organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Azido-N-(4-methyl­phen­yl)acetamide

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 6 June 2022; accepted 13 June 2022; online 29 July 2022)

The asymmetric unit of the title compound, C9H10N4O, comprises three independent mol­ecules, two pairs of which differ significantly in the rotational orientation of the azido group and one pair having very similar conformations; the N—N—C—C torsion angles are −173.9 (2), −102.7 (2) and −173.6 (2)°. In the crystal, each independent mol­ecule forms N—H⋯O hydrogen bonds with its glide-plane-related counterparts, forming zigzag chains extending along the c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N-aryl­acetamides are significant inter­mediates for the synthesis of medicinal, agrochemical and pharmaceutical compounds (Beccalli et al., 2007[Beccalli, E. M., Broggini, G., Martinelli, M. & Sottocornola, S. (2007). Chem. Rev. 107, 5318-5365.]; Valeur & Bradley, 2009[Valeur, E. & Bradley, M. (2009). Chem. Soc. Rev. 38, 606-631.]; Allen & Williams, 2011[Allen, C. L. & Williams, J. M. J. (2011). Chem. Soc. Rev. 40, 3405-3415.]; Missioui et al., 2021[Missioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct. 1239, 130484.], 2022a[Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022a). Arab J. Chem. 15, 103595.],b[Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022b). J. Mol. Struct. 1247, 131420.]). Azides have found valuable applications in medicinal chemistry (Contin et al., 2019[Contin, M., Sepúlveda, C., Fascio, M., Stortz, C. A., Damonte, E. B. & D'Accorso, N. B. (2019). Bioorg. Med. Chem. Lett. 29, 556-559.]), mol­ecular biology (Ahmed & Abdallah, 2019[Ahmed, S. & Abdallah, N. A. (2019). J. Pharm. Biomed. Anal. 165, 357-365.]) and attract increasing attention in the field of organic synthesis as inter­mediates for the preparation of heterocycles such as tetra­zoles, triazolines, triazoles, etc (Chauhan et al., 2019[Chauhan, U. B., Tomich, A. W. & Lavallo, V. (2019). Tetrahedron, 75, 1323-1325.]; Bakulev et al., 2019[Bakulev, V., Shafran, Y. & Dehaen, W. (2019). Tetrahedron Lett. 60, 513-523.]; Abad et al., 2020[Abad, N., Hajji, M., Ramli, Y., Belkhiria, M., Elmgirhi, S. M. H., Habib, M. A., Guerfel, T., Mague, J. T. & Essassi, E. M. (2020). J. Phys. Org. Chem. 33, 4055.]; Missioui, Lgaz et al., 2022[Missioui, M., Lgaz, H., Guerrab, W., Lee, H.-G., Warad, I., Mague, J. T., Ali, I. H., Essassi, E. M. & Ramli, Y. (2022). J. Mol. Struct. 1253, 132132.]). Based on the aforementioned information and in continuation of our research efforts to synthesize more N-aryl­acetamides (Missioui et al., 2020[Missioui, M., Guerrab, W., Mague, J. T. & Ramli, Y. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1429-1430.]; Missioui, Guerrab, Nchioua et al., 2022[Missioui, M., Guerrab, W., Nchioua, I., El Moutaouakil Ala Allah, A., Kalonji Mubengayi, C., Alsubari, A., Mague, J. T. & Ramli, Y. (2022). Acta Cryst. E78, 687-690.]; Guerrab et al., 2021[Guerrab, W., Missioui, M., Zaoui, Y., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 133-134.]), we report the synthesis and crystal structure of the title compound. The structure of the closely related compound 2-azido-N-(4-fluorophenyl)acetamide is reported by Missioui, Guerrab, Alsubari et al. (2022[Missioui, M., Guerrab, W., Alsubari, A., Mague, J. T. & Ramli, Y. (2022). Acta Cryst. E78, 855-859.]).

The asymmetric unit comprises three independent mol­ecules with the azide moieties oriented in opposite directions between mol­ecules containing O1 and O2 but with the same situation in the mol­ecules containing O2 and O3 (Table 1[link]). On the other hand, the mol­ecules containing O1 and O3 have very similar conformations. The rotational orientations of the phenyl groups with respect to the carboxamide moieties are partially determined by intra­molecular C—H⋯O hydrogen bonds (Fig. 1[link] and Table 2[link]).

Table 1
Selected torsion angles (°)

N3—N2—C9—C8 −173.9 (2) N11—N10—C27—C26 −173.6 (2)
N7—N6—C18—C17 −102.7 (2)    

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 (3) 2.04 (3) 2.867 (2) 162 (2)
N5—H5A⋯O2i 0.85 (3) 2.01 (3) 2.833 (2) 163 (2)
C15—H15⋯O2 0.91 (3) 2.34 (2) 2.905 (3) 120 (2)
C18—H18B⋯O2i 0.99 (3) 2.57 (3) 3.353 (3) 136 (2)
N9—H9C⋯O3i 0.81 (3) 2.05 (3) 2.835 (2) 163 (2)
C24—H24⋯O3 0.91 (3) 2.27 (3) 2.882 (3) 125 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit with the labelling scheme and 50% probability ellipsoids. The intra­molecular C—H⋯O hydrogen bonds are shown as dashed lines.

In the crystal, each component of the asymmetric unit forms a chain with its counterparts related by the glide plane and extending along the c-axis direction through N1—H1A⋯O1 or N5—H5A⋯O2 or N9—H9C⋯O3 hydrogen bonds (Table 2[link]). In the case of the mol­ecule containing O2, the chain is reinforced by C18—H18B⋯O2 hydrogen bonds (Table 2[link] and Figs. 2[link] and 3[link]). The chains pack through normal van der Waals contacts.

[Figure 2]
Figure 2
Packing viewed along the c-axis direction with N—H⋯O and C—H⋯O hydrogen bonds indicated, respectively, by blue and black dashed lines.
[Figure 3]
Figure 3
Packing viewed along the a-axis direction with N—H⋯O and C—H⋯O hydrogen bonds indicated, respectively, by blue and black dashed lines.

Synthesis and crystallization

2-Chloro-N-(p-tol­yl)acetamide (0.011 mol) and sodium azide (0.015 mol) were dissolved in a mixture of ethanol/water (70:30) then refluxed for 24 h at 80°C. After completion of the reaction (monitored by thin-layer chromatography, TLC), the 2-azido-N-(4-methyl­phen­yl)acetamide precipitate was filtered and washed with cold water. A portion of the product was dissolved in hot ethanol, the solution was filtered and the filtrate was left undisturbed for 7 days to form colourless plate-like crystals.

Yield 73%, mp 360–362 K, FT–IR (ATR, ν, cm−1) 3254 ν(N—H amide), 3073 ν(C—Harom), 2961 ν(C—H,CH2), 2109 ν (N3), 1027 ν(N—C amide), 1660 ν(C=O amide), 1175 υ(C—N). 1H NMR (DMSO–d6) δ p.p.m. 4.02 (2H, s, CH2), 4.21 (3H, s, CH3), 6.93–7.1 (4H, m, J = 1.3 Hz, Harom), 10.05 (1H, s, NH), 13C NMR (DMSO–d6) δ p.p.m. 51.18 (CH2), 63.85 (CH3), 131.47 (Carom—N), 155.47 (Carom-–O), 113.90–120.86 (Carom); 165.71 (C=O); HRMS (ESI MS) (m/z) calculated for C9H10N4O 190.21 found 190.1191.

Refinement

Crystal data, data collection and structure and refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula C9H10N4O
Mr 190.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 14.4362 (4), 21.3403 (6), 9.2949 (3)
β (°) 98.356 (1)
V3) 2833.11 (14)
Z 12
Radiation type Cu Kα
μ (mm−1) 0.77
Crystal size (mm) 0.22 × 0.16 × 0.08
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.86, 0.94
No. of measured, independent and observed [I > 2σ(I)] reflections 21650, 5486, 4161
Rint 0.039
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.178, 1.05
No. of reflections 5486
No. of parameters 466
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.39
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL 2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL 2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-Azido-N-(4-methylphenyl)acetamide top
Crystal data top
C9H10N4OF(000) = 1200
Mr = 190.21Dx = 1.338 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 14.4362 (4) ÅCell parameters from 9919 reflections
b = 21.3403 (6) Åθ = 3.7–72.2°
c = 9.2949 (3) ŵ = 0.77 mm1
β = 98.356 (1)°T = 150 K
V = 2833.11 (14) Å3Plate, colourless
Z = 120.22 × 0.16 × 0.08 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
5486 independent reflections
Radiation source: INCOATEC IµS micro–focus source4161 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.039
Detector resolution: 10.4167 pixels mm-1θmax = 72.2°, θmin = 3.7°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2624
Tmin = 0.86, Tmax = 0.94l = 1011
21650 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: mixed
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0988P)2 + 1.2801P]
where P = (Fo2 + 2Fc2)/3
5486 reflections(Δ/σ)max = 0.002
466 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The methyl group hydrogen atoms were included as riding contributions in idealized positions since independent refinement yielded unsatisfactory geometries.

