organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Crystal structure of ethyl 2-{4-[(2-oxo-3-phenyl-1,2-di­hydro­quinoxalin-1-yl)meth­yl]-1H-1,2,3-triazol-1-yl}acetate

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bLaboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Morocco, cLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye

Edited by I. Brito, University of Antofagasta, Chile (Received 20 June 2022; accepted 6 July 2022; online 14 July 2022)

The quinoxaline portion of the title mol­ecule, C21H19N5O3, is not quite planar as indicated by a dihedral angle of 3.38 (7)° between the constituent rings. The mol­ecule is `U-shaped', which is consolidated by an intra­molecular anti­parallel carbonyl electrostatic inter­action with C··O distances of 2.8905 (16) and 3.0221 (15) Å, in the crystal forms corrugated layers through C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π(ring) and π-stacking inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quinoxaline derivatives exhibit a wide range of biological applications including anti­microbial (Teja et al., 2016[Teja, R., Kapu, S., Kadiyala, S., Dhanapal, V. & Raman, A. N. (2016). J. Saudi Chem. Soc. 20, S387-S392.]), anti-inflammatory (Guirado et al., 2012[Guirado, A., López Sánchez, J. I., Ruiz-Alcaraz, A. J., Bautista, D. & Gálvez, J. (2012). Eur. J. Med. Chem. 54, 87-94.]), anti­cancer (Abbas et al., 2015[Abbas, H. S., Al-Marhabi, A. R., Eissa, S. I. & Ammar, Y. A. (2015). Bioorg. Med. Chem. 23, 6560-6572.]), anti­diabetic (Kulkarni et al., 2012[Kulkarni, N. V., Revankar, V. K., Kirasur, B. N. & Hugar, M. H. (2012). Med. Chem. Res. 21, 663-671.]) and anti­histaminic (Sridevi et al., 2010[Sridevi, K. B. C. H., Naidu, A. & Sudhakaran, R. (2010). Eur. J. Chem. 7, 234-238.]) effects. As a continuation of our research on the synthesis and biological properties of quinoxaline derivatives (Missioui et al., 2022a[Missioui, M., Lgaz, H., Guerrab, W., Lee, H., Warad, I., Mague, J. T., Ali, I. H., Essassi, E. M. & Ramli, Y. (2022a). J. Mol. Struct. 1253, 132132-143.],b[Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022b). Arab. J. Chem. 15, 103595-613.],c[Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022c). J. Mol. Struct. 1247, 131420-433.]), the title compound (Fig. 1[link]) was prepared and its crystal structure is reported here.

[Figure 1]
Figure 1
The title mol­ecule with the labeling scheme and 50% probability ellipsoids. The π inter­action between the C19=O2 carbonyl group and the C1/C6/N1/C7/C8/N2 ring is shown by an orange dashed line.

The quinoxaline portion is not quite planar as indicated by a dihedral angle of 3.38 (7)° between the constituent rings. The dihedral angle between the C9–C14 and C1/C6/N1/C7/C8/N2 rings is 9.05 (8)° while that between the latter ring and the triazole ring is 78.47 (3)°. The mol­ecule adopts a `U-shaped' conformation, which is consolidated by an intramolecular antiparallel carbonyl electrostatic interaction (Allen et al., 1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]) between the C8=O1 and C19=O2 groups with C19⋯O1 = 2.890 Å and C8⋯O2 = 3.022 Å. In the crystal, C12—H12⋯N3 hydrogen bonds (Table 1[link]) lead to the formation of chains extending along the c-axis direction, which are linked into corrugated layers by C5—H5⋯N4 and C15—H15B⋯O2 hydrogen bonds and by C15—15A⋯Cg1 inter­actions (Table 1[link] and Fig. 2[link]). These are accompanied by weak π-stacking inter­actions between C1/C6/N1/C7/C8/N2 and C1–C6 rings related by the symmetry operation x − [{1\over 2}], y, −z − [{1\over 2}] [centroid–centroid distance = 3.8105 (7) Å, dihedral angle = 6.13 (6)°].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the triazole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N4i 0.973 (16) 2.462 (16) 3.2183 (17) 134.3 (12)
C12—H12⋯N3ii 0.988 (19) 2.572 (19) 3.4094 (18) 142.5 (15)
C15—H15ACg1iii 0.997 (16) 2.657 (15) 3.3580 (14) 127.5 (10)
C15—H15B⋯O2iv 0.986 (15) 2.464 (15) 3.2459 (16) 135.9 (11)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y, -z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing viewed along the a-axis direction. C—H⋯O and C—H⋯N hydrogen bonds are shown, respectively, by black and light-blue dashed lines while the π-stacking inter­actions are shown by orange dashed lines.

Synthesis and crystallization

To a solution of 3-phenyl-1-(prop-2-yn-1-yl)quinoxalin-2(1H)-one (0.68 mmol) in ethanol (15 ml) was added ethyl 2-azido­acetate (1.03 mmol). The reaction mixture was stirred under reflux for 72 h. After completion of the reaction (monitored by TLC), the solution was concentrated and the residue was purified by column chromatography on silica gel by using a hexa­ne/ethyl acetate mixture (9:1) as eluent. The solid product obtained was crystallized from ethanol solution to afford colorless crystals. Yield 80%, m.p. = 408–410 K. 1H MNR (300 MHz, CDCl3) δ (p.p.m.):1.22–1.26 (t, 3H, CH3, J = 6 Hz); 4.12-4.19 (q, 2H, O—CH2, J = 6 Hz); 5.57 (s, 2H, N—CH2CO2); 5.60 (s, 2H, N—CH2); 7.72 (s, H,CHtriazole); 7.44–8.31 (m, 9Harom); 13C MNR (75 MHz,CDCl3) δ (p.p.m.):13.95 (CH3); 34.99 (O—CH2); 50.01(N—CH2C=O); 62.48 (N—CH2); 113.48, 124.61, 128.19 (traizole), 129.52, 130.70, 130.85, 131.16, 131.79, (CHarom); 132.79, 133.53, 134.34, 135.52, 153.69 (Cq); 154.32 (C=Oarom);166.80 (C=Oacetate)

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H19N5O3
Mr 389.41
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 150
a, b, c (Å) 8.8585 (3), 18.0405 (5), 23.1961 (7)
V3) 3707.0 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.79
Crystal size (mm) 0.21 × 0.10 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.89, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 26694, 3662, 3086
Rint 0.047
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.087, 1.05
No. of reflections 3662
No. of parameters 339
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.24, −0.21
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-{4-[(2-Oxo-3-phenyl-1,2-dihydroquinoxalin-1-yl)methyl]-1H-1,2,3-triazol-1-yl}acetate top
Crystal data top
C21H19N5O3Dx = 1.395 Mg m3
Mr = 389.41Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 9932 reflections
a = 8.8585 (3) Åθ = 3.8–72.3°
b = 18.0405 (5) ŵ = 0.79 mm1
c = 23.1961 (7) ÅT = 150 K
V = 3707.0 (2) Å3Plate, colourless
Z = 80.21 × 0.10 × 0.02 mm
F(000) = 1632
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3662 independent reflections
Radiation source: INCOATEC IµS micro–focus source3086 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.047
Detector resolution: 10.4167 pixels mm-1θmax = 72.5°, θmin = 3.8°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2222
Tmin = 0.89, Tmax = 0.98l = 2827
26694 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0384P)2 + 1.2273P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3662 reflectionsΔρmax = 0.24 e Å3
339 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL 2018/1 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00064 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All H atom positional and Uiso values were freely refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43111 (11)0.52576 (5)0.37440 (4)0.0275 (2)
O20.09359 (10)0.46632 (5)0.36206 (4)0.0270 (2)
O30.20937 (11)0.40033 (5)0.43166 (4)0.0303 (2)
N10.18289 (12)0.67590 (6)0.34317 (5)0.0226 (2)
N20.34767 (11)0.56638 (5)0.28730 (4)0.0193 (2)
N30.16535 (13)0.36820 (6)0.19501 (5)0.0252 (2)
N40.16515 (13)0.34789 (6)0.24943 (5)0.0250 (2)
N50.26117 (12)0.39291 (6)0.27772 (5)0.0208 (2)
C10.26318 (14)0.61609 (6)0.25427 (5)0.0195 (3)
C20.26183 (16)0.61555 (7)0.19390 (6)0.0238 (3)
H20.3228 (19)0.5802 (9)0.1724 (7)0.034 (4)*
C30.17264 (16)0.66602 (7)0.16465 (6)0.0264 (3)
H30.1743 (18)0.6650 (9)0.1222 (7)0.033 (4)*
C40.08259 (16)0.71695 (7)0.19408 (6)0.0260 (3)
H40.0164 (19)0.7523 (9)0.1731 (7)0.034 (4)*
C50.08467 (15)0.71842 (7)0.25326 (6)0.0236 (3)
H50.0237 (18)0.7530 (9)0.2755 (7)0.031 (4)*
C60.17717 (14)0.66902 (7)0.28405 (5)0.0207 (3)
C70.26837 (14)0.63234 (7)0.37345 (5)0.0211 (3)
C80.35681 (14)0.57104 (7)0.34670 (5)0.0208 (3)
C90.27185 (16)0.64586 (7)0.43697 (6)0.0248 (3)
C100.1715 (2)0.69806 (8)0.45951 (6)0.0356 (3)
H100.101 (2)0.7214 (11)0.4333 (8)0.053 (6)*
C110.1707 (2)0.71453 (9)0.51787 (7)0.0435 (4)
H110.098 (2)0.7522 (12)0.5330 (9)0.062 (6)*
C120.2704 (2)0.67988 (9)0.55500 (6)0.0408 (4)
H120.268 (2)0.6896 (11)0.5969 (8)0.050 (5)*
C130.3689 (2)0.62824 (10)0.53366 (7)0.0434 (4)
H130.442 (2)0.6034 (12)0.5596 (9)0.063 (6)*
C140.37072 (19)0.61077 (9)0.47502 (7)0.0369 (4)
H140.443 (2)0.5717 (11)0.4606 (8)0.051 (5)*
C150.42864 (14)0.50430 (7)0.25935 (6)0.0206 (3)
H15A0.5028 (17)0.4856 (8)0.2882 (6)0.025 (4)*
H15B0.4831 (17)0.5225 (8)0.2251 (6)0.022 (4)*
C160.32363 (14)0.44361 (6)0.24135 (5)0.0191 (3)
H160.2784 (19)0.4473 (9)0.1516 (7)0.036 (4)*
C170.26194 (15)0.42622 (7)0.18895 (6)0.0226 (3)
C180.28965 (15)0.37793 (7)0.33815 (6)0.0232 (3)
H18A0.3932 (19)0.3894 (9)0.3470 (7)0.030 (4)*
H18B0.2764 (17)0.3237 (9)0.3441 (6)0.026 (4)*
C190.18500 (14)0.42063 (7)0.37736 (5)0.0221 (3)
C200.11923 (18)0.43913 (9)0.47469 (6)0.0329 (3)
H20A0.1346 (19)0.4932 (10)0.4678 (7)0.036 (4)*
H20B0.0111 (19)0.4247 (9)0.4681 (7)0.032 (4)*
C210.1730 (2)0.41458 (12)0.53292 (7)0.0456 (4)
H21A0.165 (2)0.3587 (12)0.5382 (9)0.062 (6)*
H21B0.111 (2)0.4381 (11)0.5639 (9)0.057 (6)*
H21C0.277 (2)0.4295 (11)0.5392 (8)0.052 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0328 (5)0.0238 (5)0.0258 (5)0.0042 (4)0.0065 (4)0.0000 (4)
O20.0241 (5)0.0317 (5)0.0251 (5)0.0058 (4)0.0013 (4)0.0000 (4)
O30.0350 (5)0.0339 (5)0.0219 (5)0.0116 (4)0.0037 (4)0.0036 (4)
N10.0247 (5)0.0210 (5)0.0222 (5)0.0002 (4)0.0005 (5)0.0029 (4)
N20.0204 (5)0.0169 (5)0.0204 (5)0.0001 (4)0.0007 (4)0.0021 (4)
N30.0228 (6)0.0248 (6)0.0280 (6)0.0015 (4)0.0014 (5)0.0069 (4)
N40.0232 (5)0.0218 (5)0.0301 (6)0.0013 (4)0.0003 (5)0.0062 (4)
N50.0212 (5)0.0189 (5)0.0224 (5)0.0007 (4)0.0010 (4)0.0026 (4)
C10.0197 (6)0.0167 (5)0.0222 (6)0.0030 (5)0.0013 (5)0.0005 (5)
C20.0270 (7)0.0221 (6)0.0223 (6)0.0021 (5)0.0022 (5)0.0002 (5)
C30.0328 (7)0.0249 (6)0.0215 (7)0.0052 (6)0.0021 (6)0.0031 (5)
C40.0280 (7)0.0198 (6)0.0302 (7)0.0029 (5)0.0068 (6)0.0041 (5)
C50.0230 (6)0.0184 (6)0.0295 (7)0.0002 (5)0.0029 (5)0.0013 (5)
C60.0219 (6)0.0185 (6)0.0216 (6)0.0028 (5)0.0010 (5)0.0014 (5)
C70.0231 (6)0.0189 (6)0.0213 (6)0.0031 (5)0.0003 (5)0.0013 (5)
C80.0217 (6)0.0195 (6)0.0213 (6)0.0032 (5)0.0016 (5)0.0012 (5)
C90.0306 (7)0.0215 (6)0.0225 (7)0.0046 (5)0.0001 (6)0.0022 (5)
C100.0537 (10)0.0285 (7)0.0246 (7)0.0063 (7)0.0022 (7)0.0013 (6)
C110.0717 (12)0.0329 (8)0.0260 (8)0.0098 (8)0.0073 (8)0.0043 (6)
C120.0684 (12)0.0340 (8)0.0201 (7)0.0059 (8)0.0021 (7)0.0038 (6)
C130.0540 (10)0.0499 (10)0.0263 (8)0.0030 (8)0.0102 (7)0.0036 (7)
C140.0395 (8)0.0450 (9)0.0263 (8)0.0067 (7)0.0072 (6)0.0068 (6)
C150.0179 (6)0.0198 (6)0.0241 (6)0.0009 (5)0.0017 (5)0.0031 (5)
C160.0173 (5)0.0178 (5)0.0222 (6)0.0026 (5)0.0025 (5)0.0024 (5)
C170.0211 (6)0.0240 (6)0.0226 (6)0.0029 (5)0.0008 (5)0.0044 (5)
C180.0251 (7)0.0219 (6)0.0226 (7)0.0024 (5)0.0014 (5)0.0008 (5)
C190.0219 (6)0.0232 (6)0.0212 (6)0.0020 (5)0.0006 (5)0.0004 (5)
C200.0366 (8)0.0404 (8)0.0218 (7)0.0107 (7)0.0051 (6)0.0006 (6)
C210.0474 (10)0.0652 (12)0.0241 (8)0.0154 (9)0.0001 (7)0.0041 (7)
Geometric parameters (Å, º) top
O1—C81.2301 (16)C9—C141.395 (2)
O2—C191.2088 (16)C9—C101.397 (2)
O3—C191.3293 (16)C10—C111.386 (2)
O3—C201.4574 (17)C10—H100.97 (2)
N1—C71.2978 (17)C11—C121.383 (2)
N1—C61.3780 (16)C11—H111.00 (2)
N2—C81.3827 (16)C12—C131.369 (2)
N2—C11.3970 (16)C12—H120.988 (19)
N2—C151.4797 (15)C13—C141.396 (2)
N3—N41.3144 (16)C13—H130.99 (2)
N3—C171.3592 (18)C14—H141.01 (2)
N4—N51.3468 (15)C15—C161.4962 (17)
N5—C161.3618 (16)C15—H15A0.997 (16)
N5—C181.4497 (17)C15—H15B0.986 (15)
C1—C21.4005 (18)C16—C171.3691 (18)
C1—C61.4034 (17)C17—H160.957 (17)
C2—C31.3832 (19)C18—C191.5100 (18)
C2—H20.974 (17)C18—H18A0.963 (17)
C3—C41.395 (2)C18—H18B0.995 (16)
C3—H30.984 (16)C20—C211.499 (2)
C4—C51.3732 (19)C20—H20A0.997 (18)
C4—H40.994 (17)C20—H20B1.005 (17)
C5—C61.4055 (18)C21—H21A1.02 (2)
C5—H50.973 (16)C21—H21B1.00 (2)
C7—C81.4905 (17)C21—H21C0.97 (2)
C7—C91.4937 (17)
C19—O3—C20115.32 (11)C13—C12—C11119.30 (14)
C7—N1—C6120.37 (11)C13—C12—H12119.4 (11)
C8—N2—C1122.62 (10)C11—C12—H12121.2 (11)
C8—N2—C15117.02 (10)C12—C13—C14120.87 (16)
C1—N2—C15120.34 (10)C12—C13—H13120.3 (12)
N4—N3—C17108.35 (11)C14—C13—H13118.8 (12)
N3—N4—N5107.40 (10)C9—C14—C13120.44 (15)
N4—N5—C16111.08 (10)C9—C14—H14120.3 (11)
N4—N5—C18117.95 (10)C13—C14—H14119.2 (11)
C16—N5—C18130.82 (11)N2—C15—C16112.02 (10)
N2—C1—C2123.27 (11)N2—C15—H15A106.4 (9)
N2—C1—C6117.23 (11)C16—C15—H15A110.4 (9)
C2—C1—C6119.49 (12)N2—C15—H15B109.8 (8)
C3—C2—C1119.38 (12)C16—C15—H15B108.9 (8)
C3—C2—H2119.8 (10)H15A—C15—H15B109.3 (12)
C1—C2—H2120.8 (10)N5—C16—C17103.54 (11)
C2—C3—C4121.35 (12)N5—C16—C15124.84 (11)
C2—C3—H3118.0 (10)C17—C16—C15131.57 (12)
C4—C3—H3120.7 (10)N3—C17—C16109.62 (12)
C5—C4—C3119.61 (12)N3—C17—H16119.7 (10)
C5—C4—H4119.1 (10)C16—C17—H16130.7 (10)
C3—C4—H4121.3 (10)N5—C18—C19112.36 (11)
C4—C5—C6120.24 (12)N5—C18—H18A109.3 (10)
C4—C5—H5122.3 (9)C19—C18—H18A110.3 (10)
C6—C5—H5117.4 (9)N5—C18—H18B107.3 (9)
N1—C6—C1122.08 (11)C19—C18—H18B110.2 (9)
N1—C6—C5118.04 (11)H18A—C18—H18B107.1 (13)
C1—C6—C5119.86 (12)O2—C19—O3125.10 (12)
N1—C7—C8122.05 (11)O2—C19—C18125.61 (12)
N1—C7—C9116.55 (11)O3—C19—C18109.29 (11)
C8—C7—C9121.40 (11)O3—C20—C21107.51 (13)
O1—C8—N2120.76 (12)O3—C20—H20A106.6 (10)
O1—C8—C7123.81 (12)C21—C20—H20A112.9 (10)
N2—C8—C7115.41 (11)O3—C20—H20B107.1 (9)
C14—C9—C10117.95 (13)C21—C20—H20B111.4 (9)
C14—C9—C7124.25 (13)H20A—C20—H20B111.0 (14)
C10—C9—C7117.79 (12)C20—C21—H21A112.3 (12)
C11—C10—C9120.89 (15)C20—C21—H21B110.4 (12)
C11—C10—H10121.1 (12)H21A—C21—H21B107.3 (16)
C9—C10—H10118.0 (12)C20—C21—H21C110.8 (12)
C12—C11—C10120.55 (16)H21A—C21—H21C108.7 (17)
C12—C11—H11120.0 (12)H21B—C21—H21C107.2 (16)
C10—C11—H11119.4 (12)
C17—N3—N4—N50.03 (14)N1—C7—C9—C14171.75 (14)
N3—N4—N5—C160.56 (13)C8—C7—C9—C149.3 (2)
N3—N4—N5—C18175.36 (10)N1—C7—C9—C106.99 (18)
C8—N2—C1—C2175.04 (12)C8—C7—C9—C10172.00 (13)
C15—N2—C1—C26.76 (18)C14—C9—C10—C110.2 (2)
C8—N2—C1—C64.48 (17)C7—C9—C10—C11178.63 (15)
C15—N2—C1—C6173.72 (11)C9—C10—C11—C120.5 (3)
N2—C1—C2—C3178.84 (12)C10—C11—C12—C130.9 (3)
C6—C1—C2—C31.65 (19)C11—C12—C13—C140.6 (3)
C1—C2—C3—C40.7 (2)C10—C9—C14—C130.5 (2)
C2—C3—C4—C51.5 (2)C7—C9—C14—C13178.27 (15)
C3—C4—C5—C60.1 (2)C12—C13—C14—C90.1 (3)
C7—N1—C6—C10.69 (19)C8—N2—C15—C16103.20 (13)
C7—N1—C6—C5178.96 (12)C1—N2—C15—C1675.10 (14)
N2—C1—C6—N14.56 (18)N4—N5—C16—C170.90 (13)
C2—C1—C6—N1174.98 (12)C18—N5—C16—C17174.34 (12)
N2—C1—C6—C5177.20 (11)N4—N5—C16—C15176.59 (11)
C2—C1—C6—C53.26 (18)C18—N5—C16—C158.2 (2)
C4—C5—C6—N1175.80 (12)N2—C15—C16—N576.76 (15)
C4—C5—C6—C12.51 (19)N2—C15—C16—C1799.98 (15)
C6—N1—C7—C83.34 (18)N4—N3—C17—C160.61 (14)
C6—N1—C7—C9177.67 (11)N5—C16—C17—N30.91 (13)
C1—N2—C8—O1179.23 (11)C15—C16—C17—N3176.34 (12)
C15—N2—C8—O10.97 (17)N4—N5—C18—C1992.47 (13)
C1—N2—C8—C70.80 (17)C16—N5—C18—C1992.57 (15)
C15—N2—C8—C7177.45 (10)C20—O3—C19—O21.8 (2)
N1—C7—C8—O1175.08 (12)C20—O3—C19—C18178.01 (12)
C9—C7—C8—O13.85 (19)N5—C18—C19—O24.81 (19)
N1—C7—C8—N23.29 (18)N5—C18—C19—O3175.42 (10)
C9—C7—C8—N2177.78 (11)C19—O3—C20—C21174.39 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the triazole ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···N4i0.973 (16)2.462 (16)3.2183 (17)134.3 (12)
C12—H12···N3ii0.988 (19)2.572 (19)3.4094 (18)142.5 (15)
C15—H15A···Cg1iii0.997 (16)2.657 (15)3.3580 (14)127.5 (10)
C15—H15B···O2iv0.986 (15)2.464 (15)3.2459 (16)135.9 (11)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1/2, y+1, z+1/2; (iii) x1/2, y, z1/2; (iv) x+1/2, y, z+1/2.
 

Footnotes

Additional correspondence author: e-mail: y.ramli@um5r.ac.ma.

Acknowledgements

Author contributions are as follows. Conceptualization, YR and NA; methodology, MM and AS; investigation, NA and MM; writing (original draft), JTM and YR; writing (review and editing of the manuscript), YR; formal analysis, AA and YR; supervision, YR and EME; crystal-structure determination and validation, JTM; synthesis, NA.

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAbbas, H. S., Al-Marhabi, A. R., Eissa, S. I. & Ammar, Y. A. (2015). Bioorg. Med. Chem. 23, 6560–6572.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuirado, A., López Sánchez, J. I., Ruiz-Alcaraz, A. J., Bautista, D. & Gálvez, J. (2012). Eur. J. Med. Chem. 54, 87–94.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKulkarni, N. V., Revankar, V. K., Kirasur, B. N. & Hugar, M. H. (2012). Med. Chem. Res. 21, 663–671.  Web of Science CrossRef CAS Google Scholar
First citationMissioui, M., Lgaz, H., Guerrab, W., Lee, H., Warad, I., Mague, J. T., Ali, I. H., Essassi, E. M. & Ramli, Y. (2022a). J. Mol. Struct. 1253, 132132–143.  Web of Science CrossRef CAS Google Scholar
First citationMissioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S. & Ramli, Y. (2022b). Arab. J. Chem. 15, 103595–613.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMissioui, M., Said, M. A., Demirtaş, G., Mague, J. T. & Ramli, Y. (2022c). J. Mol. Struct. 1247, 131420–433.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSridevi, K. B. C. H., Naidu, A. & Sudhakaran, R. (2010). Eur. J. Chem. 7, 234–238.  CAS Google Scholar
First citationTeja, R., Kapu, S., Kadiyala, S., Dhanapal, V. & Raman, A. N. (2016). J. Saudi Chem. Soc. 20, S387–S392.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds