organic compounds
Ethyl 2-[4-(4-methoxybenzyl)-3-methyl-6-oxopyridazin-1-yl]acetate
aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco, bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and cLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye
In the title molecule, C17H20N2O4, the inner part of the ester substituent is nearly perpendicular to the dihydropyridazine ring, forming a dihedral angle of 83.21 (7)°. In the crystal, inversion dimers are formed by pairwise C—H⋯O interactions with the dimers connected into chains extending along the b-axis direction by C—H⋯π(ring) interactions. The chains are connected by π-stacking interactions to give corrugated layers parallel to the ab plane. The terminal ethyl group is disordered over two two sets of sites with the major component having a site occupancy factor of 0.715 (10)
Keywords: crystal structure; dihydropyridazine; hydrogen bond; π-stacking.
CCDC reference: 2175897
Structure description
Pyridazinone derivatives, with a carbonyl group at position 3, possess a number of biological activities including anti-oxidant (Khokra et al., 2016), anti-bacterial and anti-fungal (Abiha et al. 2018), anti-cancer (Kamble et al. 2017), analgesic and anti-inflammatory (Ibrahim et al. 2017), anti-depressant (Boukharsa et al. 2016) and anti-ulcer activities (Yamada et al., 1981). In addition, a number of pyridazinone derivatives have been reported to have potential as agrochemicals, for example as insecticides (Nauen & Bretschneider, 2002). As part of our ongoing studies of these systems, we report herein the synthesis and the molecular and of the title compound (Fig. 1).
The dihedral angle between the N1/N2/C1–C4 and C6–C11 planes is 89.74 (3)° while that between the N1/N2/C1–C4 plane and that defined by N2/C14/C15/O3 is 83.21 (7)°. This latter angle indicates that the inner end of the substituent on N2 is nearly perpendicular to the tetrahydropyridazine ring. The C2—C3—C5—C6 torsion angle of −9.4 (2)° indicates that the centroid of the 4-methoxyphenyl ring is only slightly below the plane of the pyridazine ring. This conformation appears to be the result of the intermolecular π-stacking interaction (see below).
In the crystal, inversion dimers are formed by pairwiseC14—H14B⋯O1 interactions (Table 1) with the dimers connected into chains extending along the b-axis direction by C16—H16B⋯Cg1 interactions (Table 1 and Fig. 2). The chains are connected to one another by π-stacking interactions between the N1/N2/C1–C4 and C6i–C11i rings [symmetry code: (i) −x + , y + , −z + ] with a centroid–centroid distance of 3.8870 (8) Å and a dihedral angle of 7.29 (6)° to give corrugated layers parallel to the ab plane (Figs. 2 and 3).
Synthesis and crystallization
A mixture of 3-(4-methoxybenzylidene)-4-oxopentanoic acid (0.05 mol) and hydrazine hydrate (0.1 mol) in ethanol (100 ml) was refluxed for 2 h. The precipitate that formed was filtered off and recrystallized from acetone solution to obtain the 5-(4-methoxybenzyl)-6-methylpyridazin-3(2H)-one precursor. To this pyridazine derivative (0.05 mol) was added potassium carbonate (0.1 mmol), tetrabutylammonium bromide (0.01 mmol) and 2-ethyl bromoacetate (0.1 mol) in dimethylformamide (20 ml). The mixture was stirred for 24 h at room temperature. At the end of the reaction, the solution was filtered and the solvent evaporated under reduced pressure. The residue was washed with water and methylene chloride. The solvent was removed and colourless blocks of the title compound were obtained by recrystallization of the product from its acetone solution.
Yield 79%; m.p. 406–408 K. IR (cm−1): 1743 (C=O, CO2Et), 1660 (C=ON), 1599 (C=C), 1205 (C—N), 1011 and 1145 (C—O, CO2Et sym and asym). 1H NMR (p.p.m.): 1.23 (t, 3H, J = 7.1, CH2—CH3); 2.22 (s, 3H, CH3-pyridazinone); 2.33 (s, 3H, OCH3-phenyl); 3.85 (s, 2H, phenyl-CH2-pyridazinone); 4.17 (q, 2H, J = 7.1, O—CH2—CH3); 4.87 (s, 2H, –N—CH2—CO); 6.48 (s, 1H, pyridazinone); 6.93–6.96 (d, 2H, J = 9, phenyl); 7.25–7.27 (d, 2H, J = 9, phenyl). 13C NMR (p.p.m.): 14.11 (CH3); 21.03 (CH3, pyridazinone); 25.21 (OCH3, phenyl); 37.67 (CH2); 51.34 (CH2); 60.95 (CH2); 127.13–127.44 (CH aromatic); 129.13–130.35 (CH aromatic); 132.12 (C—Cα aromatic); 136.51 (CH2—C=, aromatic); 138.49 (CH, pyridazinone); 144.97 (CH2—C=CH, pyridazinone); 147.17 (C=N); 161.19 (C=O, pyridazinone); 169.52 (C=O, CO2Et).
Refinement
Crystal data, data collection and structure . The C16/C17 ethyl group is disordered and was refined as two components restrained to have comparable geometries. The refined occupancies were 0.715 (10) and 0.285 (10).
details are summarized in Table 2Structural data
CCDC reference: 2175897
https://doi.org/10.1107/S241431462200582X/tk4077sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431462200582X/tk4077Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431462200582X/tk4077Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C17H20N2O4 | F(000) = 1344 |
Mr = 316.35 | Dx = 1.266 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 23.0488 (9) Å | Cell parameters from 9996 reflections |
b = 8.1149 (3) Å | θ = 2.3–27.3° |
c = 18.3223 (7) Å | µ = 0.09 mm−1 |
β = 104.454 (1)° | T = 298 K |
V = 3318.5 (2) Å3 | Block, colourless |
Z = 8 | 0.30 × 0.27 × 0.26 mm |
Bruker SMART APEX CCD diffractometer | 4288 independent reflections |
Radiation source: fine-focus sealed tube | 3151 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.7°, θmin = 1.8° |
φ and ω scans | h = −31→30 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −10→10 |
Tmin = 0.88, Tmax = 0.98 | l = −24→24 |
30517 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.160 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0899P)2 + 0.4855P] where P = (Fo2 + 2Fc2)/3 |
4288 reflections | (Δ/σ)max = 0.001 |
217 parameters | Δρmax = 0.28 e Å−3 |
26 restraints | Δρmin = −0.19 e Å−3 |
Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. The ethyl group in the ester is disordered over several closely spaced sites that could not be separated so a 2-site model with ISOR restraints on the two carbon atoms was used to approximate the disorder. The geometries of the two components were restrained to be similar. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.41842 (6) | 0.43017 (16) | 0.23630 (6) | 0.0793 (4) | |
O2 | 0.22537 (6) | 1.02992 (16) | −0.00750 (6) | 0.0805 (4) | |
O3 | 0.41772 (5) | 0.17898 (16) | 0.38013 (10) | 0.0912 (5) | |
O4 | 0.51197 (4) | 0.12696 (12) | 0.37673 (8) | 0.0698 (3) | |
N1 | 0.42422 (5) | 0.60597 (13) | 0.41467 (6) | 0.0471 (3) | |
N2 | 0.43660 (5) | 0.51627 (13) | 0.35755 (6) | 0.0486 (3) | |
C1 | 0.40601 (6) | 0.52488 (17) | 0.28277 (8) | 0.0535 (3) | |
C2 | 0.36172 (6) | 0.65291 (17) | 0.26634 (7) | 0.0509 (3) | |
H2 | 0.340914 | 0.670615 | 0.216534 | 0.061* | |
C3 | 0.34933 (5) | 0.74800 (14) | 0.32046 (6) | 0.0426 (3) | |
C4 | 0.38196 (5) | 0.71634 (15) | 0.39722 (6) | 0.0438 (3) | |
C5 | 0.30371 (6) | 0.88585 (16) | 0.30417 (7) | 0.0517 (3) | |
H5A | 0.270037 | 0.855686 | 0.324288 | 0.062* | |
H5B | 0.321688 | 0.984256 | 0.330396 | 0.062* | |
C6 | 0.28079 (6) | 0.92540 (15) | 0.22187 (7) | 0.0455 (3) | |
C7 | 0.23054 (6) | 0.84826 (17) | 0.17780 (8) | 0.0539 (3) | |
H7 | 0.209482 | 0.774610 | 0.200416 | 0.065* | |
C8 | 0.21068 (6) | 0.87733 (18) | 0.10115 (8) | 0.0574 (3) | |
H8 | 0.177154 | 0.822651 | 0.072685 | 0.069* | |
C9 | 0.24120 (7) | 0.98837 (17) | 0.06746 (8) | 0.0544 (3) | |
C10 | 0.29086 (7) | 1.06967 (19) | 0.11082 (8) | 0.0570 (3) | |
H10 | 0.310934 | 1.146522 | 0.088495 | 0.068* | |
C11 | 0.31060 (6) | 1.03723 (17) | 0.18676 (8) | 0.0502 (3) | |
H11 | 0.344438 | 1.091021 | 0.214985 | 0.060* | |
C12 | 0.17493 (11) | 0.9506 (3) | −0.05390 (11) | 0.0984 (7) | |
H12A | 0.166108 | 0.998274 | −0.103401 | 0.148* | |
H12B | 0.141106 | 0.964302 | −0.032724 | 0.148* | |
H12C | 0.183288 | 0.835300 | −0.057109 | 0.148* | |
C13 | 0.36960 (7) | 0.81397 (19) | 0.46090 (7) | 0.0582 (4) | |
H13A | 0.327840 | 0.805916 | 0.459828 | 0.087* | |
H13B | 0.379875 | 0.927322 | 0.455881 | 0.087* | |
H13C | 0.393143 | 0.771336 | 0.507866 | 0.087* | |
C14 | 0.48657 (6) | 0.40227 (17) | 0.37869 (8) | 0.0528 (3) | |
H14A | 0.510307 | 0.429970 | 0.428760 | 0.063* | |
H14B | 0.511925 | 0.414544 | 0.343992 | 0.063* | |
C15 | 0.46657 (6) | 0.22591 (17) | 0.37810 (9) | 0.0558 (3) | |
C16 | 0.50265 (17) | −0.0502 (2) | 0.3871 (3) | 0.0734 (9) | 0.715 (10) |
H16A | 0.494832 | −0.068922 | 0.436038 | 0.088* | 0.715 (10) |
H16B | 0.468250 | −0.088510 | 0.348723 | 0.088* | 0.715 (10) |
C17 | 0.55487 (19) | −0.1393 (5) | 0.3817 (4) | 0.1014 (15) | 0.715 (10) |
H17A | 0.548809 | −0.254816 | 0.388470 | 0.152* | 0.715 (10) |
H17B | 0.562186 | −0.121305 | 0.333017 | 0.152* | 0.715 (10) |
H17C | 0.588697 | −0.101770 | 0.420100 | 0.152* | 0.715 (10) |
C16A | 0.4944 (4) | −0.0438 (6) | 0.3548 (7) | 0.0734 (9) | 0.285 (10) |
H16C | 0.480714 | −0.097642 | 0.394661 | 0.088* | 0.285 (10) |
H16D | 0.461730 | −0.043996 | 0.309608 | 0.088* | 0.285 (10) |
C17A | 0.5442 (5) | −0.1313 (15) | 0.3410 (9) | 0.1014 (15) | 0.285 (10) |
H17D | 0.532487 | −0.242603 | 0.326694 | 0.152* | 0.285 (10) |
H17E | 0.557365 | −0.078443 | 0.301098 | 0.152* | 0.285 (10) |
H17F | 0.576306 | −0.131964 | 0.385953 | 0.152* | 0.285 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0871 (8) | 0.0886 (8) | 0.0579 (6) | 0.0359 (6) | 0.0098 (6) | −0.0166 (6) |
O2 | 0.1027 (9) | 0.0890 (8) | 0.0432 (6) | 0.0049 (7) | 0.0060 (6) | 0.0026 (5) |
O3 | 0.0543 (6) | 0.0670 (7) | 0.1584 (14) | 0.0010 (5) | 0.0378 (7) | 0.0124 (8) |
O4 | 0.0504 (6) | 0.0479 (5) | 0.1109 (9) | 0.0018 (4) | 0.0199 (6) | −0.0016 (5) |
N1 | 0.0496 (6) | 0.0486 (6) | 0.0416 (5) | −0.0019 (4) | 0.0085 (4) | 0.0021 (4) |
N2 | 0.0494 (6) | 0.0477 (6) | 0.0465 (6) | 0.0068 (4) | 0.0079 (5) | 0.0020 (4) |
C1 | 0.0559 (7) | 0.0569 (7) | 0.0467 (7) | 0.0103 (6) | 0.0107 (6) | −0.0031 (5) |
C2 | 0.0572 (7) | 0.0545 (7) | 0.0382 (6) | 0.0099 (6) | 0.0067 (5) | 0.0000 (5) |
C3 | 0.0457 (6) | 0.0419 (6) | 0.0403 (6) | 0.0004 (5) | 0.0109 (5) | 0.0030 (4) |
C4 | 0.0481 (6) | 0.0452 (6) | 0.0382 (6) | −0.0033 (5) | 0.0113 (5) | 0.0016 (4) |
C5 | 0.0603 (8) | 0.0492 (7) | 0.0466 (7) | 0.0110 (6) | 0.0150 (6) | 0.0022 (5) |
C6 | 0.0479 (6) | 0.0420 (6) | 0.0468 (6) | 0.0087 (5) | 0.0125 (5) | 0.0032 (5) |
C7 | 0.0512 (7) | 0.0477 (7) | 0.0618 (8) | −0.0010 (5) | 0.0120 (6) | 0.0075 (6) |
C8 | 0.0497 (7) | 0.0550 (8) | 0.0604 (8) | 0.0004 (6) | 0.0002 (6) | −0.0032 (6) |
C9 | 0.0619 (8) | 0.0554 (7) | 0.0445 (7) | 0.0104 (6) | 0.0103 (6) | 0.0008 (5) |
C10 | 0.0625 (8) | 0.0588 (8) | 0.0531 (8) | −0.0039 (6) | 0.0210 (6) | 0.0047 (6) |
C11 | 0.0460 (6) | 0.0532 (7) | 0.0514 (7) | −0.0034 (5) | 0.0120 (5) | −0.0023 (5) |
C12 | 0.1217 (17) | 0.0963 (14) | 0.0571 (10) | 0.0208 (12) | −0.0154 (10) | −0.0184 (9) |
C13 | 0.0673 (9) | 0.0660 (8) | 0.0411 (7) | 0.0043 (7) | 0.0130 (6) | −0.0044 (6) |
C14 | 0.0451 (7) | 0.0519 (7) | 0.0578 (8) | 0.0046 (5) | 0.0064 (6) | 0.0050 (6) |
C15 | 0.0469 (7) | 0.0528 (7) | 0.0662 (9) | 0.0044 (6) | 0.0112 (6) | 0.0040 (6) |
C16 | 0.0679 (13) | 0.0496 (9) | 0.100 (3) | −0.0014 (8) | 0.0153 (17) | 0.0002 (11) |
C17 | 0.0807 (19) | 0.0606 (12) | 0.159 (4) | 0.0052 (12) | 0.022 (3) | −0.018 (3) |
C16A | 0.0679 (13) | 0.0496 (9) | 0.100 (3) | −0.0014 (8) | 0.0153 (17) | 0.0002 (11) |
C17A | 0.0807 (19) | 0.0606 (12) | 0.159 (4) | 0.0052 (12) | 0.022 (3) | −0.018 (3) |
O1—C1 | 1.2325 (16) | C9—C10 | 1.386 (2) |
O2—C9 | 1.3722 (17) | C10—C11 | 1.3770 (19) |
O2—C12 | 1.413 (3) | C10—H10 | 0.9300 |
O3—C15 | 1.1980 (17) | C11—H11 | 0.9300 |
O4—C15 | 1.3243 (17) | C12—H12A | 0.9600 |
O4—C16A | 1.471 (3) | C12—H12B | 0.9600 |
O4—C16 | 1.473 (2) | C12—H12C | 0.9600 |
N1—C4 | 1.3030 (16) | C13—H13A | 0.9600 |
N1—N2 | 1.3623 (15) | C13—H13B | 0.9600 |
N2—C1 | 1.3773 (17) | C13—H13C | 0.9600 |
N2—C14 | 1.4525 (16) | C14—C15 | 1.503 (2) |
C1—C2 | 1.4347 (18) | C14—H14A | 0.9700 |
C2—C3 | 1.3423 (17) | C14—H14B | 0.9700 |
C2—H2 | 0.9300 | C16—C17 | 1.428 (3) |
C3—C4 | 1.4428 (16) | C16—H16A | 0.9700 |
C3—C5 | 1.5131 (17) | C16—H16B | 0.9700 |
C4—C13 | 1.4953 (17) | C17—H17A | 0.9600 |
C5—C6 | 1.5027 (18) | C17—H17B | 0.9600 |
C5—H5A | 0.9700 | C17—H17C | 0.9600 |
C5—H5B | 0.9700 | C16A—C17A | 1.424 (4) |
C6—C7 | 1.3850 (19) | C16A—H16C | 0.9700 |
C6—C11 | 1.3894 (18) | C16A—H16D | 0.9700 |
C7—C8 | 1.384 (2) | C17A—H17D | 0.9600 |
C7—H7 | 0.9300 | C17A—H17E | 0.9600 |
C8—C9 | 1.380 (2) | C17A—H17F | 0.9600 |
C8—H8 | 0.9300 | ||
C9—O2—C12 | 117.63 (16) | O2—C12—H12B | 109.5 |
C15—O4—C16A | 114.3 (4) | H12A—C12—H12B | 109.5 |
C15—O4—C16 | 116.62 (16) | O2—C12—H12C | 109.5 |
C4—N1—N2 | 117.76 (10) | H12A—C12—H12C | 109.5 |
N1—N2—C1 | 125.72 (10) | H12B—C12—H12C | 109.5 |
N1—N2—C14 | 116.08 (10) | C4—C13—H13A | 109.5 |
C1—N2—C14 | 118.20 (11) | C4—C13—H13B | 109.5 |
O1—C1—N2 | 120.40 (12) | H13A—C13—H13B | 109.5 |
O1—C1—C2 | 125.62 (13) | C4—C13—H13C | 109.5 |
N2—C1—C2 | 113.97 (11) | H13A—C13—H13C | 109.5 |
C3—C2—C1 | 122.19 (12) | H13B—C13—H13C | 109.5 |
C3—C2—H2 | 118.9 | N2—C14—C15 | 112.53 (11) |
C1—C2—H2 | 118.9 | N2—C14—H14A | 109.1 |
C2—C3—C4 | 117.55 (11) | C15—C14—H14A | 109.1 |
C2—C3—C5 | 123.01 (11) | N2—C14—H14B | 109.1 |
C4—C3—C5 | 119.44 (11) | C15—C14—H14B | 109.1 |
N1—C4—C3 | 122.52 (11) | H14A—C14—H14B | 107.8 |
N1—C4—C13 | 116.68 (11) | O3—C15—O4 | 124.13 (14) |
C3—C4—C13 | 120.78 (11) | O3—C15—C14 | 126.27 (13) |
C6—C5—C3 | 114.13 (10) | O4—C15—C14 | 109.58 (11) |
C6—C5—H5A | 108.7 | C17—C16—O4 | 109.4 (3) |
C3—C5—H5A | 108.7 | C17—C16—H16A | 109.8 |
C6—C5—H5B | 108.7 | O4—C16—H16A | 109.8 |
C3—C5—H5B | 108.7 | C17—C16—H16B | 109.8 |
H5A—C5—H5B | 107.6 | O4—C16—H16B | 109.8 |
C7—C6—C11 | 117.61 (12) | H16A—C16—H16B | 108.2 |
C7—C6—C5 | 121.46 (12) | C16—C17—H17A | 109.5 |
C11—C6—C5 | 120.90 (12) | C16—C17—H17B | 109.5 |
C8—C7—C6 | 122.08 (13) | H17A—C17—H17B | 109.5 |
C8—C7—H7 | 119.0 | C16—C17—H17C | 109.5 |
C6—C7—H7 | 119.0 | H17A—C17—H17C | 109.5 |
C9—C8—C7 | 119.25 (13) | H17B—C17—H17C | 109.5 |
C9—C8—H8 | 120.4 | C17A—C16A—O4 | 109.9 (7) |
C7—C8—H8 | 120.4 | C17A—C16A—H16C | 109.7 |
O2—C9—C8 | 124.76 (14) | O4—C16A—H16C | 109.7 |
O2—C9—C10 | 115.59 (14) | C17A—C16A—H16D | 109.7 |
C8—C9—C10 | 119.63 (13) | O4—C16A—H16D | 109.7 |
C11—C10—C9 | 120.36 (13) | H16C—C16A—H16D | 108.2 |
C11—C10—H10 | 119.8 | C16A—C17A—H17D | 109.5 |
C9—C10—H10 | 119.8 | C16A—C17A—H17E | 109.5 |
C10—C11—C6 | 121.05 (13) | H17D—C17A—H17E | 109.5 |
C10—C11—H11 | 119.5 | C16A—C17A—H17F | 109.5 |
C6—C11—H11 | 119.5 | H17D—C17A—H17F | 109.5 |
O2—C12—H12A | 109.5 | H17E—C17A—H17F | 109.5 |
C4—N1—N2—C1 | −3.99 (18) | C5—C6—C7—C8 | −176.68 (12) |
C4—N1—N2—C14 | 176.09 (11) | C6—C7—C8—C9 | −1.0 (2) |
N1—N2—C1—O1 | −175.15 (13) | C12—O2—C9—C8 | −1.5 (2) |
C14—N2—C1—O1 | 4.8 (2) | C12—O2—C9—C10 | −179.82 (15) |
N1—N2—C1—C2 | 6.4 (2) | C7—C8—C9—O2 | −178.74 (13) |
C14—N2—C1—C2 | −173.70 (12) | C7—C8—C9—C10 | −0.4 (2) |
O1—C1—C2—C3 | 177.80 (15) | O2—C9—C10—C11 | 180.00 (13) |
N2—C1—C2—C3 | −3.8 (2) | C8—C9—C10—C11 | 1.5 (2) |
C1—C2—C3—C4 | −0.6 (2) | C9—C10—C11—C6 | −1.3 (2) |
C1—C2—C3—C5 | 178.73 (13) | C7—C6—C11—C10 | −0.12 (19) |
N2—N1—C4—C3 | −1.25 (17) | C5—C6—C11—C10 | 177.83 (12) |
N2—N1—C4—C13 | −179.54 (11) | N1—N2—C14—C15 | 105.60 (13) |
C2—C3—C4—N1 | 3.40 (18) | C1—N2—C14—C15 | −74.33 (16) |
C5—C3—C4—N1 | −175.96 (11) | C16A—O4—C15—O3 | 17.8 (6) |
C2—C3—C4—C13 | −178.39 (12) | C16—O4—C15—O3 | −7.2 (3) |
C5—C3—C4—C13 | 2.25 (18) | C16A—O4—C15—C14 | −163.6 (6) |
C2—C3—C5—C6 | −9.45 (19) | C16—O4—C15—C14 | 171.4 (3) |
C4—C3—C5—C6 | 169.88 (11) | N2—C14—C15—O3 | −18.8 (2) |
C3—C5—C6—C7 | 90.46 (16) | N2—C14—C15—O4 | 162.61 (12) |
C3—C5—C6—C11 | −87.41 (15) | C15—O4—C16—C17 | 178.2 (2) |
C11—C6—C7—C8 | 1.3 (2) | C15—O4—C16A—C17A | 168.9 (7) |
Cg1 is the centroid of the C1–C4/N1/N2 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14B···O1i | 0.97 | 2.44 | 3.4041 (19) | 175 |
C16—H16B···Cg1ii | 0.97 | 2.86 | 3.586 (3) | 132 |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) x, y−1, z. |
Footnotes
‡Additional correspondence author, e-mail: y.ramli@um5r.ac.ma.
Acknowledgements
JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. Author contributions are as follows. Conceptualization, MA and JT; methodology, YR; investigation, YZ and HA; writing (original draft), JMT and YR; writing (review and editing of the manuscript), YR; formal analysis, AS and YR; supervision, MA and YR;
determination and validation, JTM.References
Abiha, G. B., Bahar, L. & Utku, S. (2018). Rev. Rom. Med. Lab. 26, 231–241. Google Scholar
Boukharsa, Y., Meddah, B., Tiendrebeogo, R. Y., Ibrahimi, A., Taoufik, J., Cherrah, Y., Benomar, A., Faouzi, M. E. A. & Ansar, M. (2016). Med. Chem. Res. 25, 494–500. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ibrahim, T. H., Loksha, Y. M., Elshihawy, H. A., Khodeer, D. M. & Said, M. M. (2017). Arch. Pharm. Chem. Life Sci. 350, e1700093. Web of Science CrossRef Google Scholar
Kamble, V. T., Sawant, A.-S., Sawant, S. S., Pisal, P. M., Gacche, R. N., Kamble, S. S., Shegokar, H. D. & Kamble, V. A. (2017). J. Basic Appl. Res. Int. 21, 10–39. Google Scholar
Khokra, S. L., Khan, S. A., Thakur, P., Chowdhary, D., Ahmad, A. & Husain, A. (2016). J. Chin. Chem. Soc. 63, 739–750. Web of Science CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Nauen, R. & Bretschneider, T. (2002). Pest. Outlook, 13, 241–245. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Yamada, T., Nobuhara, Y., Shimamura, H., Yoshihara, K., Yamaguchi, A. & Ohki, M. (1981). Chem. Pharm. Bull. 29, 3433–3439. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.