The H atoms were treated by a mixture of independent and constrained refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.94983 (12)0.27610 (7)0.28617 (15)0.0374 (4)
N10.94218 (12)0.29612 (8)0.04434 (18)0.0288 (4)
H1A0.9534 (17)0.2808 (11)0.037 (3)0.036 (6)*
N21.06934 (16)0.17717 (11)0.2860 (2)0.0456 (5)
N31.12261 (17)0.14178 (11)0.2867 (2)0.0462 (5)
N41.18070 (17)0.10247 (12)0.3057 (3)0.0584 (6)
C10.87815 (13)0.34695 (9)0.0273 (2)0.0271 (4)
C20.82911 (16)0.35703 (10)0.1109 (2)0.0342 (5)
H20.8403 (17)0.3316 (11)0.190 (3)0.036 (6)*
C30.76610 (16)0.40609 (11)0.1351 (3)0.0395 (5)
H30.7357 (18)0.4126 (12)0.230 (3)0.044 (7)*
C40.75000 (15)0.44650 (10)0.0236 (3)0.0361 (5)
C50.80085 (16)0.43586 (10)0.1134 (3)0.0358 (5)
H50.7923 (17)0.4632 (12)0.195 (3)0.040 (7)*
C60.86475 (16)0.38713 (10)0.1402 (2)0.0324 (5)
H60.8968 (18)0.3818 (12)0.240 (3)0.051 (8)*
C70.68108 (17)0.49939 (12)0.0490 (3)0.0491 (6)
H7A0.6845470.5183730.1440640.074*
H7B0.6959790.5310090.0273160.074*
H7C0.6177060.4833200.0468230.074*
C80.97286 (14)0.26489 (9)0.1665 (2)0.0278 (4)
C91.04041 (16)0.21228 (10)0.1437 (2)0.0328 (5)
H9A1.094 (2)0.2312 (13)0.113 (3)0.051 (8)*
H9B1.0123 (18)0.1829 (13)0.072 (3)0.046 (7)*
O20.59911 (11)0.27335 (7)0.86318 (15)0.0342 (4)
N50.58708 (12)0.29502 (8)0.62103 (18)0.0267 (4)
H5A0.5974 (17)0.2809 (11)0.539 (3)0.036 (6)*
N60.68901 (13)0.16221 (9)0.8282 (2)0.0382 (4)
N70.75608 (14)0.16342 (10)0.9230 (2)0.0404 (5)
N80.81422 (19)0.15780 (17)1.0172 (3)0.0832 (10)
C100.52692 (14)0.34800 (9)0.6098 (2)0.0256 (4)
C110.47922 (14)0.36246 (9)0.4726 (2)0.0284 (4)
H110.4846 (15)0.3348 (10)0.395 (3)0.029 (6)*
C120.42233 (15)0.41482 (10)0.4533 (2)0.0333 (5)
H120.3878 (18)0.4254 (12)0.350 (3)0.044 (7)*
C130.41091 (14)0.45438 (9)0.5689 (2)0.0330 (5)
C140.45925 (16)0.43892 (10)0.7051 (3)0.0362 (5)
H140.451 (2)0.4667 (14)0.782 (3)0.063 (9)*
C150.51679 (15)0.38677 (10)0.7267 (2)0.0320 (5)
H150.5482 (16)0.3763 (11)0.815 (3)0.036 (6)*
C160.35033 (16)0.51175 (11)0.5467 (3)0.0451 (6)
H16A0.3718140.5384440.4723830.068*
H16B0.3543930.5349950.6383460.068*
H16C0.2852530.4992540.5149340.068*
C170.61908 (14)0.26242 (9)0.7411 (2)0.0262 (4)
C180.68726 (16)0.21025 (10)0.7153 (2)0.0318 (5)
H18A0.7514 (19)0.2291 (12)0.716 (3)0.043 (7)*
H18B0.666 (2)0.1898 (13)0.621 (3)0.056 (8)*
O30.27488 (11)0.27395 (7)0.57857 (15)0.0359 (4)
N90.26399 (12)0.29490 (8)0.33643 (18)0.0276 (4)
H9C0.2770 (17)0.2798 (11)0.262 (3)0.034 (6)*
N100.39415 (17)0.17693 (11)0.5742 (2)0.0497 (6)
N110.45011 (15)0.13998 (10)0.5754 (2)0.0418 (5)
N120.50716 (17)0.10135 (11)0.5955 (2)0.0545 (6)
C190.20449 (14)0.34791 (9)0.3227 (2)0.0272 (4)
C200.16642 (16)0.36623 (11)0.1823 (2)0.0370 (5)
H200.1734 (19)0.3414 (13)0.104 (3)0.049 (7)*
C210.11114 (17)0.41922 (12)0.1608 (3)0.0430 (5)
H210.0838 (19)0.4294 (13)0.063 (3)0.053 (8)*
C220.09127 (15)0.45572 (10)0.2763 (3)0.0381 (5)
C230.12924 (16)0.43601 (11)0.4155 (3)0.0395 (5)
H230.118 (2)0.4638 (13)0.502 (3)0.055 (8)*
C240.18568 (16)0.38350 (11)0.4397 (2)0.0351 (5)
H240.2128 (19)0.3704 (13)0.529 (3)0.050 (8)*
C250.03161 (18)0.51349 (12)0.2526 (3)0.0531 (7)
H25A0.0443910.5349720.1643450.080*
H25B0.0461290.5415730.3362210.080*
H25C0.0346250.5016320.2415990.080*
C260.29622 (14)0.26290 (9)0.4575 (2)0.0270 (4)
C270.36337 (16)0.21023 (10)0.4325 (2)0.0316 (5)
H27A0.4158 (18)0.2284 (11)0.399 (3)0.037 (6)*
H27B0.333 (2)0.1813 (13)0.366 (3)0.053 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0544 (10)0.0360 (8)0.0244 (7)0.0067 (7)0.0146 (7)0.0036 (6)
N10.0348 (9)0.0308 (9)0.0221 (8)0.0018 (7)0.0092 (7)0.0002 (6)
N20.0641 (14)0.0517 (12)0.0258 (10)0.0102 (11)0.0228 (9)0.0092 (8)
N30.0592 (14)0.0516 (13)0.0277 (10)0.0166 (12)0.0066 (9)0.0056 (9)
N40.0638 (15)0.0573 (14)0.0541 (14)0.0200 (12)0.0080 (11)0.0149 (11)
C10.0274 (9)0.0265 (10)0.0287 (10)0.0027 (8)0.0083 (8)0.0028 (7)
C20.0373 (11)0.0365 (11)0.0288 (11)0.0003 (9)0.0050 (9)0.0025 (9)
C30.0377 (12)0.0432 (13)0.0359 (13)0.0038 (10)0.0009 (10)0.0036 (9)
C40.0290 (10)0.0327 (11)0.0466 (13)0.0024 (9)0.0058 (9)0.0012 (9)
C50.0375 (11)0.0316 (11)0.0397 (12)0.0028 (9)0.0107 (9)0.0030 (9)
C60.0383 (11)0.0300 (10)0.0298 (11)0.0016 (9)0.0078 (9)0.0001 (8)
C70.0408 (13)0.0408 (13)0.0640 (17)0.0075 (11)0.0014 (12)0.0005 (11)
C80.0334 (10)0.0275 (9)0.0230 (10)0.0058 (8)0.0056 (8)0.0012 (7)
C90.0382 (12)0.0355 (11)0.0256 (10)0.0047 (9)0.0074 (9)0.0036 (8)
O20.0474 (9)0.0323 (8)0.0246 (7)0.0015 (6)0.0107 (6)0.0040 (6)
N50.0342 (9)0.0254 (8)0.0218 (8)0.0029 (7)0.0089 (7)0.0001 (6)
N60.0411 (10)0.0329 (10)0.0402 (10)0.0004 (8)0.0046 (9)0.0099 (8)
N70.0440 (11)0.0531 (12)0.0256 (10)0.0055 (9)0.0095 (9)0.0069 (8)
N80.0636 (16)0.136 (3)0.0447 (15)0.0191 (17)0.0087 (13)0.0369 (16)
C100.0290 (9)0.0224 (9)0.0272 (10)0.0019 (7)0.0097 (8)0.0010 (7)
C110.0316 (10)0.0279 (10)0.0261 (10)0.0016 (8)0.0057 (8)0.0003 (8)
C120.0299 (10)0.0327 (11)0.0372 (12)0.0009 (9)0.0039 (9)0.0051 (9)
C130.0290 (10)0.0246 (10)0.0468 (12)0.0013 (8)0.0105 (9)0.0008 (8)
C140.0387 (12)0.0312 (11)0.0405 (12)0.0005 (9)0.0118 (10)0.0071 (9)
C150.0370 (11)0.0303 (11)0.0298 (11)0.0004 (9)0.0085 (9)0.0029 (8)
C160.0371 (12)0.0292 (11)0.0695 (17)0.0033 (10)0.0090 (11)0.0001 (11)
C170.0314 (10)0.0237 (9)0.0248 (9)0.0043 (8)0.0085 (8)0.0003 (7)
C180.0357 (11)0.0294 (10)0.0320 (11)0.0052 (9)0.0100 (9)0.0060 (8)
O30.0493 (9)0.0376 (8)0.0231 (7)0.0027 (7)0.0130 (6)0.0032 (6)
N90.0322 (9)0.0312 (9)0.0208 (8)0.0001 (7)0.0083 (7)0.0015 (7)
N100.0677 (14)0.0583 (13)0.0273 (10)0.0166 (12)0.0217 (10)0.0144 (9)
N110.0510 (12)0.0495 (12)0.0256 (9)0.0109 (11)0.0077 (8)0.0030 (8)
N120.0575 (14)0.0592 (14)0.0462 (13)0.0170 (12)0.0062 (10)0.0083 (10)
C190.0267 (9)0.0277 (10)0.0280 (10)0.0053 (8)0.0065 (8)0.0006 (7)
C200.0426 (12)0.0409 (12)0.0285 (11)0.0046 (10)0.0081 (9)0.0007 (9)
C210.0431 (13)0.0475 (14)0.0381 (13)0.0075 (11)0.0045 (10)0.0076 (10)
C220.0284 (10)0.0334 (11)0.0531 (14)0.0032 (9)0.0080 (10)0.0006 (10)
C230.0355 (11)0.0385 (12)0.0456 (13)0.0005 (10)0.0092 (10)0.0086 (10)
C240.0375 (11)0.0390 (12)0.0292 (11)0.0012 (9)0.0060 (9)0.0048 (9)
C250.0414 (13)0.0407 (14)0.077 (2)0.0072 (11)0.0082 (13)0.0038 (12)
C260.0305 (10)0.0269 (9)0.0245 (9)0.0066 (8)0.0066 (8)0.0006 (7)
C270.0383 (11)0.0311 (11)0.0260 (10)0.0001 (9)0.0071 (9)0.0022 (8)
Geometric parameters (Å, º) top
O1—C81.230 (2)C12—H121.04 (3)
N1—C81.335 (3)C13—C141.393 (3)
N1—C11.419 (3)C13—C161.501 (3)
N1—H1A0.86 (3)C14—C151.386 (3)
N2—N31.077 (3)C14—H140.95 (3)
N2—C91.525 (3)C15—H150.91 (3)
N3—N41.181 (3)C16—H16A0.9800
C1—C61.390 (3)C16—H16B0.9800
C1—C21.390 (3)C16—H16C0.9800
C2—C31.384 (3)C17—C181.528 (3)
C2—H20.95 (2)C18—H18A1.01 (3)
C3—C41.394 (3)C18—H18B0.99 (3)
C3—H30.94 (3)O3—C261.232 (2)
C4—C51.393 (3)N9—C261.341 (3)
C4—C71.500 (3)N9—C191.415 (3)
C5—C61.388 (3)N9—H9C0.81 (3)
C5—H50.98 (3)N10—N111.128 (3)
C6—H60.98 (3)N10—C271.505 (3)
C7—H7A0.9800N11—N121.161 (3)
C7—H7B0.9800C19—C241.386 (3)
C7—H7C0.9800C19—C201.396 (3)
C8—C91.522 (3)C20—C211.382 (3)
C9—H9A0.96 (3)C20—H200.92 (3)
C9—H9B0.96 (3)C21—C221.390 (3)
O2—C171.233 (2)C21—H210.96 (3)
N5—C171.339 (3)C22—C231.394 (4)
N5—C101.420 (2)C22—C251.502 (3)
N5—H5A0.85 (3)C23—C241.384 (3)
N6—N71.211 (3)C23—H231.03 (3)
N6—C181.465 (3)C24—H240.91 (3)
N7—N81.128 (3)C25—H25A0.9800
C10—C151.390 (3)C25—H25B0.9800
C10—C111.393 (3)C25—H25C0.9800
C11—C121.383 (3)C26—C271.524 (3)
C11—H110.95 (2)C27—H27A0.94 (3)
C12—C131.395 (3)C27—H27B0.93 (3)
C8—N1—C1127.34 (17)C13—C14—H14115.7 (19)
C8—N1—H1A118.5 (16)C14—C15—C10119.6 (2)
C1—N1—H1A113.2 (16)C14—C15—H15122.6 (16)
N3—N2—C9117.05 (19)C10—C15—H15117.7 (16)
N2—N3—N4171.7 (3)C13—C16—H16A109.5
C6—C1—C2119.58 (19)C13—C16—H16B109.5
C6—C1—N1123.19 (18)H16A—C16—H16B109.5
C2—C1—N1117.21 (18)C13—C16—H16C109.5
C3—C2—C1120.1 (2)H16A—C16—H16C109.5
C3—C2—H2119.1 (15)H16B—C16—H16C109.5
C1—C2—H2120.7 (15)O2—C17—N5124.77 (18)
C2—C3—C4121.6 (2)O2—C17—C18121.65 (18)
C2—C3—H3118.1 (16)N5—C17—C18113.54 (16)
C4—C3—H3120.3 (16)N6—C18—C17109.98 (17)
C5—C4—C3117.2 (2)N6—C18—H18A110.7 (15)
C5—C4—C7121.0 (2)C17—C18—H18A108.6 (15)
C3—C4—C7121.8 (2)N6—C18—H18B107.3 (17)
C6—C5—C4122.3 (2)C17—C18—H18B109.6 (16)
C6—C5—H5117.6 (15)H18A—C18—H18B111 (2)
C4—C5—H5120.1 (15)C26—N9—C19127.96 (17)
C5—C6—C1119.3 (2)C26—N9—H9C114.8 (17)
C5—C6—H6117.8 (16)C19—N9—H9C117.0 (17)
C1—C6—H6122.9 (16)N11—N10—C27117.32 (19)
C4—C7—H7A109.5N10—N11—N12171.3 (2)
C4—C7—H7B109.5C24—C19—C20119.0 (2)
H7A—C7—H7B109.5C24—C19—N9123.58 (19)
C4—C7—H7C109.5C20—C19—N9117.38 (18)
H7A—C7—H7C109.5C21—C20—C19120.4 (2)
H7B—C7—H7C109.5C21—C20—H20118.9 (17)
O1—C8—N1124.90 (19)C19—C20—H20120.5 (17)
O1—C8—C9122.14 (18)C20—C21—C22121.8 (2)
N1—C8—C9112.96 (17)C20—C21—H21118.0 (17)
C8—C9—N2110.01 (17)C22—C21—H21120.2 (17)
C8—C9—H9A107.2 (17)C21—C22—C23116.8 (2)
N2—C9—H9A109.4 (16)C21—C22—C25121.7 (2)
C8—C9—H9B111.3 (16)C23—C22—C25121.6 (2)
N2—C9—H9B108.4 (16)C24—C23—C22122.5 (2)
H9A—C9—H9B110 (2)C24—C23—H23119.6 (16)
C17—N5—C10127.42 (17)C22—C23—H23117.8 (16)
C17—N5—H5A118.5 (16)C23—C24—C19119.6 (2)
C10—N5—H5A113.6 (16)C23—C24—H24124.4 (18)
N7—N6—C18115.80 (19)C19—C24—H24116.0 (18)
N8—N7—N6171.4 (3)C22—C25—H25A109.5
C15—C10—C11119.29 (19)C22—C25—H25B109.5
C15—C10—N5123.33 (18)H25A—C25—H25B109.5
C11—C10—N5117.33 (17)C22—C25—H25C109.5
C12—C11—C10120.22 (19)H25A—C25—H25C109.5
C12—C11—H11121.2 (14)H25B—C25—H25C109.5
C10—C11—H11118.5 (14)O3—C26—N9124.54 (19)
C11—C12—C13121.6 (2)O3—C26—C27121.98 (18)
C11—C12—H12119.5 (14)N9—C26—C27113.48 (17)
C13—C12—H12118.9 (14)N10—C27—C26109.16 (17)
C14—C13—C12117.18 (19)N10—C27—H27A109.5 (15)
C14—C13—C16121.5 (2)C26—C27—H27A107.8 (15)
C12—C13—C16121.3 (2)N10—C27—H27B108.3 (18)
C15—C14—C13122.1 (2)C26—C27—H27B109.8 (17)
C15—C14—H14122.1 (19)H27A—C27—H27B112 (2)
C8—N1—C1—C625.6 (3)C13—C14—C15—C100.4 (3)
C8—N1—C1—C2156.2 (2)C11—C10—C15—C140.3 (3)
C6—C1—C2—C31.2 (3)N5—C10—C15—C14177.55 (19)
N1—C1—C2—C3179.52 (19)C10—N5—C17—O21.3 (3)
C1—C2—C3—C40.1 (3)C10—N5—C17—C18176.63 (18)
C2—C3—C4—C50.7 (3)N7—N6—C18—C17102.7 (2)
C2—C3—C4—C7179.4 (2)O2—C17—C18—N625.1 (3)
C3—C4—C5—C60.4 (3)N5—C17—C18—N6156.85 (18)
C7—C4—C5—C6179.7 (2)C26—N9—C19—C2414.4 (3)
C4—C5—C6—C10.7 (3)C26—N9—C19—C20168.4 (2)
C2—C1—C6—C51.5 (3)C24—C19—C20—C210.2 (3)
N1—C1—C6—C5179.71 (19)N9—C19—C20—C21177.1 (2)
C1—N1—C8—O10.4 (3)C19—C20—C21—C220.2 (4)
C1—N1—C8—C9179.19 (18)C20—C21—C22—C230.5 (4)
O1—C8—C9—N21.9 (3)C20—C21—C22—C25179.6 (2)
N1—C8—C9—N2177.75 (18)C21—C22—C23—C241.3 (3)
N3—N2—C9—C8173.9 (2)C25—C22—C23—C24178.9 (2)
C17—N5—C10—C1522.5 (3)C22—C23—C24—C191.3 (4)
C17—N5—C10—C11160.22 (19)C20—C19—C24—C230.5 (3)
C15—C10—C11—C120.1 (3)N9—C19—C24—C23177.64 (19)
N5—C10—C11—C12177.53 (18)C19—N9—C26—O33.1 (3)
C10—C11—C12—C130.0 (3)C19—N9—C26—C27176.86 (18)
C11—C12—C13—C140.1 (3)N11—N10—C27—C26173.6 (2)
C11—C12—C13—C16178.9 (2)O3—C26—C27—N100.8 (3)
C12—C13—C14—C150.2 (3)N9—C26—C27—N10179.23 (18)
C16—C13—C14—C15178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.86 (3)2.04 (3)2.867 (2)162 (2)
N5—H5A···O2i0.85 (3)2.01 (3)2.833 (2)163 (2)
C15—H15···O20.91 (3)2.34 (2)2.905 (3)120 (2)
C18—H18B···O2i0.99 (3)2.57 (3)3.353 (3)136 (2)
N9—H9C···O3i0.81 (3)2.05 (3)2.835 (2)163 (2)
C24—H24···O30.91 (3)2.27 (3)2.882 (3)125 (2)
Symmetry code: (i) x, y+1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: y.ramli@um5r.ac.ma.

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. Author contributions are as follows: Conceptualization, YR; methodology, AA and MM; investigation, WG, MM; writing (original draft), JMT and YR; writing (review and editing of the manuscript), YR; formal analysis, AA and YR; supervision, YR; crystal-structure determination and validation, JTM.

References

First citationAbad, N., Hajji, M., Ramli, Y., Belkhiria, M., Elmgirhi, S. M. H., Habib, M. A., Guerfel, T., Mague, J. T. & Essassi, E. M. (2020). J. Phys. Org. Chem. 33, 4055.  CrossRef Google Scholar
First citationAhmed, S. & Abdallah, N. A. (2019). J. Pharm. Biomed. Anal. 165, 357–365.  CrossRef CAS PubMed Google Scholar
First citationAllen, C. L. & Williams, J. M. J. (2011). Chem. Soc. Rev. 40, 3405–3415.  CrossRef CAS PubMed Google Scholar
First citationBakulev, V., Shafran, Y. & Dehaen, W. (2019). Tetrahedron Lett. 60, 513–523.  CrossRef CAS Google Scholar
First citationBeccalli, E. M., Broggini, G., Martinelli, M. & Sottocornola, S. (2007). Chem. Rev. 107, 5318–5365.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationChauhan, U. B., Tomich, A. W. & Lavallo, V. (2019). Tetrahedron, 75, 1323–1325.  CrossRef CAS Google Scholar
First citationContin, M., Sepúlveda, C., Fascio, M., Stortz, C. A., Damonte, E. B. & D'Accorso, N. B. (2019). Bioorg. Med. Chem. Lett. 29, 556–559.  CrossRef CAS PubMed Google Scholar
First citationGuerrab, W., Missioui, M., Zaoui, Y., Mague, J. T. & Ramli, Y. (2021). Z. Kristallogr. New Cryst. Struct. 236, 133–134.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMissioui, M., Guerrab, W., Alsubari, A., Mague, J. T. & Ramli, Y. (2022). Acta Cryst. E78, 855–859.  CrossRef Google Scholar
First citationMissioui, M., Guerrab, W., Mague, J. T. & Ramli, Y. (2020). Z. Kristallogr. New Cryst. Struct. 235, 1429–1430.  Web of Science CSD CrossRef CAS Google Scholar
First citationMissioui, M., Guerrab, W., Nchioua, I., El Moutaouakil Ala Allah, A., Kalonji Mubengayi, C., Alsubari, A., Mague, J. T. & Ramli, Y. (2022). Acta Cryst. E78, 687–690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMissioui, M., Lgaz, H., Guerrab, W., Lee, H.-G., Warad, I., Mague, J. T., Ali, I. H., Essassi, E. M. & Ramli, Y. (2022). J. Mol. Struct. 1253, 132132.  CrossRef Google Scholar
First citationMissioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A. & Ramli, Y. (2021). J. Mol. Struct. 1239, 130484.  Web of Science CSD CrossRef Google Scholar
First citationMissioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022a). Arab J. Chem. 15, 103595.  CrossRef PubMed Google Scholar
First citationMissioui, M., Said, M. A., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022b). J. Mol. Struct. 1247, 131420.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationValeur, E. & Bradley, M. (2009). Chem. Soc. Rev. 38, 606–631.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds