metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](4-iso­propyl-1-methyl-1,2,4-triazol-5-yl­­idene)(tri­cyclo­hexyl­phosphane-κP)iridium(I) tetra­fluorido­borate di­chloro­methane monosolvate

crossmark logo

aDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA, and bDepartment of Chemistry and Biochemistry, The University of Arizona, Tuscon, AZ, 85716, USA
*Correspondence e-mail: edward.rajaseelan@millersville.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 21 June 2022; accepted 5 July 2022; online 8 July 2022)

The title compound, [Ir(C8H12)(C6H11N3)(C18H33P)]BF4·CH2Cl2, a triazole-based N-heterocyclic carbene iridium(I) cationic complex with a tetra­fluorido­borate counter-anion, crystallizes with one di­chloro­methane solvent mol­ecule per formula unit. The IrI atom of the cationic complex has a distorted square-planar coordination environment, defined by a bidentate cyclo­octa-1,5-diene (COD) ligand, an N-heterocyclic carbene, and a tri­cyclo­hexyl­phosphane ligand. The complex crystallizes in a C-centered monoclinic unit cell and has an unusually high number of eight formula units.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N-heterocyclic carbenes (NHCs) have emerged as excellent spectator ligands in homogeneous catalysis (Cazin, 2013[Cazin, C. S. J. (2013). Dalton Trans. 42, 7254.]; de Frémont et al., 2009[Frémont, P. de, Marion, N. & Nolan, S. P. (2009). Coord. Chem. Rev. 253, 862-892.]; Díez-Gonzáles et al., 2009[Díez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612-3676.]; Rovis & Nolan, 2013[Rovis, T. & Nolan, S. (2013). Synlett, 24, 1188-1189.]; Ruff et al., 2016[Ruff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327-335.]; Zuo et al., 2014[Zuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791-5801.]). Their catalytic activities in the transfer hydrogenation of ketones and imines have also been studied and reported (Albrecht et al., 2002[Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596-3604.]; Gnanamgari et al., 2007[Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226-1230.]). The NHC ligands can be tuned sterically and electronically by having different substituents on the nitro­gen atoms (Gusev, 2009[Gusev, D. G. (2009). Organometallics, 28, 6458-6461.]). Many imidazole- and triazole-based NHC rhodium and iridium complexes have been synthesized and structurally characterized (Herrmann et al., 2006[Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437-2448.]; Wang & Lin, 1998[Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972-975.]; Chianese et al., 2004[Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461-2468.]). As part of our ongoing research, we continue to synthesize new imidazole- and triazole-based NHC complexes of rhodium and iridium to study the effect of different substituents on the NHCs and co-ligands coordinating to the transition metal in transfer hydrogenation reactions (Nichol et al., 2009[Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320-4328.], 2010[Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.], 2011[Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860-m1861.], 2012[Nichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158-m159.]; Idrees et al., 2017a[Idrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.],b[Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.]; Rood et al., 2021[Rood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.]; Rushlow et al., 2021[Rushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210811.]; Newman et al., 2021[Newman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836.]; Castaldi et al., 2021[Castaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x211142.]).

The mol­ecular structure of the title complex, [Ir(C8H12)(C18H33P)(C6H11N3)][BF4]·CH2Cl2 (4), comprises an IrI cationic complex, a tetra­fluorido­borate counter-anion, and a CH2Cl2 solvent mol­ecule, as illustrated in Fig. 1[link]. The coordination sphere around the IrI atom, formed by the bidentate (1,2,5,6-η)-cyclo­octa-1,5-diene (COD), NHC, and tri­cyclo­hexyl­phosphane ligands, results in a distorted square-planar shape. The N1—C19(NHC)—N3 bond angle in the triazole-based carbene is 102.8 (2)° deviating from the expected 120° for the sp2-hybridized carbon atom. Other selected bond lengths and angles in the structure are: Ir1—C19(NHC) = 2.035 (3) Å, Ir1—P1 = 2.3732 (7) Å, and C19—Ir1—P1 = 94.07 (7)°. The cyclo­hexyl rings of the tri­cyclo­hexyl­phosphane ligand are all in the expected chair conformation, with the mean planes of the cyclo­hexyl rings forming dihedral angles of 59.70 (15), 61.77 (14), and 83.20 (15)°. The crystal packing diagram of the title compound is shown in Fig. 2[link]. Several close C—H⋯F contacts stabilizing the orientation of the [BF4] group with the iridium(I) complex and di­chloro­methane solvate are reported in Table 1[link]. These non-classical hydrogen-bonds are shown as green dotted lines in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯F1 0.99 2.54 3.204 (4) 124
C23—H23C⋯F1 0.98 2.51 3.137 (4) 122
C20—H20⋯F4i 0.95 2.49 3.400 (3) 161
C30—H30⋯F4ii 1.00 2.35 3.192 (3) 141
C16—H16B⋯F2iii 0.99 2.54 3.404 (4) 146
C22—H22⋯F1 1.00 2.41 3.094 (4) 125
C31—H31B⋯F3ii 0.99 2.35 3.330 (4) 170
C1S—H1SA⋯F2 0.99 2.50 3.362 (5) 145
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x, y-1, z]; (iii) [x, -y+1, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular entities in the crystal structure of the title compound (4). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Crystal packing unit-cell diagram of the title compound (4) shown along the b axis. Non-classical hydrogen-bonding inter­actions between F and H atoms are shown as dotted green lines.

Synthesis and crystallization

1-Methyl-1,2,4 triazole (1) was purchased from Matrix Scientific. All other compounds used in the syntheses as shown in Fig. 3[link] were obtained from Sigma-Aldrich and Strem and used as received. All subsequent synthesis procedures were performed under nitro­gen using reagent grade solvents, which were used as received without further purification. NMR spectra were recorded at room temperature in CDCl3 on a 400 MHz Varian spectrometer (operating at 162 MHz for 31P) and referenced to the residual solvent peak (δ in ppm).

[Figure 3]
Figure 3
Reaction scheme for the synthesis of the N-heterocyclic carbene (2) and subsequent formation of the title compound (4).

4-Isopropyl-1-methyl-1,2,4-triazolium bromide (2): 1-meth­yl-1,2,4-triazole (1) (5.01 g, 60.28 mmol) and isopropyl bromide (10.48 g, 85.2 mmol) were added to toluene (20 ml), and the mixture was refluxed for 48 h. Once cooled, the liquid was deca­nted, the white solid product that had formed was washed with ether, filtered, and dried. Yield: 2.48 g (20%). 1H NMR: δ 11.79 (s, 1 H, N—C5H—N), 8.97 (s, 1 H, N—C3H—N), 5.83 [m, 1 H, CH(CH3)2], 4.29 (s, 3 H, N—CH3), 1.73 [d, 6 H, CH(CH3)2]. 13C NMR: δ 143.52 (N—CH—N), 142.65 (N—CH—N), 53.32 [CH(CH3)2], 39.62 (N—CH3), 23.21[CH(CH3)2].

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](4-isopropyl-1-methyl-1,2,4-triazol-5-yl­idene) chloro­iridium (3): 4-ispopropyl-1-methyl-1,2,4 triazolium bromide (2) (0.061g, 0.300 mmol), Ag2O (0.035 g, 0.149 mmol), and 10 ml of CH2Cl2 were added to an oven-dried flask and stirred under N2 in the dark for 90 min. The mixture was filtered through Celite into [Ir(COD)Cl]2 (0.100 g, 0.149 mmol) and stirred in the dark for 90 min. The resulting mixture was filtered through Celite and the solvent was removed under reduced pressure. The red solid product was washed with pentane and allowed to dry overnight under vacuum. Yield: 0.139 g (100%). 1H NMR: δ 7.91 (s, 1 H, N—C3H—N), 5.52 [m, 1 H, CH(CH3)2], 4.74, 4.76 (m, 4 H, CH of COD) 4.09 (s, 3 H, CH3—N), 2.96, 2.30, 2.17, 1.86 (m, 8 H, CH2 of COD),1.28 [m, 6 H, CH(CH3)2]. 13C NMR: δ 181.21 (Ir—C), 138.79 (N—CH—N), 86.59, 85.96 (CH of COD), 51.73 [CH(CH3)2], 40.52 (N—CH3), 33.72, 33.28, 29.65, 29.24 (CH2 of COD), 24.17, 23.31[CH(CH3)2].

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](4-isopropyl-1-methyl-1,2,4-triazol-5-yl­idene)(tri­cyclo­hexyl­phosphane)iridium(I) tetra­fluorido­borate (4): Tri­cyclo­hexyl­phosphane (0.085 g, 0.308 mmol) and AgBF4 (0.059 g 0.308 mmol) were added to an oven-dried flask containing complex 3 (0.140 g, 0.308 mmol) in 10 ml of CH2Cl2, and stirred under N2 in the dark for 90 mins. The mixture was filtered through Celite and the solvent was removed under reduced pressure. The bright-red solid was washed with pentane and dried under vacuum. Yield: 0.214 g (100%). 1H NMR: δ 8.58 (s, 1 H, N—C3H—N), 5.29 [m, 1 H, CH(CH3)2], 4.38, 3.99 (m, 4 H, CH of COD), 4.05 (s, 3 H, CH3—N), 2.27–0.86 CH2 of COD and cyclo­hexyl, 1.21 [m, 6 H, CH(CH3)2]. 13C NMR: δ 178.26 (Ir—C), 142.01 (N—CH—N), 77.30, 77.19, 76.98, 77.66 (CH of COD), 54.23 [CH(CH3)2], 40.51 (N—CH3), 34.94, 34.10, 30.36, 30.14 (CH2 of COD), 27.79–25.92 (CH2 of cyclo­hex­yl), 24.50, 22.86 [CH(CH3)2]. 31P: δ 39.81.

The title compound (4) was crystallized by slow diffusion of pentane into a CH2Cl2 solution.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ir(C8H12)(C6H11N3)(C18H33P)]BF4·CH2Cl2
Mr 877.70
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 35.832 (5), 10.2608 (15), 22.034 (3)
β (°) 118.095 (3)
V3) 7146.7 (17)
Z 8
Radiation type Mo Kα
μ (mm−1) 3.98
Crystal size (mm) 0.27 × 0.11 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.555, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 151141, 7958, 7086
Rint 0.061
(sin θ/λ)max−1) 0.643
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.052, 1.05
No. of reflections 7958
No. of parameters 409
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.83, −0.69
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

[(1,2,5,6-η)-Cycloocta-1,5-diene](4-isopropyl-1-methyl-1,2,4-triazol-5-ylidene)(tricyclohexylphosphane-κP)iridium(I) tetrafluoridoborate dichloromethane monosolvate top
Crystal data top
[Ir(C8H12)(C6H11N3)(C18H33P)]BF4·CH2Cl2F(000) = 3552
Mr = 877.70Dx = 1.631 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 35.832 (5) ÅCell parameters from 9640 reflections
b = 10.2608 (15) Åθ = 2.5–27.1°
c = 22.034 (3) ŵ = 3.98 mm1
β = 118.095 (3)°T = 100 K
V = 7146.7 (17) Å3Plate, clear light pink
Z = 80.27 × 0.11 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
7086 reflections with I > 2σ(I)
φ and ω scansRint = 0.061
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.2°, θmin = 1.3°
Tmin = 0.555, Tmax = 0.746h = 4546
151141 measured reflectionsk = 1313
7958 independent reflectionsl = 2827
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0234P)2 + 23.3944P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.004
7958 reflectionsΔρmax = 1.83 e Å3
409 parametersΔρmin = 0.69 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.37947 (2)0.36533 (2)0.66268 (2)0.01104 (4)
P10.39296 (2)0.44263 (6)0.77266 (3)0.01133 (12)
Cl2S0.40895 (2)1.15711 (8)0.42611 (4)0.02888 (16)
Cl1S0.32454 (3)1.06150 (10)0.33196 (5)0.0487 (2)
F40.33674 (6)0.95299 (19)0.51922 (11)0.0381 (5)
N10.29702 (7)0.2187 (2)0.62775 (11)0.0165 (5)
N30.28433 (7)0.4161 (2)0.59694 (11)0.0148 (4)
F20.34763 (10)0.7797 (2)0.46717 (12)0.0665 (8)
F30.40161 (8)0.8615 (2)0.56303 (16)0.0674 (8)
C190.31703 (8)0.3312 (2)0.63092 (13)0.0140 (5)
N20.25339 (7)0.2280 (2)0.59297 (12)0.0206 (5)
F10.34932 (10)0.7542 (3)0.56918 (13)0.0762 (9)
C10.41482 (8)0.6111 (2)0.79339 (13)0.0133 (5)
H10.4090730.6429150.8310810.016*
C70.43280 (8)0.3465 (2)0.84639 (13)0.0124 (5)
H70.4605000.3664150.8477280.015*
C130.34343 (8)0.4505 (2)0.78081 (13)0.0141 (5)
H130.3205590.4725510.7336750.017*
C60.46335 (8)0.6214 (2)0.82126 (11)0.0148 (5)
H6A0.4780060.5734660.8653190.018*
H6B0.4711490.5805490.7881060.018*
C120.42781 (8)0.1971 (2)0.83749 (13)0.0150 (5)
H12A0.4010020.1699710.8364860.018*
H12B0.4265430.1717060.7932100.018*
C20.38961 (8)0.7009 (2)0.73112 (14)0.0163 (5)
H2A0.3914990.6666800.6906600.020*
H2B0.3594460.7003890.7201220.020*
C210.31663 (9)0.0937 (3)0.65715 (15)0.0221 (6)
H21A0.3108060.0314170.6200010.033*
H21B0.3049840.0603580.6864210.033*
H21C0.3472680.1052370.6847650.033*
C250.44696 (8)0.3374 (3)0.69905 (14)0.0167 (5)
H250.4650540.3534270.7493860.020*
C80.43839 (8)0.3886 (3)0.91742 (13)0.0158 (5)
H8A0.4431450.4838660.9229580.019*
H8B0.4122730.3685390.9203930.019*
C230.26856 (9)0.5766 (3)0.50488 (14)0.0224 (6)
H23A0.2377060.5723010.4850580.034*
H23B0.2782550.5091400.4840800.034*
H23C0.2767440.6626000.4957090.034*
C110.46487 (9)0.1279 (2)0.89647 (13)0.0158 (5)
H11A0.4601470.0325770.8914000.019*
H11B0.4911790.1471510.8939450.019*
C90.47579 (9)0.3179 (3)0.97497 (13)0.0172 (5)
H9A0.4781910.3438341.0199540.021*
H9B0.5022230.3437510.9743350.021*
C180.34015 (9)0.5541 (3)0.82801 (14)0.0193 (6)
H18A0.3462270.6409970.8151370.023*
H18B0.3614800.5364060.8761930.023*
C200.24711 (8)0.3498 (3)0.57501 (14)0.0185 (6)
H200.2199400.3881760.5496980.022*
C260.43439 (8)0.4508 (3)0.65866 (11)0.0168 (5)
H260.4446080.5317720.6870850.020*
C320.45361 (9)0.2064 (3)0.67450 (14)0.0192 (6)
H32A0.4523660.1375920.7050110.023*
H32B0.4821690.2039780.6779490.023*
C40.45350 (9)0.8468 (3)0.76842 (15)0.0197 (6)
H4A0.4634300.9381600.7787730.024*
H4B0.4590770.8151920.7310180.024*
C140.33119 (8)0.3160 (3)0.79709 (14)0.0160 (5)
H14A0.3325480.2501940.7653150.019*
H14B0.3517010.2904930.8446180.019*
C300.37730 (9)0.2283 (3)0.58452 (13)0.0177 (5)
H300.3554900.1584210.5725580.021*
C100.47030 (9)0.1703 (3)0.96657 (14)0.0179 (5)
H10A0.4953970.1266191.0033850.022*
H10B0.4451760.1435100.9710830.022*
C160.28327 (10)0.4211 (3)0.83670 (16)0.0258 (6)
H16A0.2538190.4244300.8293330.031*
H16B0.3019000.3972420.8853320.031*
C220.28870 (9)0.5548 (3)0.58210 (14)0.0174 (5)
H220.3195470.5750820.6023270.021*
C150.28669 (9)0.3177 (3)0.78991 (16)0.0231 (6)
H15A0.2658710.3363130.7415370.028*
H15B0.2800480.2310930.8021640.028*
C290.36078 (9)0.3470 (3)0.55232 (13)0.0181 (6)
H290.3294890.3460330.5216510.022*
C50.47773 (9)0.7629 (3)0.83248 (14)0.0187 (6)
H5A0.5082870.7665040.8461530.022*
H5B0.4738360.7994120.8707090.022*
C310.42068 (9)0.1769 (3)0.60030 (14)0.0205 (6)
H31A0.4296340.2173830.5684400.025*
H31B0.4190200.0815380.5926990.025*
C30.40612 (9)0.8415 (3)0.74491 (14)0.0192 (6)
H3A0.3908920.8936170.7023910.023*
H3B0.4003670.8803840.7807890.023*
C240.26977 (9)0.6436 (3)0.61597 (14)0.0218 (6)
H24A0.2757980.7347260.6103670.033*
H24B0.2822480.6228760.6650710.033*
H24C0.2390840.6304570.5942230.033*
C280.38413 (9)0.4454 (3)0.53192 (14)0.0221 (6)
H28A0.3685420.5290570.5209820.026*
H28B0.3846140.4146690.4897100.026*
C270.42968 (9)0.4688 (3)0.58804 (14)0.0218 (6)
H27A0.4487910.4075850.5813800.026*
H27B0.4382680.5585770.5836360.026*
C170.29586 (10)0.5546 (3)0.82245 (16)0.0252 (6)
H17A0.2951620.6182320.8556780.030*
H17B0.2750240.5829530.7756590.030*
B10.35915 (13)0.8357 (4)0.53007 (19)0.0317 (8)
C1S0.36391 (13)1.0744 (5)0.4171 (2)0.0568 (12)
H1SA0.3722050.9857890.4366560.068*
H1SB0.3522861.1206610.4439060.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01177 (5)0.01212 (5)0.00905 (5)0.00001 (4)0.00476 (4)0.00061 (4)
P10.0132 (3)0.0105 (3)0.0100 (3)0.0009 (2)0.0053 (3)0.0001 (2)
Cl2S0.0298 (4)0.0360 (4)0.0242 (4)0.0020 (3)0.0155 (3)0.0033 (3)
Cl1S0.0400 (5)0.0429 (5)0.0466 (5)0.0068 (4)0.0067 (4)0.0053 (4)
F40.0372 (11)0.0322 (10)0.0466 (12)0.0052 (9)0.0210 (10)0.0079 (9)
N10.0170 (11)0.0167 (11)0.0158 (11)0.0025 (9)0.0077 (9)0.0002 (9)
N30.0132 (11)0.0166 (11)0.0140 (11)0.0006 (9)0.0059 (9)0.0001 (9)
F20.113 (2)0.0406 (13)0.0361 (13)0.0102 (14)0.0270 (14)0.0078 (10)
F30.0350 (13)0.0366 (13)0.109 (2)0.0045 (10)0.0166 (14)0.0099 (13)
C190.0168 (13)0.0161 (12)0.0102 (12)0.0004 (10)0.0072 (10)0.0002 (9)
N20.0167 (12)0.0261 (13)0.0190 (12)0.0035 (10)0.0083 (10)0.0009 (10)
F10.091 (2)0.0757 (19)0.0468 (15)0.0387 (16)0.0203 (14)0.0237 (13)
C10.0173 (13)0.0107 (12)0.0120 (12)0.0002 (9)0.0069 (10)0.0010 (9)
C70.0117 (12)0.0128 (12)0.0112 (12)0.0013 (9)0.0040 (10)0.0013 (9)
C130.0140 (12)0.0164 (12)0.0126 (12)0.0004 (10)0.0068 (10)0.0006 (10)
C60.0161 (13)0.0134 (12)0.0142 (12)0.0009 (10)0.0066 (10)0.0009 (9)
C120.0186 (13)0.0124 (12)0.0133 (13)0.0024 (10)0.0070 (11)0.0007 (10)
C20.0174 (13)0.0136 (12)0.0161 (13)0.0030 (10)0.0064 (11)0.0019 (10)
C210.0269 (15)0.0148 (13)0.0214 (14)0.0034 (11)0.0086 (12)0.0014 (11)
C250.0150 (13)0.0224 (14)0.0135 (13)0.0005 (10)0.0073 (11)0.0042 (10)
C80.0177 (13)0.0162 (13)0.0120 (12)0.0011 (10)0.0059 (11)0.0009 (10)
C230.0260 (15)0.0234 (14)0.0151 (14)0.0054 (12)0.0074 (12)0.0033 (11)
C110.0201 (13)0.0122 (12)0.0158 (13)0.0034 (10)0.0092 (11)0.0029 (10)
C90.0193 (13)0.0198 (13)0.0096 (12)0.0011 (11)0.0043 (11)0.0002 (10)
C180.0240 (15)0.0192 (13)0.0173 (14)0.0037 (11)0.0119 (12)0.0006 (10)
C200.0116 (12)0.0263 (15)0.0156 (13)0.0013 (11)0.0048 (11)0.0007 (11)
C260.0159 (13)0.0194 (13)0.0183 (13)0.0043 (10)0.0107 (11)0.0026 (10)
C320.0175 (13)0.0235 (14)0.0169 (13)0.0057 (11)0.0084 (11)0.0011 (11)
C40.0243 (15)0.0178 (13)0.0193 (14)0.0028 (11)0.0120 (12)0.0014 (11)
C140.0172 (13)0.0171 (12)0.0151 (13)0.0002 (10)0.0086 (11)0.0004 (10)
C300.0187 (14)0.0202 (13)0.0131 (13)0.0028 (10)0.0067 (11)0.0080 (10)
C100.0213 (14)0.0176 (13)0.0129 (13)0.0043 (11)0.0065 (11)0.0051 (10)
C160.0239 (15)0.0332 (16)0.0294 (16)0.0060 (13)0.0200 (13)0.0065 (13)
C220.0180 (13)0.0152 (13)0.0174 (13)0.0034 (10)0.0071 (11)0.0031 (10)
C150.0162 (14)0.0282 (15)0.0259 (15)0.0001 (11)0.0108 (12)0.0041 (12)
C290.0189 (13)0.0272 (15)0.0085 (12)0.0007 (11)0.0068 (11)0.0033 (10)
C50.0216 (14)0.0166 (13)0.0175 (14)0.0031 (11)0.0089 (12)0.0017 (10)
C310.0244 (15)0.0197 (13)0.0183 (14)0.0015 (11)0.0107 (12)0.0072 (11)
C30.0253 (15)0.0140 (13)0.0177 (14)0.0014 (11)0.0097 (12)0.0029 (10)
C240.0255 (15)0.0212 (14)0.0143 (13)0.0087 (11)0.0059 (12)0.0024 (11)
C280.0255 (15)0.0291 (15)0.0140 (13)0.0020 (12)0.0113 (12)0.0038 (11)
C270.0252 (15)0.0256 (15)0.0207 (14)0.0042 (12)0.0160 (13)0.0000 (11)
C170.0277 (16)0.0267 (15)0.0283 (16)0.0113 (12)0.0190 (14)0.0037 (12)
B10.041 (2)0.0238 (18)0.0246 (19)0.0130 (15)0.0110 (17)0.0005 (14)
C1S0.048 (2)0.096 (4)0.034 (2)0.021 (2)0.0252 (19)0.004 (2)
Geometric parameters (Å, º) top
Ir1—P12.3732 (7)C11—H11B0.9900
Ir1—C192.035 (3)C11—C101.526 (4)
Ir1—C252.179 (3)C9—H9A0.9900
Ir1—C262.194 (3)C9—H9B0.9900
Ir1—C302.196 (3)C9—C101.528 (4)
Ir1—C292.205 (3)C18—H18A0.9900
P1—C11.863 (3)C18—H18B0.9900
P1—C71.862 (3)C18—C171.533 (4)
P1—C131.868 (3)C20—H200.9500
Cl2S—C1S1.750 (4)C26—H261.0000
Cl1S—C1S1.742 (4)C26—C271.496 (3)
F4—B11.403 (5)C32—H32A0.9900
N1—C191.343 (3)C32—H32B0.9900
N1—N21.383 (3)C32—C311.530 (4)
N1—C211.460 (3)C4—H4A0.9900
N3—C191.366 (3)C4—H4B0.9900
N3—C201.367 (3)C4—C51.528 (4)
N3—C221.484 (3)C4—C31.525 (4)
F2—B11.372 (4)C14—H14A0.9900
F3—B11.368 (5)C14—H14B0.9900
N2—C201.298 (4)C14—C151.527 (4)
F1—B11.361 (4)C30—H301.0000
C1—H11.0000C30—C291.394 (4)
C1—C61.551 (4)C30—C311.519 (4)
C1—C21.543 (3)C10—H10A0.9900
C7—H71.0000C10—H10B0.9900
C7—C121.546 (3)C16—H16A0.9900
C7—C81.543 (3)C16—H16B0.9900
C13—H131.0000C16—C151.524 (4)
C13—C181.530 (4)C16—C171.520 (4)
C13—C141.541 (4)C22—H221.0000
C6—H6A0.9900C22—C241.525 (4)
C6—H6B0.9900C15—H15A0.9900
C6—C51.522 (3)C15—H15B0.9900
C12—H12A0.9900C29—H291.0000
C12—H12B0.9900C29—C281.509 (4)
C12—C111.527 (3)C5—H5A0.9900
C2—H2A0.9900C5—H5B0.9900
C2—H2B0.9900C31—H31A0.9900
C2—C31.534 (4)C31—H31B0.9900
C21—H21A0.9800C3—H3A0.9900
C21—H21B0.9800C3—H3B0.9900
C21—H21C0.9800C24—H24A0.9800
C25—H251.0000C24—H24B0.9800
C25—C261.404 (4)C24—H24C0.9800
C25—C321.510 (4)C28—H28A0.9900
C8—H8A0.9900C28—H28B0.9900
C8—H8B0.9900C28—C271.533 (4)
C8—C91.526 (4)C27—H27A0.9900
C23—H23A0.9800C27—H27B0.9900
C23—H23B0.9800C17—H17A0.9900
C23—H23C0.9800C17—H17B0.9900
C23—C221.520 (4)C1S—H1SA0.9900
C11—H11A0.9900C1S—H1SB0.9900
C19—Ir1—P194.07 (7)C25—C26—Ir170.68 (15)
C19—Ir1—C25162.50 (10)C25—C26—H26112.2
C19—Ir1—C26156.41 (10)C25—C26—C27127.4 (2)
C19—Ir1—C3089.60 (10)C27—C26—Ir1115.31 (17)
C19—Ir1—C2983.82 (10)C27—C26—H26112.2
C25—Ir1—P190.64 (7)C25—C32—H32A109.0
C25—Ir1—C2637.45 (10)C25—C32—H32B109.0
C25—Ir1—C3080.07 (10)C25—C32—C31112.7 (2)
C25—Ir1—C2995.89 (10)H32A—C32—H32B107.8
C26—Ir1—P198.76 (6)C31—C32—H32A109.0
C26—Ir1—C3085.73 (9)C31—C32—H32B109.0
C26—Ir1—C2978.59 (9)H4A—C4—H4B108.1
C30—Ir1—P1158.38 (7)C5—C4—H4A109.5
C30—Ir1—C2936.92 (10)C5—C4—H4B109.5
C29—Ir1—P1164.70 (7)C3—C4—H4A109.5
C1—P1—Ir1114.85 (8)C3—C4—H4B109.5
C1—P1—C13104.19 (11)C3—C4—C5110.6 (2)
C7—P1—Ir1114.70 (8)C13—C14—H14A109.4
C7—P1—C1102.49 (11)C13—C14—H14B109.4
C7—P1—C13108.17 (12)H14A—C14—H14B108.0
C13—P1—Ir1111.52 (8)C15—C14—C13111.3 (2)
C19—N1—N2113.9 (2)C15—C14—H14A109.4
C19—N1—C21126.8 (2)C15—C14—H14B109.4
N2—N1—C21119.3 (2)Ir1—C30—H30113.6
C19—N3—C20108.6 (2)C29—C30—Ir171.89 (15)
C19—N3—C22125.4 (2)C29—C30—H30113.6
C20—N3—C22125.9 (2)C29—C30—C31124.3 (3)
N1—C19—Ir1129.73 (19)C31—C30—Ir1112.85 (17)
N1—C19—N3102.8 (2)C31—C30—H30113.6
N3—C19—Ir1126.77 (19)C11—C10—C9110.7 (2)
C20—N2—N1103.0 (2)C11—C10—H10A109.5
P1—C1—H1106.2C11—C10—H10B109.5
C6—C1—P1115.09 (17)C9—C10—H10A109.5
C6—C1—H1106.2C9—C10—H10B109.5
C2—C1—P1109.51 (17)H10A—C10—H10B108.1
C2—C1—H1106.2H16A—C16—H16B108.0
C2—C1—C6112.9 (2)C15—C16—H16A109.4
P1—C7—H7105.1C15—C16—H16B109.4
C12—C7—P1114.79 (17)C17—C16—H16A109.4
C12—C7—H7105.1C17—C16—H16B109.4
C8—C7—P1114.64 (17)C17—C16—C15111.2 (2)
C8—C7—H7105.1N3—C22—C23110.1 (2)
C8—C7—C12111.0 (2)N3—C22—H22108.1
P1—C13—H13105.1N3—C22—C24110.4 (2)
C18—C13—P1118.41 (18)C23—C22—H22108.1
C18—C13—H13105.1C23—C22—C24111.9 (2)
C18—C13—C14110.1 (2)C24—C22—H22108.1
C14—C13—P1111.79 (17)C14—C15—H15A109.5
C14—C13—H13105.1C14—C15—H15B109.5
C1—C6—H6A109.4C16—C15—C14110.5 (2)
C1—C6—H6B109.4C16—C15—H15A109.5
H6A—C6—H6B108.0C16—C15—H15B109.5
C5—C6—C1111.1 (2)H15A—C15—H15B108.1
C5—C6—H6A109.4Ir1—C29—H29114.1
C5—C6—H6B109.4C30—C29—Ir171.19 (15)
C7—C12—H12A109.5C30—C29—H29114.1
C7—C12—H12B109.5C30—C29—C28125.1 (3)
H12A—C12—H12B108.1C28—C29—Ir1110.39 (18)
C11—C12—C7110.5 (2)C28—C29—H29114.1
C11—C12—H12A109.5C6—C5—C4112.7 (2)
C11—C12—H12B109.5C6—C5—H5A109.0
C1—C2—H2A109.2C6—C5—H5B109.0
C1—C2—H2B109.2C4—C5—H5A109.0
H2A—C2—H2B107.9C4—C5—H5B109.0
C3—C2—C1112.1 (2)H5A—C5—H5B107.8
C3—C2—H2A109.2C32—C31—H31A109.3
C3—C2—H2B109.2C32—C31—H31B109.3
N1—C21—H21A109.5C30—C31—C32111.6 (2)
N1—C21—H21B109.5C30—C31—H31A109.3
N1—C21—H21C109.5C30—C31—H31B109.3
H21A—C21—H21B109.5H31A—C31—H31B108.0
H21A—C21—H21C109.5C2—C3—H3A109.3
H21B—C21—H21C109.5C2—C3—H3B109.3
Ir1—C25—H25114.5C4—C3—C2111.4 (2)
C26—C25—Ir171.87 (15)C4—C3—H3A109.3
C26—C25—H25114.5C4—C3—H3B109.3
C26—C25—C32124.7 (2)H3A—C3—H3B108.0
C32—C25—Ir1108.68 (18)C22—C24—H24A109.5
C32—C25—H25114.5C22—C24—H24B109.5
C7—C8—H8A109.5C22—C24—H24C109.5
C7—C8—H8B109.5H24A—C24—H24B109.5
H8A—C8—H8B108.1H24A—C24—H24C109.5
C9—C8—C7110.7 (2)H24B—C24—H24C109.5
C9—C8—H8A109.5C29—C28—H28A108.9
C9—C8—H8B109.5C29—C28—H28B108.9
H23A—C23—H23B109.5C29—C28—C27113.2 (2)
H23A—C23—H23C109.5H28A—C28—H28B107.8
H23B—C23—H23C109.5C27—C28—H28A108.9
C22—C23—H23A109.5C27—C28—H28B108.9
C22—C23—H23B109.5C26—C27—C28112.0 (2)
C22—C23—H23C109.5C26—C27—H27A109.2
C12—C11—H11A109.2C26—C27—H27B109.2
C12—C11—H11B109.2C28—C27—H27A109.2
H11A—C11—H11B107.9C28—C27—H27B109.2
C10—C11—C12112.0 (2)H27A—C27—H27B107.9
C10—C11—H11A109.2C18—C17—H17A109.2
C10—C11—H11B109.2C18—C17—H17B109.2
C8—C9—H9A109.4C16—C17—C18112.2 (2)
C8—C9—H9B109.4C16—C17—H17A109.2
C8—C9—C10111.0 (2)C16—C17—H17B109.2
H9A—C9—H9B108.0H17A—C17—H17B107.9
C10—C9—H9A109.4F2—B1—F4108.1 (3)
C10—C9—H9B109.4F3—B1—F4109.2 (3)
C13—C18—H18A109.5F3—B1—F2110.3 (4)
C13—C18—H18B109.5F1—B1—F4109.7 (3)
C13—C18—C17110.8 (2)F1—B1—F2109.8 (3)
H18A—C18—H18B108.1F1—B1—F3109.7 (3)
C17—C18—H18A109.5Cl2S—C1S—H1SA108.9
C17—C18—H18B109.5Cl2S—C1S—H1SB108.9
N3—C20—H20124.1Cl1S—C1S—Cl2S113.3 (2)
N2—C20—N3111.8 (2)Cl1S—C1S—H1SA108.9
N2—C20—H20124.1Cl1S—C1S—H1SB108.9
Ir1—C26—H26112.2H1SA—C1S—H1SB107.7
Ir1—P1—C1—C683.03 (17)C13—P1—C1—C276.91 (19)
Ir1—P1—C1—C245.38 (19)C13—P1—C7—C1281.0 (2)
Ir1—P1—C7—C1244.1 (2)C13—P1—C7—C849.2 (2)
Ir1—P1—C7—C8174.36 (15)C13—C18—C17—C1655.1 (3)
Ir1—P1—C13—C18149.88 (17)C13—C14—C15—C1657.3 (3)
Ir1—P1—C13—C1480.59 (18)C6—C1—C2—C350.3 (3)
Ir1—C25—C26—C27107.6 (3)C12—C7—C8—C956.0 (3)
Ir1—C25—C32—C3141.4 (3)C12—C11—C10—C956.5 (3)
Ir1—C26—C27—C2810.0 (3)C2—C1—C6—C549.8 (3)
Ir1—C30—C29—C28102.2 (3)C21—N1—C19—Ir110.7 (4)
Ir1—C30—C31—C3213.9 (3)C21—N1—C19—N3178.9 (2)
Ir1—C29—C28—C2736.2 (3)C21—N1—N2—C20179.2 (2)
P1—C1—C6—C5176.53 (17)C25—C26—C27—C2894.3 (3)
P1—C1—C2—C3179.95 (18)C25—C32—C31—C3036.9 (3)
P1—C7—C12—C11173.23 (17)C8—C7—C12—C1154.8 (3)
P1—C7—C8—C9171.94 (18)C8—C9—C10—C1157.0 (3)
P1—C13—C18—C17174.26 (19)C18—C13—C14—C1557.3 (3)
P1—C13—C14—C15168.97 (19)C20—N3—C19—Ir1170.16 (19)
N1—N2—C20—N30.2 (3)C20—N3—C19—N10.7 (3)
C19—N1—N2—C200.2 (3)C20—N3—C22—C2358.8 (3)
C19—N3—C20—N20.6 (3)C20—N3—C22—C2465.3 (3)
C19—N3—C22—C23116.4 (3)C26—C25—C32—C3139.0 (4)
C19—N3—C22—C24119.5 (3)C32—C25—C26—Ir1100.6 (3)
N2—N1—C19—Ir1169.89 (18)C32—C25—C26—C277.0 (4)
N2—N1—C19—N30.6 (3)C14—C13—C18—C1755.4 (3)
C1—P1—C7—C12169.26 (19)C30—C29—C28—C2744.6 (4)
C1—P1—C7—C860.5 (2)C22—N3—C19—Ir15.8 (4)
C1—P1—C13—C1825.4 (2)C22—N3—C19—N1176.6 (2)
C1—P1—C13—C14154.96 (18)C22—N3—C20—N2176.5 (2)
C1—C6—C5—C453.7 (3)C15—C16—C17—C1855.1 (3)
C1—C2—C3—C453.8 (3)C29—C30—C31—C3297.0 (3)
C7—P1—C1—C642.0 (2)C29—C28—C27—C2630.5 (3)
C7—P1—C1—C2170.42 (17)C5—C4—C3—C256.8 (3)
C7—P1—C13—C1883.1 (2)C31—C30—C29—Ir1105.8 (2)
C7—P1—C13—C1446.4 (2)C31—C30—C29—C283.6 (4)
C7—C12—C11—C1055.3 (3)C3—C4—C5—C657.6 (3)
C7—C8—C9—C1057.1 (3)C17—C16—C15—C1455.7 (3)
C13—P1—C1—C6154.69 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···F10.992.543.204 (4)124
C23—H23C···F10.982.513.137 (4)122
C20—H20···F4i0.952.493.400 (3)161
C30—H30···F4ii1.002.353.192 (3)141
C16—H16B···F2iii0.992.543.404 (4)146
C22—H22···F11.002.413.094 (4)125
C31—H31B···F3ii0.992.353.330 (4)170
C1S—H1SA···F20.992.503.362 (5)145
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y1, z; (iii) x, y+1, z+1/2.
 

Acknowledgements

JR was supported in this work by the Millersville University Murley Summer Undergraduate Research Fellowship.

References

First citationAlbrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596–3604.  Web of Science CSD CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x211142.  Google Scholar
First citationCazin, C. S. J. (2013). Dalton Trans. 42, 7254.  Web of Science CrossRef Google Scholar
First citationChianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461–2468.  Web of Science CSD CrossRef CAS Google Scholar
First citationDíez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612–3676.  Web of Science PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrémont, P. de, Marion, N. & Nolan, S. P. (2009). Coord. Chem. Rev. 253, 862–892.  Google Scholar
First citationGnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.  Web of Science CrossRef CAS Google Scholar
First citationGusev, D. G. (2009). Organometallics, 28, 6458–6461.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.  Web of Science CSD CrossRef CAS Google Scholar
First citationIdrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.  Google Scholar
First citationIdrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNewman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836.  Google Scholar
First citationNichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320–4328.  Web of Science CSD CrossRef Google Scholar
First citationNichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158–m159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.  Google Scholar
First citationRovis, T. & Nolan, S. (2013). Synlett, 24, 1188–1189.  Web of Science CrossRef CAS Google Scholar
First citationRuff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327–335.  Web of Science CSD CrossRef CAS Google Scholar
First citationRushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210811.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791–5801.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds