organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Iso­butyl-5,5-di­phenyl­imidazolidine-2,4-dione

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco, bLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 2 June 2022; accepted 3 June 2022; online 10 June 2022)

The imidazolidine ring in the title mol­ecule, C19H20N2O2, is slightly `ruffled'. In the crystal, a layer structure is generated by N—H⋯O and C—H⋯O hydrogen bonds plus C—H⋯π(ring) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Imidazolidin-2,4-dione, also known as hydantoin, is an important nucleus found in numerous natural products and in several clinically important medicines. One of the best known examples of such a derivative is phenytoine, 5,5-di­phenyl­imidazolidine-2,4-dione, a drug widely prescribed as an anti­convulsant agent and for the treatment of many other diseases including HIV (Weichet, 1974[Weichet, B. L. (1974). Czech Patent 151,744-747.]; Havera & Strycker, 1976[Havera, H. J. & Strycker, W. G. (1976). US Patent 3 904 909.]; Khodair et al., 1997[Khodair, A. I., el-Subbagh, H. I. & el-Emam, A. A. (1997). Boll. Chim. Farm. 136, 561-567.]; Thenmozhiyal et al., 2004[Thenmozhiyal, J. C., Wong, P. T. H. & Chui, W.-K. (2004). J. Med. Chem. 47, 1527-1535.]).

Given the wide range of therapeutic applications for such compounds, and in a continuation of our work in this area (Ramli et al., 2017a[Ramli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017a). IUCrData, 2, x170098.],b[Ramli, Y., Guerrab, W., Moussaif, A., Taoufik, J., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x171041.]; Akrad et al. 2017[Akrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.]; Guerrab et al. 2019[Guerrab, W., Chung, I. M., Kansiz, S., Mague, J. T., Dege, N., Taoufik, J., Salghi, R., Ali, I. H., Khan, M. I., Lgaz, H. & Ramli, Y. (2019). J. Mol. Struct. 1197, 369-376.], 2020a[Guerrab, W., Mague, J. T. & Ramli, Y. (2020a). Z. Kristallogr. New Cryst. Struct. 235, 1425-1427.],b[Guerrab, W., Lgaz, H., Kansiz, S., Mague, J. T., Dege, N., Ansar, M., Marzouki, R., Taoufik, J., Ali, I. H., Chung, I. & Ramli, Y. (2020b). J. Mol. Struct. 1205, 127630.], 2021[Guerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2021). J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2021.1922096], 2022[Guerrab, W., Akachar, J., El Jemli, M., Abudunia, A. M., Ouaabou, R., Alaoui, K., Ibrahimi, A. & Ramli, Y. (2022). J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2022.2069865]), the title compound (Fig. 1[link]) was prepared and its crystal structure is reported here.

[Figure 1]
Figure 1
The title mol­ecule with the labelling scheme and 50% probability ellipsoids.

The two phenyl rings (C4–C9 and C10–C15) are disposed on either side of the five-membered ring and make dihedral angles of 68.42 (3) and 73.04 (3)°, respectively, with the mean plane of the latter ring. The five-membered ring is slightly `ruffled' with deviations from the mean plane ranging from 0.206 (5) Å (N2) to −0.218 (5) Å (C3) (r.m.s. deviation = 0.0155 Å). The isobutyl group is rotated well out of the mean plane of the five-membered ring, as indicated by the C2—N1—C16—C17 torsion angle of 72.64 (10)°. In the crystal, inversion dimers are formed by pairs of N2—H2⋯O2 hydrogen bonds (Table 1[link]) with the dimers connected by C8—H8⋯O1 hydrogen bonds, forming chains of mol­ecules extending parallel to (10[\overline{1}]) (Fig. 2[link] and Table 2[link]). The chains are connected into layers parallel to the ac plane by C7—H7⋯Cg1 inter­actions (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the five-membered ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.91 (1) 1.95 (1) 2.8512 (9) 174 (1)
C7—H7⋯Cg1ii 0.95 2.99 3.9308 (13) 170
C8—H8⋯O1iii 0.95 2.46 3.4069 (13) 172
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) x+1, y, z; (iii) [-x+2, -y+1, -z+2].

Table 2
Experimental details

Crystal data
Chemical formula C19H20N2O2
Mr 308.37
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 8.9747 (7), 9.7306 (7), 11.8780 (8)
α, β, γ (°) 104.676 (3), 96.334 (3), 112.243 (3)
V3) 903.81 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.46 × 0.41 × 0.13
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.93, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 42215, 6214, 5222
Rint 0.040
(sin θ/λ)max−1) 0.755
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.128, 1.05
No. of reflections 6214
No. of parameters 213
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.19
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).
[Figure 2]
Figure 2
A portion of one layer viewed along the b-axis direction with N—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by violet and black dashed lines. C—H⋯π(ring) inter­actions are depicted by green dashed lines and non-inter­acting hydrogen atoms are omitted for clarity.
[Figure 3]
Figure 3
Packing viewed along the c-axis direction with inter­molecular inter­actions depicted as in Fig. 2[link] and non-inter­acting hydrogen atoms omitted for clarity.

Synthesis and crystallization

To a solution of 5,5-di­phenyl­imidazolidine-2,4-dione (500 mg, 1.98 mmol), one equivalent of isobutyl bromide (246.88 mL, 1.98 mmol) in absolute di­methyl­formamide (DMF, 15 ml) was added and the resulting solution heated under reflux for 3 h in the presence of 1.1 equivalents of K2CO3 (301.31 mg, 2.18 mmol). The reaction mixture was filtered while hot, and the solvent evaporated under reduced pressure. The residue obtained was dried and recrystallized from an ethanol solution to yield colourless prism-like crystals (Guerrab et al., 2018[Guerrab, W., Mague, J. T., Taoufik, J. & Ramli, Y. (2018). IUCrData, 3, x180057.])

Refinement

Crystal data, data collection and structure refinement details are presented in Table 2[link]. A small amount of residual density, well removed from the main mol­ecule and which could not be satisfactorily modelled by a plausible solvent mol­ecule disordered across a centre of symmetry was removed with PLATON SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Three reflections affected by the beamstop were omitted from the final refinement.

Structural data


Computing details top

Data collection: APEX4 (Bruker, 2021); cell refinement: SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-Isobutyl-5,5-diphenylimidazolidine-2,4-dione top
Crystal data top
C19H20N2O2Z = 2
Mr = 308.37F(000) = 328
Triclinic, P1Dx = 1.133 Mg m3
a = 8.9747 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7306 (7) ÅCell parameters from 9909 reflections
c = 11.8780 (8) Åθ = 2.5–31.9°
α = 104.676 (3)°µ = 0.07 mm1
β = 96.334 (3)°T = 150 K
γ = 112.243 (3)°Thick plate, colourless
V = 903.81 (12) Å30.46 × 0.41 × 0.13 mm
Data collection top
Bruker D8 QUEST PHOTON 3
diffractometer
6214 independent reflections
Radiation source: fine-focus sealed tube5222 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 7.3910 pixels mm-1θmax = 32.5°, θmin = 2.5°
φ and ω scansh = 1313
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 1414
Tmin = 0.93, Tmax = 0.99l = 1717
42215 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.1685P]
where P = (Fo2 + 2Fc2)/3
6214 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.41 e Å3
1 restraintΔρmin = 0.19 e Å3
Special details top

Experimental. The diffraction data were obtained from 9 sets of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX3. The scan time was 5 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 1.00 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. That attached to nitrogen was placed in a location derived from a difference map and refined with a DFIX 0.91 0.01 instruction. A small amount of residual density, well-removed from the main molecule and which could not be satisfactorily modeled by a plausible solvent molecule disordered across a center of symmetry was removed with PLATON SQUEEZE (Spek, 2015). Three reflections affected by the beamstop were omitted from the final refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.74629 (9)0.64608 (8)0.94977 (5)0.02535 (14)
O20.51349 (8)0.68712 (7)0.60449 (5)0.02359 (14)
N10.63385 (9)0.70411 (8)0.79418 (6)0.01786 (13)
N20.62040 (9)0.51465 (8)0.63706 (6)0.01972 (14)
H20.5822 (15)0.4472 (13)0.5613 (8)0.030*
C10.68961 (10)0.48254 (9)0.73985 (7)0.01730 (14)
C20.69602 (10)0.61866 (9)0.84376 (7)0.01818 (15)
C30.58232 (10)0.63811 (9)0.66914 (7)0.01764 (15)
C40.86580 (10)0.49751 (9)0.74187 (7)0.01831 (15)
C50.95614 (12)0.56243 (11)0.66554 (8)0.02490 (17)
H50.9084330.5986690.6106140.030*
C61.11659 (13)0.57417 (12)0.66981 (9)0.0306 (2)
H61.1777800.6176800.6173330.037*
C71.18692 (12)0.52243 (12)0.75054 (10)0.0305 (2)
H71.2955780.5290770.7523620.037*
C81.09899 (11)0.46090 (11)0.82877 (9)0.02727 (18)
H81.1482470.4274060.8850340.033*
C90.93872 (11)0.44843 (10)0.82459 (8)0.02205 (16)
H90.8786350.4064330.8781100.026*
C100.57204 (10)0.32284 (9)0.74399 (7)0.01842 (15)
C110.45908 (11)0.30670 (10)0.81674 (8)0.02336 (17)
H110.4592150.3973220.8708430.028*
C120.34570 (12)0.15808 (12)0.81053 (9)0.02819 (19)
H120.2686230.1479440.8600920.034*
C130.34519 (12)0.02510 (11)0.73224 (9)0.02882 (19)
H130.2673730.0759540.7276910.035*
C140.45904 (13)0.04021 (11)0.66037 (9)0.02807 (19)
H140.4596950.0507080.6072640.034*
C150.57189 (11)0.18826 (10)0.66618 (8)0.02336 (17)
H150.6493710.1979630.6169360.028*
C160.61826 (10)0.84333 (9)0.86303 (7)0.01963 (15)
H16A0.5643880.8202070.9285830.024*
H16B0.5459210.8685210.8104590.024*
C170.78453 (11)0.98600 (10)0.91629 (8)0.02349 (17)
H170.8545770.9612760.9723650.028*
C180.75511 (15)1.12407 (11)0.98774 (10)0.0339 (2)
H18A0.6890421.1517260.9336990.051*
H18B0.8616571.2142551.0268310.051*
H18C0.6957481.0947631.0485190.051*
C190.87543 (13)1.02639 (13)0.81979 (11)0.0353 (2)
H19A0.8991770.9386700.7789000.053*
H19B0.9794171.1204280.8566710.053*
H19C0.8060951.0460190.7617880.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0371 (4)0.0246 (3)0.0156 (3)0.0173 (3)0.0006 (2)0.0042 (2)
O20.0304 (3)0.0223 (3)0.0201 (3)0.0158 (2)0.0010 (2)0.0056 (2)
N10.0219 (3)0.0160 (3)0.0157 (3)0.0104 (2)0.0007 (2)0.0029 (2)
N20.0279 (3)0.0191 (3)0.0142 (3)0.0143 (3)0.0004 (2)0.0036 (2)
C10.0225 (3)0.0167 (3)0.0143 (3)0.0110 (3)0.0017 (3)0.0046 (2)
C20.0218 (3)0.0165 (3)0.0170 (3)0.0099 (3)0.0027 (3)0.0046 (3)
C30.0195 (3)0.0165 (3)0.0165 (3)0.0083 (3)0.0016 (3)0.0045 (3)
C40.0213 (3)0.0159 (3)0.0178 (3)0.0095 (3)0.0019 (3)0.0041 (3)
C50.0286 (4)0.0262 (4)0.0242 (4)0.0135 (3)0.0073 (3)0.0115 (3)
C60.0283 (4)0.0324 (5)0.0332 (5)0.0124 (4)0.0119 (4)0.0128 (4)
C70.0218 (4)0.0295 (4)0.0395 (5)0.0114 (3)0.0058 (4)0.0097 (4)
C80.0235 (4)0.0257 (4)0.0329 (4)0.0117 (3)0.0001 (3)0.0106 (3)
C90.0231 (4)0.0214 (4)0.0227 (4)0.0102 (3)0.0022 (3)0.0087 (3)
C100.0213 (3)0.0174 (3)0.0176 (3)0.0104 (3)0.0015 (3)0.0050 (3)
C110.0256 (4)0.0228 (4)0.0246 (4)0.0133 (3)0.0069 (3)0.0071 (3)
C120.0261 (4)0.0289 (4)0.0311 (4)0.0109 (3)0.0088 (3)0.0122 (4)
C130.0293 (4)0.0214 (4)0.0303 (4)0.0058 (3)0.0018 (3)0.0094 (3)
C140.0344 (5)0.0177 (4)0.0270 (4)0.0099 (3)0.0018 (3)0.0029 (3)
C150.0287 (4)0.0190 (4)0.0212 (4)0.0112 (3)0.0048 (3)0.0030 (3)
C160.0211 (3)0.0162 (3)0.0212 (3)0.0103 (3)0.0024 (3)0.0025 (3)
C170.0223 (4)0.0167 (3)0.0269 (4)0.0078 (3)0.0009 (3)0.0030 (3)
C180.0423 (5)0.0190 (4)0.0335 (5)0.0128 (4)0.0026 (4)0.0001 (3)
C190.0294 (5)0.0288 (5)0.0462 (6)0.0090 (4)0.0126 (4)0.0132 (4)
Geometric parameters (Å, º) top
O1—C21.2139 (10)C10—C151.3980 (11)
O2—C31.2259 (9)C11—C121.3956 (13)
N1—C21.3698 (10)C11—H110.9500
N1—C31.4045 (10)C12—C131.3870 (14)
N1—C161.4598 (10)C12—H120.9500
N2—C31.3465 (10)C13—C141.3916 (15)
N2—C11.4652 (10)C13—H130.9500
N2—H20.906 (8)C14—C151.3913 (13)
C1—C41.5289 (11)C14—H140.9500
C1—C101.5295 (11)C15—H150.9500
C1—C21.5425 (11)C16—C171.5273 (12)
C4—C51.3939 (12)C16—H16A0.9900
C4—C91.3979 (11)C16—H16B0.9900
C5—C61.3948 (13)C17—C191.5250 (14)
C5—H50.9500C17—C181.5282 (13)
C6—C71.3868 (14)C17—H171.0000
C6—H60.9500C18—H18A0.9800
C7—C81.3895 (15)C18—H18B0.9800
C7—H70.9500C18—H18C0.9800
C8—C91.3911 (12)C19—H19A0.9800
C8—H80.9500C19—H19B0.9800
C9—H90.9500C19—H19C0.9800
C10—C111.3930 (12)
C2—N1—C3111.47 (6)C10—C11—C12120.34 (8)
C2—N1—C16124.21 (7)C10—C11—H11119.8
C3—N1—C16124.29 (6)C12—C11—H11119.8
C3—N2—C1112.87 (6)C13—C12—C11120.22 (9)
C3—N2—H2120.9 (8)C13—C12—H12119.9
C1—N2—H2124.6 (8)C11—C12—H12119.9
N2—C1—C4112.60 (7)C12—C13—C14119.79 (9)
N2—C1—C10109.66 (6)C12—C13—H13120.1
C4—C1—C10112.73 (6)C14—C13—H13120.1
N2—C1—C2100.71 (6)C15—C14—C13120.09 (9)
C4—C1—C2108.58 (6)C15—C14—H14120.0
C10—C1—C2111.97 (6)C13—C14—H14120.0
O1—C2—N1125.93 (7)C14—C15—C10120.44 (8)
O1—C2—C1126.97 (7)C14—C15—H15119.8
N1—C2—C1107.10 (6)C10—C15—H15119.8
O2—C3—N2128.11 (7)N1—C16—C17112.91 (7)
O2—C3—N1124.19 (7)N1—C16—H16A109.0
N2—C3—N1107.69 (6)C17—C16—H16A109.0
C5—C4—C9119.56 (8)N1—C16—H16B109.0
C5—C4—C1121.55 (7)C17—C16—H16B109.0
C9—C4—C1118.87 (7)H16A—C16—H16B107.8
C4—C5—C6119.99 (8)C19—C17—C16111.65 (8)
C4—C5—H5120.0C19—C17—C18111.13 (8)
C6—C5—H5120.0C16—C17—C18108.81 (8)
C7—C6—C5120.10 (9)C19—C17—H17108.4
C7—C6—H6120.0C16—C17—H17108.4
C5—C6—H6120.0C18—C17—H17108.4
C6—C7—C8120.22 (9)C17—C18—H18A109.5
C6—C7—H7119.9C17—C18—H18B109.5
C8—C7—H7119.9H18A—C18—H18B109.5
C7—C8—C9119.90 (8)C17—C18—H18C109.5
C7—C8—H8120.1H18A—C18—H18C109.5
C9—C8—H8120.1H18B—C18—H18C109.5
C8—C9—C4120.21 (8)C17—C19—H19A109.5
C8—C9—H9119.9C17—C19—H19B109.5
C4—C9—H9119.9H19A—C19—H19B109.5
C11—C10—C15119.12 (8)C17—C19—H19C109.5
C11—C10—C1122.52 (7)H19A—C19—H19C109.5
C15—C10—C1118.25 (7)H19B—C19—H19C109.5
C3—N2—C1—C4118.52 (8)C1—C4—C5—C6179.97 (8)
C3—N2—C1—C10115.10 (8)C4—C5—C6—C70.49 (15)
C3—N2—C1—C23.05 (9)C5—C6—C7—C80.99 (15)
C3—N1—C2—O1178.32 (8)C6—C7—C8—C91.21 (15)
C16—N1—C2—O10.15 (14)C7—C8—C9—C40.04 (14)
C3—N1—C2—C11.65 (9)C5—C4—C9—C81.51 (13)
C16—N1—C2—C1179.81 (7)C1—C4—C9—C8179.85 (8)
N2—C1—C2—O1179.29 (9)N2—C1—C10—C1197.67 (9)
C4—C1—C2—O160.86 (11)C4—C1—C10—C11136.02 (8)
C10—C1—C2—O164.25 (11)C2—C1—C10—C1113.23 (10)
N2—C1—C2—N10.74 (8)N2—C1—C10—C1578.35 (9)
C4—C1—C2—N1119.18 (7)C4—C1—C10—C1547.96 (9)
C10—C1—C2—N1115.71 (7)C2—C1—C10—C15170.75 (7)
C1—N2—C3—O2174.97 (8)C15—C10—C11—C120.97 (13)
C1—N2—C3—N14.19 (9)C1—C10—C11—C12175.01 (8)
C2—N1—C3—O2175.58 (8)C10—C11—C12—C130.34 (14)
C16—N1—C3—O22.58 (13)C11—C12—C13—C140.48 (15)
C2—N1—C3—N23.61 (9)C12—C13—C14—C150.65 (15)
C16—N1—C3—N2178.23 (7)C13—C14—C15—C100.00 (14)
N2—C1—C4—C510.83 (11)C11—C10—C15—C140.81 (13)
C10—C1—C4—C5135.55 (8)C1—C10—C15—C14175.35 (8)
C2—C1—C4—C599.79 (9)C2—N1—C16—C1772.64 (10)
N2—C1—C4—C9170.85 (7)C3—N1—C16—C17109.43 (9)
C10—C1—C4—C946.14 (10)N1—C16—C17—C1957.80 (10)
C2—C1—C4—C978.52 (9)N1—C16—C17—C18179.18 (7)
C9—C4—C5—C61.73 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the five-membered ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.91 (1)1.95 (1)2.8512 (9)174 (1)
C7—H7···Cg1ii0.952.993.9308 (13)170
C8—H8···O1iii0.952.463.4069 (13)172
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z+2.
 

Footnotes

Additional correspondence author, e-mail: y.ramli@um5r.ac.ma.

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Author contributions are as follows. Conceptualization, YR; methodology, WG and AS; investigation, WG, AEMAA; writing (original draft), JMT and YR; writing (review and editing of the manuscript), YR; formal analysis, AS and YR; supervision, YR; crystal-structure determination and validation, JTM.

References

First citationAkrad, R., Mague, J. T., Guerrab, W., Taoufik, J., Ansar, M. & Ramli, Y. (2017). IUCrData, 2, x170033.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationGuerrab, W., Akachar, J., El Jemli, M., Abudunia, A. M., Ouaabou, R., Alaoui, K., Ibrahimi, A. & Ramli, Y. (2022). J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2022.2069865  Google Scholar
First citationGuerrab, W., Chung, I. M., Kansiz, S., Mague, J. T., Dege, N., Taoufik, J., Salghi, R., Ali, I. H., Khan, M. I., Lgaz, H. & Ramli, Y. (2019). J. Mol. Struct. 1197, 369–376.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuerrab, W., El Jemli, M., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K. & Ramli, Y. (2021). J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2021.1922096  Google Scholar
First citationGuerrab, W., Lgaz, H., Kansiz, S., Mague, J. T., Dege, N., Ansar, M., Marzouki, R., Taoufik, J., Ali, I. H., Chung, I. & Ramli, Y. (2020b). J. Mol. Struct. 1205, 127630.  Web of Science CSD CrossRef Google Scholar
First citationGuerrab, W., Mague, J. T. & Ramli, Y. (2020a). Z. Kristallogr. New Cryst. Struct. 235, 1425–1427.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuerrab, W., Mague, J. T., Taoufik, J. & Ramli, Y. (2018). IUCrData, 3, x180057.  Google Scholar
First citationHavera, H. J. & Strycker, W. G. (1976). US Patent 3 904 909.  Google Scholar
First citationKhodair, A. I., el-Subbagh, H. I. & el-Emam, A. A. (1997). Boll. Chim. Farm. 136, 561–567.  CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationRamli, Y., Akrad, R., Guerrab, W., Taoufik, J., Ansar, M. & Mague, J. T. (2017a). IUCrData, 2, x170098.  Google Scholar
First citationRamli, Y., Guerrab, W., Moussaif, A., Taoufik, J., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x171041.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThenmozhiyal, J. C., Wong, P. T. H. & Chui, W.-K. (2004). J. Med. Chem. 47, 1527–1535.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWeichet, B. L. (1974). Czech Patent 151,744–747.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds