kα radiation, λ = 0.71073 Å
Mr = 233.28Cell parameters from 553 reflections
Cubic, Fm3mθ = 5.7–39.8°
a = 6.1595 (5) ŵ = 23.61 mm1
V = 233.69 (6) Å3T = 150 K
Z = 4Octahedron, black
F(000) = 3890.10 × 0.08 × 0.07 mm
Dx = 6.631 Mg m3
Data collection top
Nonius KappaCCD
diffractometer
33 independent reflections
Radiation source: Enraf Nonius FR59033 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 9 pixels mm-1θmax = 30.0°, θmin = 5.7°
CCD rotation images, thin slices scansh = 88
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 78
Tmin = 0.103, Tmax = 0.205l = 68
396 measured reflections
Refinement top
Refinement on F24 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0583P)2 + 1.8772P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max < 0.001
S = 1.49Δρmax = 1.92 e Å3
33 reflectionsΔρmin = 1.84 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn0.0000000.0000000.0000000.0199 (10)
Te0.0000000.0000000.5000000.0330 (12)0.73 (2)
Se0.0000000.0000000.5000000.0330 (12)0.27 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.0199 (10)0.0199 (10)0.0199 (10)0.0000.0000.000
Te0.0330 (12)0.0330 (12)0.0330 (12)0.0000.0000.000
Se0.0330 (12)0.0330 (12)0.0330 (12)0.0000.0000.000
Geometric parameters (Å, º) top
Sn—Tei3.0798 (3)Sn—Teiii3.0798 (3)
Sn—Te3.0798 (3)Sn—Teiv3.0798 (3)
Sn—Teii3.0798 (3)Sn—Tev3.0798 (3)
Tei—Sn—Te90.0Snvi—Te—Sn90.0
Tei—Sn—Teii90.0Snvi—Te—Snvii90.0
Te—Sn—Teii180.0Sn—Te—Snvii180.0
Tei—Sn—Teiii90.0Snvi—Te—Snviii90.0
Te—Sn—Teiii90.0Sn—Te—Snviii90.0
Teii—Sn—Teiii90.0Snvii—Te—Snviii90.0
Tei—Sn—Teiv90.0Snvi—Te—Snix90.0
Te—Sn—Teiv90.0Sn—Te—Snix90.0
Teii—Sn—Teiv90.0Snvii—Te—Snix90.0
Teiii—Sn—Teiv180.0Snviii—Te—Snix180.0
Tei—Sn—Tev180.0Snvi—Te—Snx180.0
Te—Sn—Tev90.0Sn—Te—Snx90.0
Teii—Sn—Tev90.0Snvii—Te—Snx90.0
Teiii—Sn—Tev90.0Snviii—Te—Snx90.0
Teiv—Sn—Tev90.0Snix—Te—Snx90.0
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x, y, z1; (iii) x, y1/2, z1/2; (iv) x, y+1/2, z1/2; (v) x1/2, y, z1/2; (vi) x+1/2, y, z+1/2; (vii) x, y, z+1; (viii) x, y1/2, z+1/2; (ix) x, y+1/2, z+1/2; (x) x1/2, y, z+1/2.
 

Acknowledgements

The authors are grateful to Vincent Dorcet (Centre de Diffractométrie X CDIFX), Université de Rennes 1, France.

Funding information

This work was supported by FONDECYT grant No. 1190856.

References

First citationAriponnammal, S., Venkateswaran, C. & Natarajan, S. (1996). Phys. Status Solidi B, 197, K1–K4.  CrossRef CAS Google Scholar
First citationBanik, A. & Biswas, K. (2014). J. Mater. Chem. A, 2, 9620–9625.  CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (1997–2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFigueroa-Millon, S., Álvarez-Serrano, I., Bérardan, D. & Galdámez, A. (2018). Mater. Chem. Phys. 211, 321–328.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKrebs, V. & Langner, D. (1964). Z. Anorg. Allg. Chem. 334, 37–49.  CrossRef ICSD CAS Google Scholar
First citationLiu, H. & Chang, L. (1992). J. Alloys Compd. 185, 183–190.  CrossRef ICSD CAS Google Scholar
First citationMajid, M. & Legendre, B. (1998). J. Therm. Anal. 54, 963–990.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTotani, A., Okazaki, H. & Nakajima, S. (1968). Trans. Metall. Soc. AIME, 2426, 709.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds