organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 2-[4-(4-meth­­oxy­benz­yl)-3-methyl-6-oxopyridazin-1-yl]acetate

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and cLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 26 May 2022; accepted 30 May 2022; online 7 June 2022)

In the title mol­ecule, C17H20N2O4, the inner part of the ester substituent is nearly perpendicular to the di­hydro­pyridazine ring, forming a dihedral angle of 83.21 (7)°. In the crystal, inversion dimers are formed by pairwise C—H⋯O inter­actions with the dimers connected into chains extending along the b-axis direction by C—H⋯π(ring) inter­actions. The chains are connected by π-stacking inter­actions to give corrugated layers parallel to the ab plane. The terminal ethyl group is disordered over two two sets of sites with the major component having a site occupancy factor of 0.715 (10)

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyridazinone derivatives, with a carbonyl group at position 3, possess a number of biological activities including anti-oxidant (Khokra et al., 2016[Khokra, S. L., Khan, S. A., Thakur, P., Chowdhary, D., Ahmad, A. & Husain, A. (2016). J. Chin. Chem. Soc. 63, 739-750.]), anti-bacterial and anti-fungal (Abiha et al. 2018[Abiha, G. B., Bahar, L. & Utku, S. (2018). Rev. Rom. Med. Lab. 26, 231-241.]), anti-cancer (Kamble et al. 2017[Kamble, V. T., Sawant, A.-S., Sawant, S. S., Pisal, P. M., Gacche, R. N., Kamble, S. S., Shegokar, H. D. & Kamble, V. A. (2017). J. Basic Appl. Res. Int. 21, 10-39.]), analgesic and anti-inflammatory (Ibrahim et al. 2017[Ibrahim, T. H., Loksha, Y. M., Elshihawy, H. A., Khodeer, D. M. & Said, M. M. (2017). Arch. Pharm. Chem. Life Sci. 350, e1700093.]), anti-depressant (Boukharsa et al. 2016[Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494-500.]) and anti-ulcer activities (Yamada et al., 1981[Yamada, T., Nobuhara, Y., Shimamura, H., Yoshihara, K., Yamaguchi, A. & Ohki, M. (1981). Chem. Pharm. Bull. 29, 3433-3439.]). In addition, a number of pyridazinone derivatives have been reported to have potential as agrochemicals, for example as insecticides (Nauen & Bretschneider, 2002[Nauen, R. & Bretschneider, T. (2002). Pest. Outlook, 13, 241-245.]). As part of our ongoing studies of these systems, we report herein the synthesis and the mol­ecular and crystal structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule with labelling scheme and 30% probability ellipsoids. Only the major component of the disordered ethyl group is shown.

The dihedral angle between the N1/N2/C1–C4 and C6–C11 planes is 89.74 (3)° while that between the N1/N2/C1–C4 plane and that defined by N2/C14/C15/O3 is 83.21 (7)°. This latter angle indicates that the inner end of the substituent on N2 is nearly perpendicular to the tetra­hydro­pyridazine ring. The C2—C3—C5—C6 torsion angle of −9.4 (2)° indicates that the centroid of the 4-meth­oxy­phenyl ring is only slightly below the plane of the pyridazine ring. This conformation appears to be the result of the inter­molecular π-stacking inter­action (see below).

In the crystal, inversion dimers are formed by pairwiseC14—H14B⋯O1 inter­actions (Table 1[link]) with the dimers connected into chains extending along the b-axis direction by C16—H16BCg1 inter­actions (Table 1[link] and Fig. 2[link]). The chains are connected to one another by π-stacking inter­actions between the N1/N2/C1–C4 and C6i–C11i rings [symmetry code: (i) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]] with a centroid–centroid distance of 3.8870 (8) Å and a dihedral angle of 7.29 (6)° to give corrugated layers parallel to the ab plane (Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C4/N1/N2 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O1i 0.97 2.44 3.4041 (19) 175
C16—H16BCg1ii 0.97 2.86 3.586 (3) 132
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [x, y-1, z].
[Figure 2]
Figure 2
Detail of the inter­molecular inter­actions viewed along the c-axis direction. C—H⋯O hydrogen bonds are shown by black dashed lines while π-stacking and C—H⋯π(ring) inter­actions are shown, respectively, by orange and green dashed lines.
[Figure 3]
Figure 3
Packing viewed along the b-axis direction with the highlighted inter­molecular inter­actions shown as in Fig. 2[link].

Synthesis and crystallization

A mixture of 3-(4-meth­oxy­benzyl­idene)-4-oxo­penta­noic acid (0.05 mol) and hydrazine hydrate (0.1 mol) in ethanol (100 ml) was refluxed for 2 h. The precipitate that formed was filtered off and recrystallized from acetone solution to obtain the 5-(4-meth­oxy­benz­yl)-6-methyl­pyridazin-3(2H)-one pre­cursor. To this pyridazine derivative (0.05 mol) was added potassium carbonate (0.1 mmol), tetra­butyl­ammonium bromide (0.01 mmol) and 2-ethyl bromo­acetate (0.1 mol) in di­methyl­formamide (20 ml). The mixture was stirred for 24 h at room temperature. At the end of the reaction, the solution was filtered and the solvent evaporated under reduced pressure. The residue was washed with water and methyl­ene chloride. The solvent was removed and colourless blocks of the title compound were obtained by recrystallization of the product from its acetone solution.

Yield 79%; m.p. 406–408 K. IR (cm−1): 1743 (C=O, CO2Et), 1660 (C=ON), 1599 (C=C), 1205 (C—N), 1011 and 1145 (C—O, CO2Et sym and asym). 1H NMR (p.p.m.): 1.23 (t, 3H, J = 7.1, CH2—CH3); 2.22 (s, 3H, CH3-pyridazinone); 2.33 (s, 3H, OCH3-phen­yl); 3.85 (s, 2H, phenyl-CH2-pyridazinone); 4.17 (q, 2H, J = 7.1, O—CH2—CH3); 4.87 (s, 2H, –N—CH2—CO); 6.48 (s, 1H, pyridazinone); 6.93–6.96 (d, 2H, J = 9, phen­yl); 7.25–7.27 (d, 2H, J = 9, phen­yl). 13C NMR (p.p.m.): 14.11 (CH3); 21.03 (CH3, pyridazinone); 25.21 (OCH3, phen­yl); 37.67 (CH2); 51.34 (CH2); 60.95 (CH2); 127.13–127.44 (CH aromatic); 129.13–130.35 (CH aromatic); 132.12 (C—Cα aromatic); 136.51 (CH2—C=, aromatic); 138.49 (CH, pyridazinone); 144.97 (CH2—C=CH, pyridazinone); 147.17 (C=N); 161.19 (C=O, pyridazinone); 169.52 (C=O, CO2Et).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C16/C17 ethyl group is disordered and was refined as two components restrained to have comparable geometries. The refined occupancies were 0.715 (10) and 0.285 (10).

Table 2
Experimental details

Crystal data
Chemical formula C17H20N2O4
Mr 316.35
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 23.0488 (9), 8.1149 (3), 18.3223 (7)
β (°) 104.454 (1)
V3) 3318.5 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.30 × 0.27 × 0.26
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.88, 0.98
No. of measured, independent and observed [I > 2σ(I)] reflections 30517, 4288, 3151
Rint 0.031
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.160, 1.11
No. of reflections 4288
No. of parameters 217
No. of restraints 26
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.28, −0.19
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Ethyl 2-[4-(4-methoxybenzyl)-3-methyl-6-oxopyridazin-1-yl]acetate top
Crystal data top
C17H20N2O4F(000) = 1344
Mr = 316.35Dx = 1.266 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 23.0488 (9) ÅCell parameters from 9996 reflections
b = 8.1149 (3) Åθ = 2.3–27.3°
c = 18.3223 (7) ŵ = 0.09 mm1
β = 104.454 (1)°T = 298 K
V = 3318.5 (2) Å3Block, colourless
Z = 80.30 × 0.27 × 0.26 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4288 independent reflections
Radiation source: fine-focus sealed tube3151 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8.3333 pixels mm-1θmax = 28.7°, θmin = 1.8°
φ and ω scansh = 3130
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1010
Tmin = 0.88, Tmax = 0.98l = 2424
30517 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0899P)2 + 0.4855P]
where P = (Fo2 + 2Fc2)/3
4288 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.28 e Å3
26 restraintsΔρmin = 0.19 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The ethyl group in the ester is disordered over several closely spaced sites that could not be separated so a 2-site model with ISOR restraints on the two carbon atoms was used to approximate the disorder. The geometries of the two components were restrained to be similar.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.41842 (6)0.43017 (16)0.23630 (6)0.0793 (4)
O20.22537 (6)1.02992 (16)0.00750 (6)0.0805 (4)
O30.41772 (5)0.17898 (16)0.38013 (10)0.0912 (5)
O40.51197 (4)0.12696 (12)0.37673 (8)0.0698 (3)
N10.42422 (5)0.60597 (13)0.41467 (6)0.0471 (3)
N20.43660 (5)0.51627 (13)0.35755 (6)0.0486 (3)
C10.40601 (6)0.52488 (17)0.28277 (8)0.0535 (3)
C20.36172 (6)0.65291 (17)0.26634 (7)0.0509 (3)
H20.3409140.6706150.2165340.061*
C30.34933 (5)0.74800 (14)0.32046 (6)0.0426 (3)
C40.38196 (5)0.71634 (15)0.39722 (6)0.0438 (3)
C50.30371 (6)0.88585 (16)0.30417 (7)0.0517 (3)
H5A0.2700370.8556860.3242880.062*
H5B0.3216880.9842560.3303960.062*
C60.28079 (6)0.92540 (15)0.22187 (7)0.0455 (3)
C70.23054 (6)0.84826 (17)0.17780 (8)0.0539 (3)
H70.2094820.7746100.2004160.065*
C80.21068 (6)0.87733 (18)0.10115 (8)0.0574 (3)
H80.1771540.8226510.0726850.069*
C90.24120 (7)0.98837 (17)0.06746 (8)0.0544 (3)
C100.29086 (7)1.06967 (19)0.11082 (8)0.0570 (3)
H100.3109341.1465220.0884950.068*
C110.31060 (6)1.03723 (17)0.18676 (8)0.0502 (3)
H110.3444381.0910210.2149850.060*
C120.17493 (11)0.9506 (3)0.05390 (11)0.0984 (7)
H12A0.1661080.9982740.1034010.148*
H12B0.1411060.9643020.0327240.148*
H12C0.1832880.8353000.0571090.148*
C130.36960 (7)0.81397 (19)0.46090 (7)0.0582 (4)
H13A0.3278400.8059160.4598280.087*
H13B0.3798750.9273220.4558810.087*
H13C0.3931430.7713360.5078660.087*
C140.48657 (6)0.40227 (17)0.37869 (8)0.0528 (3)
H14A0.5103070.4299700.4287600.063*
H14B0.5119250.4145440.3439920.063*
C150.46657 (6)0.22591 (17)0.37810 (9)0.0558 (3)
C160.50265 (17)0.0502 (2)0.3871 (3)0.0734 (9)0.715 (10)
H16A0.4948320.0689220.4360380.088*0.715 (10)
H16B0.4682500.0885100.3487230.088*0.715 (10)
C170.55487 (19)0.1393 (5)0.3817 (4)0.1014 (15)0.715 (10)
H17A0.5488090.2548160.3884700.152*0.715 (10)
H17B0.5621860.1213050.3330170.152*0.715 (10)
H17C0.5886970.1017700.4201000.152*0.715 (10)
C16A0.4944 (4)0.0438 (6)0.3548 (7)0.0734 (9)0.285 (10)
H16C0.4807140.0976420.3946610.088*0.285 (10)
H16D0.4617300.0439960.3096080.088*0.285 (10)
C17A0.5442 (5)0.1313 (15)0.3410 (9)0.1014 (15)0.285 (10)
H17D0.5324870.2426030.3266940.152*0.285 (10)
H17E0.5573650.0784430.3010980.152*0.285 (10)
H17F0.5763060.1319640.3859530.152*0.285 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0871 (8)0.0886 (8)0.0579 (6)0.0359 (6)0.0098 (6)0.0166 (6)
O20.1027 (9)0.0890 (8)0.0432 (6)0.0049 (7)0.0060 (6)0.0026 (5)
O30.0543 (6)0.0670 (7)0.1584 (14)0.0010 (5)0.0378 (7)0.0124 (8)
O40.0504 (6)0.0479 (5)0.1109 (9)0.0018 (4)0.0199 (6)0.0016 (5)
N10.0496 (6)0.0486 (6)0.0416 (5)0.0019 (4)0.0085 (4)0.0021 (4)
N20.0494 (6)0.0477 (6)0.0465 (6)0.0068 (4)0.0079 (5)0.0020 (4)
C10.0559 (7)0.0569 (7)0.0467 (7)0.0103 (6)0.0107 (6)0.0031 (5)
C20.0572 (7)0.0545 (7)0.0382 (6)0.0099 (6)0.0067 (5)0.0000 (5)
C30.0457 (6)0.0419 (6)0.0403 (6)0.0004 (5)0.0109 (5)0.0030 (4)
C40.0481 (6)0.0452 (6)0.0382 (6)0.0033 (5)0.0113 (5)0.0016 (4)
C50.0603 (8)0.0492 (7)0.0466 (7)0.0110 (6)0.0150 (6)0.0022 (5)
C60.0479 (6)0.0420 (6)0.0468 (6)0.0087 (5)0.0125 (5)0.0032 (5)
C70.0512 (7)0.0477 (7)0.0618 (8)0.0010 (5)0.0120 (6)0.0075 (6)
C80.0497 (7)0.0550 (8)0.0604 (8)0.0004 (6)0.0002 (6)0.0032 (6)
C90.0619 (8)0.0554 (7)0.0445 (7)0.0104 (6)0.0103 (6)0.0008 (5)
C100.0625 (8)0.0588 (8)0.0531 (8)0.0039 (6)0.0210 (6)0.0047 (6)
C110.0460 (6)0.0532 (7)0.0514 (7)0.0034 (5)0.0120 (5)0.0023 (5)
C120.1217 (17)0.0963 (14)0.0571 (10)0.0208 (12)0.0154 (10)0.0184 (9)
C130.0673 (9)0.0660 (8)0.0411 (7)0.0043 (7)0.0130 (6)0.0044 (6)
C140.0451 (7)0.0519 (7)0.0578 (8)0.0046 (5)0.0064 (6)0.0050 (6)
C150.0469 (7)0.0528 (7)0.0662 (9)0.0044 (6)0.0112 (6)0.0040 (6)
C160.0679 (13)0.0496 (9)0.100 (3)0.0014 (8)0.0153 (17)0.0002 (11)
C170.0807 (19)0.0606 (12)0.159 (4)0.0052 (12)0.022 (3)0.018 (3)
C16A0.0679 (13)0.0496 (9)0.100 (3)0.0014 (8)0.0153 (17)0.0002 (11)
C17A0.0807 (19)0.0606 (12)0.159 (4)0.0052 (12)0.022 (3)0.018 (3)
Geometric parameters (Å, º) top
O1—C11.2325 (16)C9—C101.386 (2)
O2—C91.3722 (17)C10—C111.3770 (19)
O2—C121.413 (3)C10—H100.9300
O3—C151.1980 (17)C11—H110.9300
O4—C151.3243 (17)C12—H12A0.9600
O4—C16A1.471 (3)C12—H12B0.9600
O4—C161.473 (2)C12—H12C0.9600
N1—C41.3030 (16)C13—H13A0.9600
N1—N21.3623 (15)C13—H13B0.9600
N2—C11.3773 (17)C13—H13C0.9600
N2—C141.4525 (16)C14—C151.503 (2)
C1—C21.4347 (18)C14—H14A0.9700
C2—C31.3423 (17)C14—H14B0.9700
C2—H20.9300C16—C171.428 (3)
C3—C41.4428 (16)C16—H16A0.9700
C3—C51.5131 (17)C16—H16B0.9700
C4—C131.4953 (17)C17—H17A0.9600
C5—C61.5027 (18)C17—H17B0.9600
C5—H5A0.9700C17—H17C0.9600
C5—H5B0.9700C16A—C17A1.424 (4)
C6—C71.3850 (19)C16A—H16C0.9700
C6—C111.3894 (18)C16A—H16D0.9700
C7—C81.384 (2)C17A—H17D0.9600
C7—H70.9300C17A—H17E0.9600
C8—C91.380 (2)C17A—H17F0.9600
C8—H80.9300
C9—O2—C12117.63 (16)O2—C12—H12B109.5
C15—O4—C16A114.3 (4)H12A—C12—H12B109.5
C15—O4—C16116.62 (16)O2—C12—H12C109.5
C4—N1—N2117.76 (10)H12A—C12—H12C109.5
N1—N2—C1125.72 (10)H12B—C12—H12C109.5
N1—N2—C14116.08 (10)C4—C13—H13A109.5
C1—N2—C14118.20 (11)C4—C13—H13B109.5
O1—C1—N2120.40 (12)H13A—C13—H13B109.5
O1—C1—C2125.62 (13)C4—C13—H13C109.5
N2—C1—C2113.97 (11)H13A—C13—H13C109.5
C3—C2—C1122.19 (12)H13B—C13—H13C109.5
C3—C2—H2118.9N2—C14—C15112.53 (11)
C1—C2—H2118.9N2—C14—H14A109.1
C2—C3—C4117.55 (11)C15—C14—H14A109.1
C2—C3—C5123.01 (11)N2—C14—H14B109.1
C4—C3—C5119.44 (11)C15—C14—H14B109.1
N1—C4—C3122.52 (11)H14A—C14—H14B107.8
N1—C4—C13116.68 (11)O3—C15—O4124.13 (14)
C3—C4—C13120.78 (11)O3—C15—C14126.27 (13)
C6—C5—C3114.13 (10)O4—C15—C14109.58 (11)
C6—C5—H5A108.7C17—C16—O4109.4 (3)
C3—C5—H5A108.7C17—C16—H16A109.8
C6—C5—H5B108.7O4—C16—H16A109.8
C3—C5—H5B108.7C17—C16—H16B109.8
H5A—C5—H5B107.6O4—C16—H16B109.8
C7—C6—C11117.61 (12)H16A—C16—H16B108.2
C7—C6—C5121.46 (12)C16—C17—H17A109.5
C11—C6—C5120.90 (12)C16—C17—H17B109.5
C8—C7—C6122.08 (13)H17A—C17—H17B109.5
C8—C7—H7119.0C16—C17—H17C109.5
C6—C7—H7119.0H17A—C17—H17C109.5
C9—C8—C7119.25 (13)H17B—C17—H17C109.5
C9—C8—H8120.4C17A—C16A—O4109.9 (7)
C7—C8—H8120.4C17A—C16A—H16C109.7
O2—C9—C8124.76 (14)O4—C16A—H16C109.7
O2—C9—C10115.59 (14)C17A—C16A—H16D109.7
C8—C9—C10119.63 (13)O4—C16A—H16D109.7
C11—C10—C9120.36 (13)H16C—C16A—H16D108.2
C11—C10—H10119.8C16A—C17A—H17D109.5
C9—C10—H10119.8C16A—C17A—H17E109.5
C10—C11—C6121.05 (13)H17D—C17A—H17E109.5
C10—C11—H11119.5C16A—C17A—H17F109.5
C6—C11—H11119.5H17D—C17A—H17F109.5
O2—C12—H12A109.5H17E—C17A—H17F109.5
C4—N1—N2—C13.99 (18)C5—C6—C7—C8176.68 (12)
C4—N1—N2—C14176.09 (11)C6—C7—C8—C91.0 (2)
N1—N2—C1—O1175.15 (13)C12—O2—C9—C81.5 (2)
C14—N2—C1—O14.8 (2)C12—O2—C9—C10179.82 (15)
N1—N2—C1—C26.4 (2)C7—C8—C9—O2178.74 (13)
C14—N2—C1—C2173.70 (12)C7—C8—C9—C100.4 (2)
O1—C1—C2—C3177.80 (15)O2—C9—C10—C11180.00 (13)
N2—C1—C2—C33.8 (2)C8—C9—C10—C111.5 (2)
C1—C2—C3—C40.6 (2)C9—C10—C11—C61.3 (2)
C1—C2—C3—C5178.73 (13)C7—C6—C11—C100.12 (19)
N2—N1—C4—C31.25 (17)C5—C6—C11—C10177.83 (12)
N2—N1—C4—C13179.54 (11)N1—N2—C14—C15105.60 (13)
C2—C3—C4—N13.40 (18)C1—N2—C14—C1574.33 (16)
C5—C3—C4—N1175.96 (11)C16A—O4—C15—O317.8 (6)
C2—C3—C4—C13178.39 (12)C16—O4—C15—O37.2 (3)
C5—C3—C4—C132.25 (18)C16A—O4—C15—C14163.6 (6)
C2—C3—C5—C69.45 (19)C16—O4—C15—C14171.4 (3)
C4—C3—C5—C6169.88 (11)N2—C14—C15—O318.8 (2)
C3—C5—C6—C790.46 (16)N2—C14—C15—O4162.61 (12)
C3—C5—C6—C1187.41 (15)C15—O4—C16—C17178.2 (2)
C11—C6—C7—C81.3 (2)C15—O4—C16A—C17A168.9 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C4/N1/N2 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14B···O1i0.972.443.4041 (19)175
C16—H16B···Cg1ii0.972.863.586 (3)132
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y1, z.
 

Footnotes

Additional correspondence author, e-mail: y.ramli@um5r.ac.ma.

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Author contributions are as follows. Conceptualization, MA and JT; methodology, YR; investigation, YZ and HA; writing (original draft), JMT and YR; writing (review and editing of the manuscript), YR; formal analysis, AS and YR; supervision, MA and YR; crystal structure determination and validation, JTM.

References

First citationAbiha, G. B., Bahar, L. & Utku, S. (2018). Rev. Rom. Med. Lab. 26, 231–241.  Google Scholar
First citationBoukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIbrahim, T. H., Loksha, Y. M., Elshihawy, H. A., Khodeer, D. M. & Said, M. M. (2017). Arch. Pharm. Chem. Life Sci. 350, e1700093.  Web of Science CrossRef Google Scholar
First citationKamble, V. T., Sawant, A.-S., Sawant, S. S., Pisal, P. M., Gacche, R. N., Kamble, S. S., Shegokar, H. D. & Kamble, V. A. (2017). J. Basic Appl. Res. Int. 21, 10–39.  Google Scholar
First citationKhokra, S. L., Khan, S. A., Thakur, P., Chowdhary, D., Ahmad, A. & Husain, A. (2016). J. Chin. Chem. Soc. 63, 739–750.  Web of Science CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNauen, R. & Bretschneider, T. (2002). Pest. Outlook, 13, 241–245.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYamada, T., Nobuhara, Y., Shimamura, H., Yoshihara, K., Yamaguchi, A. & Ohki, M. (1981). Chem. Pharm. Bull. 29, 3433–3439.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds