organic compounds
3-Isobutyl-5,5-diphenylimidazolidine-2,4-dione
aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye
The imidazolidine ring in the title molecule, C19H20N2O2, is slightly `ruffled'. In the crystal, a layer structure is generated by N—H⋯O and C—H⋯O hydrogen bonds plus C—H⋯π(ring) interactions.
CCDC reference: 2176804
Structure description
Imidazolidin-2,4-dione, also known as hydantoin, is an important nucleus found in numerous natural products and in several clinically important medicines. One of the best known examples of such a derivative is phenytoine, 5,5-diphenylimidazolidine-2,4-dione, a drug widely prescribed as an anticonvulsant agent and for the treatment of many other diseases including HIV (Weichet, 1974; Havera & Strycker, 1976; Khodair et al., 1997; Thenmozhiyal et al., 2004).
Given the wide range of therapeutic applications for such compounds, and in a continuation of our work in this area (Ramli et al., 2017a,b; Akrad et al. 2017; Guerrab et al. 2019, 2020a,b, 2021, 2022), the title compound (Fig. 1) was prepared and its is reported here.
The two phenyl rings (C4–C9 and C10–C15) are disposed on either side of the five-membered ring and make dihedral angles of 68.42 (3) and 73.04 (3)°, respectively, with the mean plane of the latter ring. The five-membered ring is slightly `ruffled' with deviations from the mean plane ranging from 0.206 (5) Å (N2) to −0.218 (5) Å (C3) (r.m.s. deviation = 0.0155 Å). The isobutyl group is rotated well out of the mean plane of the five-membered ring, as indicated by the C2—N1—C16—C17 torsion angle of 72.64 (10)°. In the crystal, inversion dimers are formed by pairs of N2—H2⋯O2 hydrogen bonds (Table 1) with the dimers connected by C8—H8⋯O1 hydrogen bonds, forming chains of molecules extending parallel to (10) (Fig. 2 and Table 2). The chains are connected into layers parallel to the ac plane by C7—H7⋯Cg1 interactions (Table 1 and Fig. 3).
|
Synthesis and crystallization
To a solution of 5,5-diphenylimidazolidine-2,4-dione (500 mg, 1.98 mmol), one equivalent of isobutyl bromide (246.88 mL, 1.98 mmol) in absolute dimethylformamide (DMF, 15 ml) was added and the resulting solution heated under reflux for 3 h in the presence of 1.1 equivalents of K2CO3 (301.31 mg, 2.18 mmol). The reaction mixture was filtered while hot, and the solvent evaporated under reduced pressure. The residue obtained was dried and recrystallized from an ethanol solution to yield colourless prism-like crystals (Guerrab et al., 2018)
Refinement
Crystal data, data collection and structure . A small amount of residual density, well removed from the main molecule and which could not be satisfactorily modelled by a plausible solvent molecule disordered across a centre of symmetry was removed with PLATON SQUEEZE (Spek, 2015). Three reflections affected by the beamstop were omitted from the final refinement.
details are presented in Table 2Structural data
CCDC reference: 2176804
https://doi.org/10.1107/S2414314622005983/tk4078sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622005983/tk4078Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314622005983/tk4078Isup3.cml
Data collection: APEX4 (Bruker, 2021); cell
SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C19H20N2O2 | Z = 2 |
Mr = 308.37 | F(000) = 328 |
Triclinic, P1 | Dx = 1.133 Mg m−3 |
a = 8.9747 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.7306 (7) Å | Cell parameters from 9909 reflections |
c = 11.8780 (8) Å | θ = 2.5–31.9° |
α = 104.676 (3)° | µ = 0.07 mm−1 |
β = 96.334 (3)° | T = 150 K |
γ = 112.243 (3)° | Thick plate, colourless |
V = 903.81 (12) Å3 | 0.46 × 0.41 × 0.13 mm |
Bruker D8 QUEST PHOTON 3 diffractometer | 6214 independent reflections |
Radiation source: fine-focus sealed tube | 5222 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 7.3910 pixels mm-1 | θmax = 32.5°, θmin = 2.5° |
φ and ω scans | h = −13→13 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −14→14 |
Tmin = 0.93, Tmax = 0.99 | l = −17→17 |
42215 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: mixed |
wR(F2) = 0.128 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0689P)2 + 0.1685P] where P = (Fo2 + 2Fc2)/3 |
6214 reflections | (Δ/σ)max = 0.001 |
213 parameters | Δρmax = 0.41 e Å−3 |
1 restraint | Δρmin = −0.19 e Å−3 |
Experimental. The diffraction data were obtained from 9 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX3. The scan time was 5 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. That attached to nitrogen was placed in a location derived from a difference map and refined with a DFIX 0.91 0.01 instruction. A small amount of residual density, well-removed from the main molecule and which could not be satisfactorily modeled by a plausible solvent molecule disordered across a center of symmetry was removed with PLATON SQUEEZE (Spek, 2015). Three reflections affected by the beamstop were omitted from the final refinement. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.74629 (9) | 0.64608 (8) | 0.94977 (5) | 0.02535 (14) | |
O2 | 0.51349 (8) | 0.68712 (7) | 0.60449 (5) | 0.02359 (14) | |
N1 | 0.63385 (9) | 0.70411 (8) | 0.79418 (6) | 0.01786 (13) | |
N2 | 0.62040 (9) | 0.51465 (8) | 0.63706 (6) | 0.01972 (14) | |
H2 | 0.5822 (15) | 0.4472 (13) | 0.5613 (8) | 0.030* | |
C1 | 0.68961 (10) | 0.48254 (9) | 0.73985 (7) | 0.01730 (14) | |
C2 | 0.69602 (10) | 0.61866 (9) | 0.84376 (7) | 0.01818 (15) | |
C3 | 0.58232 (10) | 0.63811 (9) | 0.66914 (7) | 0.01764 (15) | |
C4 | 0.86580 (10) | 0.49751 (9) | 0.74187 (7) | 0.01831 (15) | |
C5 | 0.95614 (12) | 0.56243 (11) | 0.66554 (8) | 0.02490 (17) | |
H5 | 0.908433 | 0.598669 | 0.610614 | 0.030* | |
C6 | 1.11659 (13) | 0.57417 (12) | 0.66981 (9) | 0.0306 (2) | |
H6 | 1.177780 | 0.617680 | 0.617333 | 0.037* | |
C7 | 1.18692 (12) | 0.52243 (12) | 0.75054 (10) | 0.0305 (2) | |
H7 | 1.295578 | 0.529077 | 0.752362 | 0.037* | |
C8 | 1.09899 (11) | 0.46090 (11) | 0.82877 (9) | 0.02727 (18) | |
H8 | 1.148247 | 0.427406 | 0.885034 | 0.033* | |
C9 | 0.93872 (11) | 0.44843 (10) | 0.82459 (8) | 0.02205 (16) | |
H9 | 0.878635 | 0.406433 | 0.878110 | 0.026* | |
C10 | 0.57204 (10) | 0.32284 (9) | 0.74399 (7) | 0.01842 (15) | |
C11 | 0.45908 (11) | 0.30670 (10) | 0.81674 (8) | 0.02336 (17) | |
H11 | 0.459215 | 0.397322 | 0.870843 | 0.028* | |
C12 | 0.34570 (12) | 0.15808 (12) | 0.81053 (9) | 0.02819 (19) | |
H12 | 0.268623 | 0.147944 | 0.860092 | 0.034* | |
C13 | 0.34519 (12) | 0.02510 (11) | 0.73224 (9) | 0.02882 (19) | |
H13 | 0.267373 | −0.075954 | 0.727691 | 0.035* | |
C14 | 0.45904 (13) | 0.04021 (11) | 0.66037 (9) | 0.02807 (19) | |
H14 | 0.459695 | −0.050708 | 0.607264 | 0.034* | |
C15 | 0.57189 (11) | 0.18826 (10) | 0.66618 (8) | 0.02336 (17) | |
H15 | 0.649371 | 0.197963 | 0.616936 | 0.028* | |
C16 | 0.61826 (10) | 0.84333 (9) | 0.86303 (7) | 0.01963 (15) | |
H16A | 0.564388 | 0.820207 | 0.928583 | 0.024* | |
H16B | 0.545921 | 0.868521 | 0.810459 | 0.024* | |
C17 | 0.78453 (11) | 0.98600 (10) | 0.91629 (8) | 0.02349 (17) | |
H17 | 0.854577 | 0.961276 | 0.972365 | 0.028* | |
C18 | 0.75511 (15) | 1.12407 (11) | 0.98774 (10) | 0.0339 (2) | |
H18A | 0.689042 | 1.151726 | 0.933699 | 0.051* | |
H18B | 0.861657 | 1.214255 | 1.026831 | 0.051* | |
H18C | 0.695748 | 1.094763 | 1.048519 | 0.051* | |
C19 | 0.87543 (13) | 1.02639 (13) | 0.81979 (11) | 0.0353 (2) | |
H19A | 0.899177 | 0.938670 | 0.778900 | 0.053* | |
H19B | 0.979417 | 1.120428 | 0.856671 | 0.053* | |
H19C | 0.806095 | 1.046019 | 0.761788 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0371 (4) | 0.0246 (3) | 0.0156 (3) | 0.0173 (3) | 0.0006 (2) | 0.0042 (2) |
O2 | 0.0304 (3) | 0.0223 (3) | 0.0201 (3) | 0.0158 (2) | −0.0010 (2) | 0.0056 (2) |
N1 | 0.0219 (3) | 0.0160 (3) | 0.0157 (3) | 0.0104 (2) | 0.0007 (2) | 0.0029 (2) |
N2 | 0.0279 (3) | 0.0191 (3) | 0.0142 (3) | 0.0143 (3) | 0.0004 (2) | 0.0036 (2) |
C1 | 0.0225 (3) | 0.0167 (3) | 0.0143 (3) | 0.0110 (3) | 0.0017 (3) | 0.0046 (2) |
C2 | 0.0218 (3) | 0.0165 (3) | 0.0170 (3) | 0.0099 (3) | 0.0027 (3) | 0.0046 (3) |
C3 | 0.0195 (3) | 0.0165 (3) | 0.0165 (3) | 0.0083 (3) | 0.0016 (3) | 0.0045 (3) |
C4 | 0.0213 (3) | 0.0159 (3) | 0.0178 (3) | 0.0095 (3) | 0.0019 (3) | 0.0041 (3) |
C5 | 0.0286 (4) | 0.0262 (4) | 0.0242 (4) | 0.0135 (3) | 0.0073 (3) | 0.0115 (3) |
C6 | 0.0283 (4) | 0.0324 (5) | 0.0332 (5) | 0.0124 (4) | 0.0119 (4) | 0.0128 (4) |
C7 | 0.0218 (4) | 0.0295 (4) | 0.0395 (5) | 0.0114 (3) | 0.0058 (4) | 0.0097 (4) |
C8 | 0.0235 (4) | 0.0257 (4) | 0.0329 (4) | 0.0117 (3) | 0.0001 (3) | 0.0106 (3) |
C9 | 0.0231 (4) | 0.0214 (4) | 0.0227 (4) | 0.0102 (3) | 0.0022 (3) | 0.0087 (3) |
C10 | 0.0213 (3) | 0.0174 (3) | 0.0176 (3) | 0.0104 (3) | 0.0015 (3) | 0.0050 (3) |
C11 | 0.0256 (4) | 0.0228 (4) | 0.0246 (4) | 0.0133 (3) | 0.0069 (3) | 0.0071 (3) |
C12 | 0.0261 (4) | 0.0289 (4) | 0.0311 (4) | 0.0109 (3) | 0.0088 (3) | 0.0122 (4) |
C13 | 0.0293 (4) | 0.0214 (4) | 0.0303 (4) | 0.0058 (3) | 0.0018 (3) | 0.0094 (3) |
C14 | 0.0344 (5) | 0.0177 (4) | 0.0270 (4) | 0.0099 (3) | 0.0018 (3) | 0.0029 (3) |
C15 | 0.0287 (4) | 0.0190 (4) | 0.0212 (4) | 0.0112 (3) | 0.0048 (3) | 0.0030 (3) |
C16 | 0.0211 (3) | 0.0162 (3) | 0.0212 (3) | 0.0103 (3) | 0.0024 (3) | 0.0025 (3) |
C17 | 0.0223 (4) | 0.0167 (3) | 0.0269 (4) | 0.0078 (3) | −0.0009 (3) | 0.0030 (3) |
C18 | 0.0423 (5) | 0.0190 (4) | 0.0335 (5) | 0.0128 (4) | 0.0026 (4) | −0.0001 (3) |
C19 | 0.0294 (5) | 0.0288 (5) | 0.0462 (6) | 0.0090 (4) | 0.0126 (4) | 0.0132 (4) |
O1—C2 | 1.2139 (10) | C10—C15 | 1.3980 (11) |
O2—C3 | 1.2259 (9) | C11—C12 | 1.3956 (13) |
N1—C2 | 1.3698 (10) | C11—H11 | 0.9500 |
N1—C3 | 1.4045 (10) | C12—C13 | 1.3870 (14) |
N1—C16 | 1.4598 (10) | C12—H12 | 0.9500 |
N2—C3 | 1.3465 (10) | C13—C14 | 1.3916 (15) |
N2—C1 | 1.4652 (10) | C13—H13 | 0.9500 |
N2—H2 | 0.906 (8) | C14—C15 | 1.3913 (13) |
C1—C4 | 1.5289 (11) | C14—H14 | 0.9500 |
C1—C10 | 1.5295 (11) | C15—H15 | 0.9500 |
C1—C2 | 1.5425 (11) | C16—C17 | 1.5273 (12) |
C4—C5 | 1.3939 (12) | C16—H16A | 0.9900 |
C4—C9 | 1.3979 (11) | C16—H16B | 0.9900 |
C5—C6 | 1.3948 (13) | C17—C19 | 1.5250 (14) |
C5—H5 | 0.9500 | C17—C18 | 1.5282 (13) |
C6—C7 | 1.3868 (14) | C17—H17 | 1.0000 |
C6—H6 | 0.9500 | C18—H18A | 0.9800 |
C7—C8 | 1.3895 (15) | C18—H18B | 0.9800 |
C7—H7 | 0.9500 | C18—H18C | 0.9800 |
C8—C9 | 1.3911 (12) | C19—H19A | 0.9800 |
C8—H8 | 0.9500 | C19—H19B | 0.9800 |
C9—H9 | 0.9500 | C19—H19C | 0.9800 |
C10—C11 | 1.3930 (12) | ||
C2—N1—C3 | 111.47 (6) | C10—C11—C12 | 120.34 (8) |
C2—N1—C16 | 124.21 (7) | C10—C11—H11 | 119.8 |
C3—N1—C16 | 124.29 (6) | C12—C11—H11 | 119.8 |
C3—N2—C1 | 112.87 (6) | C13—C12—C11 | 120.22 (9) |
C3—N2—H2 | 120.9 (8) | C13—C12—H12 | 119.9 |
C1—N2—H2 | 124.6 (8) | C11—C12—H12 | 119.9 |
N2—C1—C4 | 112.60 (7) | C12—C13—C14 | 119.79 (9) |
N2—C1—C10 | 109.66 (6) | C12—C13—H13 | 120.1 |
C4—C1—C10 | 112.73 (6) | C14—C13—H13 | 120.1 |
N2—C1—C2 | 100.71 (6) | C15—C14—C13 | 120.09 (9) |
C4—C1—C2 | 108.58 (6) | C15—C14—H14 | 120.0 |
C10—C1—C2 | 111.97 (6) | C13—C14—H14 | 120.0 |
O1—C2—N1 | 125.93 (7) | C14—C15—C10 | 120.44 (8) |
O1—C2—C1 | 126.97 (7) | C14—C15—H15 | 119.8 |
N1—C2—C1 | 107.10 (6) | C10—C15—H15 | 119.8 |
O2—C3—N2 | 128.11 (7) | N1—C16—C17 | 112.91 (7) |
O2—C3—N1 | 124.19 (7) | N1—C16—H16A | 109.0 |
N2—C3—N1 | 107.69 (6) | C17—C16—H16A | 109.0 |
C5—C4—C9 | 119.56 (8) | N1—C16—H16B | 109.0 |
C5—C4—C1 | 121.55 (7) | C17—C16—H16B | 109.0 |
C9—C4—C1 | 118.87 (7) | H16A—C16—H16B | 107.8 |
C4—C5—C6 | 119.99 (8) | C19—C17—C16 | 111.65 (8) |
C4—C5—H5 | 120.0 | C19—C17—C18 | 111.13 (8) |
C6—C5—H5 | 120.0 | C16—C17—C18 | 108.81 (8) |
C7—C6—C5 | 120.10 (9) | C19—C17—H17 | 108.4 |
C7—C6—H6 | 120.0 | C16—C17—H17 | 108.4 |
C5—C6—H6 | 120.0 | C18—C17—H17 | 108.4 |
C6—C7—C8 | 120.22 (9) | C17—C18—H18A | 109.5 |
C6—C7—H7 | 119.9 | C17—C18—H18B | 109.5 |
C8—C7—H7 | 119.9 | H18A—C18—H18B | 109.5 |
C7—C8—C9 | 119.90 (8) | C17—C18—H18C | 109.5 |
C7—C8—H8 | 120.1 | H18A—C18—H18C | 109.5 |
C9—C8—H8 | 120.1 | H18B—C18—H18C | 109.5 |
C8—C9—C4 | 120.21 (8) | C17—C19—H19A | 109.5 |
C8—C9—H9 | 119.9 | C17—C19—H19B | 109.5 |
C4—C9—H9 | 119.9 | H19A—C19—H19B | 109.5 |
C11—C10—C15 | 119.12 (8) | C17—C19—H19C | 109.5 |
C11—C10—C1 | 122.52 (7) | H19A—C19—H19C | 109.5 |
C15—C10—C1 | 118.25 (7) | H19B—C19—H19C | 109.5 |
C3—N2—C1—C4 | −118.52 (8) | C1—C4—C5—C6 | −179.97 (8) |
C3—N2—C1—C10 | 115.10 (8) | C4—C5—C6—C7 | −0.49 (15) |
C3—N2—C1—C2 | −3.05 (9) | C5—C6—C7—C8 | −0.99 (15) |
C3—N1—C2—O1 | −178.32 (8) | C6—C7—C8—C9 | 1.21 (15) |
C16—N1—C2—O1 | −0.15 (14) | C7—C8—C9—C4 | 0.04 (14) |
C3—N1—C2—C1 | 1.65 (9) | C5—C4—C9—C8 | −1.51 (13) |
C16—N1—C2—C1 | 179.81 (7) | C1—C4—C9—C8 | −179.85 (8) |
N2—C1—C2—O1 | −179.29 (9) | N2—C1—C10—C11 | −97.67 (9) |
C4—C1—C2—O1 | −60.86 (11) | C4—C1—C10—C11 | 136.02 (8) |
C10—C1—C2—O1 | 64.25 (11) | C2—C1—C10—C11 | 13.23 (10) |
N2—C1—C2—N1 | 0.74 (8) | N2—C1—C10—C15 | 78.35 (9) |
C4—C1—C2—N1 | 119.18 (7) | C4—C1—C10—C15 | −47.96 (9) |
C10—C1—C2—N1 | −115.71 (7) | C2—C1—C10—C15 | −170.75 (7) |
C1—N2—C3—O2 | −174.97 (8) | C15—C10—C11—C12 | −0.97 (13) |
C1—N2—C3—N1 | 4.19 (9) | C1—C10—C11—C12 | 175.01 (8) |
C2—N1—C3—O2 | 175.58 (8) | C10—C11—C12—C13 | 0.34 (14) |
C16—N1—C3—O2 | −2.58 (13) | C11—C12—C13—C14 | 0.48 (15) |
C2—N1—C3—N2 | −3.61 (9) | C12—C13—C14—C15 | −0.65 (15) |
C16—N1—C3—N2 | 178.23 (7) | C13—C14—C15—C10 | 0.00 (14) |
N2—C1—C4—C5 | 10.83 (11) | C11—C10—C15—C14 | 0.81 (13) |
C10—C1—C4—C5 | 135.55 (8) | C1—C10—C15—C14 | −175.35 (8) |
C2—C1—C4—C5 | −99.79 (9) | C2—N1—C16—C17 | 72.64 (10) |
N2—C1—C4—C9 | −170.85 (7) | C3—N1—C16—C17 | −109.43 (9) |
C10—C1—C4—C9 | −46.14 (10) | N1—C16—C17—C19 | 57.80 (10) |
C2—C1—C4—C9 | 78.52 (9) | N1—C16—C17—C18 | −179.18 (7) |
C9—C4—C5—C6 | 1.73 (13) |
Cg1 is the centroid of the five-membered ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O2i | 0.91 (1) | 1.95 (1) | 2.8512 (9) | 174 (1) |
C7—H7···Cg1ii | 0.95 | 2.99 | 3.9308 (13) | 170 |
C8—H8···O1iii | 0.95 | 2.46 | 3.4069 (13) | 172 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+2, −y+1, −z+2. |
Footnotes
‡Additional correspondence author, e-mail: y.ramli@um5r.ac.ma.
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Author contributions are as follows. Conceptualization, YR; methodology, WG and AS; investigation, WG, AEMAA; writing (original draft), JMT and YR; writing (review and editing of the manuscript), YR; formal analysis, AS and YR; supervision, YR; crystal-structure determination and validation, JTM.
References
Akrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033. Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA. Google Scholar
Guerrab, W., Akachar, J., El Jemli, M., Abudunia, A. M., Ouaabou, R., Alaoui, K., Ibrahimi, A. & Ramli, Y. (2022). J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2022.2069865 Google Scholar
Guerrab, W., Chung, I. M., Kansiz, S., Mague, J. T., Dege, N., Taoufik, J., Salghi, R., Ali, I. H., Khan, M. I., Lgaz, H. & Ramli, Y. (2019). J. Mol. Struct. 1197, 369–376. Web of Science CSD CrossRef CAS Google Scholar
Guerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2021). J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2021.1922096 Google Scholar
Guerrab, W., Lgaz, H., Kansiz, S., Mague, J. T., Dege, N., Ansar, M., Marzouki, R., Taoufik, J., Ali, I. H., Chung, I. & Ramli, Y. (2020b). J. Mol. Struct. 1205, 127630. Web of Science CSD CrossRef Google Scholar
Guerrab, W., Mague, J. T. & Ramli, Y. (2020a). Z. Kristallogr. New Cryst. Struct. 235, 1425–1427. Web of Science CSD CrossRef CAS Google Scholar
Guerrab, W., Mague, J. T., Taoufik, J. & Ramli, Y. (2018). IUCrData, 3, x180057. Google Scholar
Havera, H. J. & Strycker, W. G. (1976). US Patent 3 904 909. Google Scholar
Khodair, A. I., el-Subbagh, H. I. & el-Emam, A. A. (1997). Boll. Chim. Farm. 136, 561–567. CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Ramli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017a). IUCrData, 2, x170098. Google Scholar
Ramli, Y., Guerrab, W., Moussaif, A., Taoufik, J., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x171041. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Thenmozhiyal, J. C., Wong, P. T. H. & Chui, W.-K. (2004). J. Med. Chem. 47, 1527–1535. Web of Science CrossRef PubMed CAS Google Scholar
Weichet, B. L. (1974). Czech Patent 151,744–747. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.