organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[1,4]Ditellurino[2,3-b:5,6-b′]di­pyrazine

crossmark logo

aDepartment of Chemistry, Lafayette, LA 70403, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: thomas.junk@louisiana.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 April 2022; accepted 13 June 2022; online 24 June 2022)

[1,4]Ditellurino[2,3-b:5,6-b′]di­pyrazine represents the first reported [1,4]chalcogena[2,3-b:5,6-b′]di­pyrazine containing a heavy chalcogens The asymmetric unit consists of three mol­ecules. In contrast to its sulfur analog, which is planar [Lynch et al. (1994[Lynch, V. M., Simonsen, S. H., Davis, B. E., Martin, G. E., Musmar, M. J., Lam, W. W. & Smith, K. (1994). Acta Cryst. C50, 1470-1472.]) Cryst. Struct. Commun. 50,1470–1472], C8H4N4Te2 is folded along the Te⋯Te axis to accommodate the larger chalcogenide atoms. The dihedral angle between the two Te2C2 rings of the central ring is 57.9° (mean of three). C—Te bond lengths range from 2.1105 (16) Å to 2.1381 (17) Å, in good agreement with those predicted by their covalent radii. All Te atoms are involved in inter­molecular Te⋯N contacts, with distances in the range 2.894 (2) to 2.963 (2) Å. These result in a spiral supra­molecular assembly, forming helical columns.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Heterocyclic tellurium compounds have found considerable attention due to their tendency to form supra­molecular assemblies including mol­ecular wires (Kremer et al., 2016[Kremer, A., Fermi, A., Biot, N., Wouters, J. & Bonifazi, D. (2016). Chem. Eur. J. 22, 5665-5675.]), ribbons (Cozzolino et al., 2010[Cozzolino, A. F., Yang, Q. & Vargas-Baca, I. (2010). Cryst. Growth Des. 10, 959-4964.]) and rings (Ho et al., 2016[Ho, P. C., Szydlowski, P., Sinclair, J., Elder, P. J. W., Kübel, J., Gendy, C., Lee, L. M., Jenkins, H., Britten, J. F., Morim, D. R. & Vargas-Baca, I. (2016). Nat. Commun. 7, 11299.], 2017[Ho, P. C., Rafique, J., Lee, J., Lee, L. M., Jenkins, H. A., Britten, J. F., Braga, A. L. & Vargas-Baca, I. (2017). Dalton Trans. 46, 6570-6579.]). Such assembles can give rise to materials with non-linear optical properties (Cozzolino et al., 2010[Cozzolino, A. F., Yang, Q. & Vargas-Baca, I. (2010). Cryst. Growth Des. 10, 959-4964.]), as well as novel phospho­rescent organic emitters (Kremer et al., 2015[Kremer, A., Aurisicchio, C., De Leo, F., Ventura, B., Wouters, J., Armaroli, N., Barbieri, A. & Bonifazi, D. (2015). Chem. Eur. J. 21, 15377-15387.]). A ribbon motif resulting from secondary inter­molecular N⋯Te bonding inter­actions of 2.767 (6) and 2.659 (6) Å was reported for 3,4-di­cyano-1,2,5-tellura­diazole (Cozzolino et al., 2010[Cozzolino, A. F., Yang, Q. & Vargas-Baca, I. (2010). Cryst. Growth Des. 10, 959-4964.]). Similarly, mol­ecular wire motifs resulting from secondary inter­molecular N⋯Te bonding were observed for 2-substituted benzo-1,3-tellurazoles, but with significantly longer N⋯Te distances. This is exemplified by 2-(2-furan­yl) benzo-1,3-tellurazole, 3.17 Å (Kremer et al., 2016[Kremer, A., Fermi, A., Biot, N., Wouters, J. & Bonifazi, D. (2016). Chem. Eur. J. 22, 5665-5675.]) and 1,3-benzotellurazol-2-ylaceto­nitrile, 3.16 Å (Sanford et al., 2017[Sanford, G., Walker, K. E., Fronczek, F. R. & Junk, T. (2017). J. Heterocycl. Chem. 54, 575-579.]). Not all Te, N-containing heterocycles form supra­molecular wires or ribbons. Thus, 10H-pyrazino­[2,3-b][1,4]benzotellurazine (Smith et al., 2020[Smith, D. S., Alexis, D. N., Fronczek, F. R. & Junk, T. (2020). Heteroatom Chem., article ID 1765950.]), 2H-1,4-benzo-tellurazin-3(4H)-one and 2,3-di­hydro-1,5-benzotellurazepin-4(5H)-one (Myers et al., 2016[Myers, J. P., Fronczek, F. R. & Junk, T. (2016). Acta Cryst. C72, 1-5.]) lack this feature. The [1,4]dichalcogena[2,3-b:5,6-b′]di­pyrazines remain poorly explored and no examples containing heavy chalcogens were reported prior to this study.

The three mol­ecules of the asymmetric unit are shown in Fig. 1[link], which illustrates their folded V shapes. The degree of folding along the Te⋯Te line can be described by φ, the dihedral angle between the two C2Te2 moieties of the central ring. This dihedral angle has a value of 60.08 (5)° for the mol­ecule containing Te1 and Te2, 57.16 (5)° for the Te3/Te4 mol­ecule, and 56.54 (5)° for the Te5/Te6 mol­ecule, with a mean value of 57.9°. A sulfur analog of the title compound has been structurally characterized (Lynch et al., 1994[Lynch, V. M., Simonsen, S. H., Davis, B. E., Martin, G. E., Musmar, M. J., Lam, W. W. & Smith, K. (1994). Acta Cryst. C50, 1470-1472.]), but is planar rather than folded along the chalcogen–chalcogen axis. The corresponding selenium congener remains unreported. The shape of the title compound shows structural similarity to those of 9,10-dichalcogenanthracenes containing tellurium and one other chalcogen atom in the central ring (Dereu et al., 1981[Dereu, N. L. M., Zingaro, R. A. & Meyers, E. A. (1981). Cryst. Struct. Commun. 10, 1359-1364.]; Meyers et al., 1988[Meyers, E. A., Irgolic, K. J., Zingaro, R. A., Junk, T., Chakravorty, R., Dereu, N. L. M., French, K. & Pappalardo, G. C. (1988). Phosphorus Sulfur Relat. Elem. 38, 257-269.]), as well as to the recently characterized 10H-pyrazino­[2,3-b][1,4]benzotellurazine (Smith et al., 2020[Smith, D. S., Alexis, D. N., Fronczek, F. R. & Junk, T. (2020). Heteroatom Chem., article ID 1765950.]). All are V-shaped, but the extent to which the center ring is folded varies considerably. The title compound and telluranthrene (φ = 57.86°) are nearly identical in this respect, while analogous compounds containing nitro­gen as one apex heteroatom show much a less pronounced V shape. This is exemplified by dibenzo[b,e]tellurazine, with φ = 18.28°(Junk et al., 1993[Junk, T., Irgolic, K. J., Reibenspies, J. H. & Meyers, E. A. (1993). Acta Cryst. C49, 938-940.]) and 10H-pyrazino­[2,3-b][1,4]benzotellurazine, φ = 18.29° (Smith et al., 2020[Smith, D. S., Alexis, D. N., Fronczek, F. R. & Junk, T. (2020). Heteroatom Chem., article ID 1765950.]) for the central C2TeN moieties.

[Figure 1]
Figure 1
The asymmetric unit of [1,4]ditellurino[2,3-b:5,6-b′]di­pyrazine with 50% ellipsoids.

The C—Te—C angles for the three independent mol­ecules of the title compound range from 91.48 (6) to 93.80 (6)°, similar to those of 95.3 and 95.9°, respectively, previously reported for telluranthrene (Dereu et al., 1981[Dereu, N. L. M., Zingaro, R. A. & Meyers, E. A. (1981). Cryst. Struct. Commun. 10, 1359-1364.]). C—Te bond lengths range from 2.1105 (16) Å to 2.1381 (17) Å, in good agreement with those predicted by their covalent radii.

Inter­molecular features are dominated by Te⋯N inter­actions involving all Te atoms, as shown in Fig. 2[link]. The range of distances for these contacts is 2.894 (2) to 2.963 (2) Å. These fall between those of 2.767 (6) and 2.659 (6) Å reported for 3,4-di­cyano-1,2,5-tellura­diazole (Cozzolino et al., 2010[Cozzolino, A. F., Yang, Q. & Vargas-Baca, I. (2010). Cryst. Growth Des. 10, 959-4964.]) and those for benzo-1,3-tellurazoles, ranging from 2.985 Å for 2-(methyl­sulfan­yl)-1,3-benzotellurazole (Ali et al., 2016[Ali, A. M. M., Ramazanova, P. A., Abakarov, G. M., Tarakanova, A. V. & Anisimov, A. V. (2016). CSD Communication (CCDC 1506868). CCDC, Cambridge, England.]) to 3.169 Å for 2-(2-fur­yl)-1,3-benzotellurazole (Kremer et al., 2016[Kremer, A., Fermi, A., Biot, N., Wouters, J. & Bonifazi, D. (2016). Chem. Eur. J. 22, 5665-5675.]). In contrast, despite its structural similarity, 10H-pyrazino­[2,3-b][1,4]benzotellurazine does not exhibit any supra­molecular Te⋯N bonding but forms hydrogen-bonded dimers instead (Smith et al., 2020[Smith, D. S., Alexis, D. N., Fronczek, F. R. & Junk, T. (2020). Heteroatom Chem., article ID 1765950.]).

[Figure 2]
Figure 2
The unit cell, showing inter­molecular Te⋯N contacts.

Each mol­ecule of the title compound is involved in four Te⋯N contacts, forming helical chains, as shown in Figs. 3[link] and 4[link]. The helices have approximate threefold helical symmetry, with a three-mol­ecule repeat period. The helical chains are in the [1[\overline{1}]1] direction and have a repeat distance of 20.244 (2) Å.

[Figure 3]
Figure 3
A portion of the helical chain, side view.
[Figure 4]
Figure 4
View of chain along the helix axis.

The Hirshfeld surface enclosing the Te3/Te4 mol­ecule was calculated with respect to de, di and dnorm using Crystal Explorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), where de and di represent the nearest distance of external or inter­nal nucleus from a point of inter­est on the iso-surface. The dominant N⋯Te inter­actions with the adjacent Te1/Te2 mol­ecule can be seen as the bright red areas on the Hirshfeld surface. The two-dimensional fingerprint plot and a two-dimensional fingerprint plot highlighting close reciprocal N⋯Te contacts are shown in Fig. 5[link]. These contacts include 14.6% of the surface area.

[Figure 5]
Figure 5
(a) Hirshfeld surface mapped over dnorm, (b) two-dimensional fingerprint plot, (c) two-dimensional fingerprint plot with reciprocal N· · · Te contacts highlighted.

A search of the Cambridge Structural Database (May 2021 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar organochalcogen heterocycles yielded 9,10-dichalcogenaanthracenes, C12H8(X,Y), (X,Y) = (O, Te), (S, Te), (Se, Te) and (Te, Te): PXTELL (Smith et al., 1973[Smith, M. R., Mangion, M. M., Zingaro, R. A. & Meyers, E. A. (1973). Heteroatom Chem., 10, 527-531.]), VEHVUZ (Meyers et al., 1988[Meyers, E. A., Irgolic, K. J., Zingaro, R. A., Junk, T., Chakravorty, R., Dereu, N. L. M., French, K. & Pappalardo, G. C. (1988). Phosphorus Sulfur Relat. Elem. 38, 257-269.]), VEHWEK (Meyers et al., 1988[Meyers, E. A., Irgolic, K. J., Zingaro, R. A., Junk, T., Chakravorty, R., Dereu, N. L. M., French, K. & Pappalardo, G. C. (1988). Phosphorus Sulfur Relat. Elem. 38, 257-269.]), and BAVJIR (Dereu et al., 1981[Dereu, N. L. M., Zingaro, R. A. & Meyers, E. A. (1981). Cryst. Struct. Commun. 10, 1359-1364.]), respectively. A further comparison was carried out with the sulfur analog of the title compound, WIBWEJ (Lynch et al., 1994[Lynch, V. M., Simonsen, S. H., Davis, B. E., Martin, G. E., Musmar, M. J., Lam, W. W. & Smith, K. (1994). Acta Cryst. C50, 1470-1472.]), as well as with benzo[1,4]tellurazine derivatives HABJID (Junk et al., 1993[Junk, T., Irgolic, K. J., Reibenspies, J. H. & Meyers, E. A. (1993). Acta Cryst. C49, 938-940.]), UGIHIEL (Smith et al., 2020[Smith, D. S., Alexis, D. N., Fronczek, F. R. & Junk, T. (2020). Heteroatom Chem., article ID 1765950.]) and BUTNOV (Myers et al., 2016[Myers, J. P., Fronczek, F. R. & Junk, T. (2016). Acta Cryst. C72, 1-5.]). A comparison with other Te, N-containing heterocycles known to undergo supra­molecular Te⋯N bonding included 1,3-benzotellurazoles OLUQIX (Kremer et al., 2016[Kremer, A., Fermi, A., Biot, N., Wouters, J. & Bonifazi, D. (2016). Chem. Eur. J. 22, 5665-5675.]), RUVWUC (Kremer et al., 2015[Kremer, A., Aurisicchio, C., De Leo, F., Ventura, B., Wouters, J., Armaroli, N., Barbieri, A. & Bonifazi, D. (2015). Chem. Eur. J. 21, 15377-15387.]), HALWID (Sanford et al., 2017[Sanford, G., Walker, K. E., Fronczek, F. R. & Junk, T. (2017). J. Heterocycl. Chem. 54, 575-579.]) and 3,4-di­cyano-1,2,5-tellura­diazole AREGEK01 (Semenov et al., 2012[Semenov, N. A., Pushkarevsky, N. A., Beckmann, J., Finke, P., Lork, E., Mews, R., Bagryanskaya, I. Y., Gatilov, Y. V., Konchenko, S. N., Vasiliev, V. G. & Zibarev, A. V. (2012). Eur. J. Inorg. Chem. pp. 3693-3703.]).

Synthesis and crystallization

Preparation of [1,4]ditellurino[2,3-b:5,6-b′]di­pyrazine: a 100 ml round-bottom flask equipped with mechanical stirring and inert gas inlet was charged with tellurium power (200 mesh, 1.28 g, 10 mmol), sodium hydride (0.6 g of 60% emulsion in mineral oil, 15 mmol) and dry N-methyl-2-pyrrolidone (12 ml). The mixture was purged with nitro­gen, placed in a Wood's metal bath and heated to 453 K with mechanical stirring for two hours. 2,3-Di­chloro­pyrazine (1.49 g, 10 mmol) was then added, followed by continued stirring at 453 K. The mixture was allowed to cool and diluted with water (100 ml). Solids were collected by filtration and dried. They were subsequently extracted with 2 × 10 ml of chloro­form. The combined extracts were chromatographed on a 1.5 × 10 cm column (silica gel, neutral, 200 mesh) using chloro­form as mobile phase, followed by chloro­form: aceto­nitrile (10:1 v/v). A yellow band eluted first and was identified as bis­(pyrazin-2-yl)tellurium by mass spectrometry. This was followed by a blue band, identified as bis­(3-chloro­pyrazin-2-yl)ditellurium. The following yellow band contained the title compound. Crystallization from chloro­form solution furnished yellow crystals, m.p. 413–415 K, yield 46 mg (2.2%).

Properties: 1H NMR (CDCl3, p.p.m.): 8.31 (s, 4H). 13C NMR (CDCl3, p.p.m.): 1443.46, 154.32. The compound slowly oxidizes when exposed to air in solution. A sample suitable for X-ray crystallography was obtained by evaporation of a solution in chloro­form.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. In the later stages of refinement, a small amount of twinning was detected, by 180° rotation about the reciprocal 110 direction. Final refinement was as a twin-component twin using an HKL5 file prepared by ROTAX (Parsons et al., 2003[Parsons, S., Gould, B., Cooper, R. & Farrugia, L. (2003). ROTAX. University of Edinburgh, Scotland.]). The BASF parameter is 0.0250 (4).

Table 1
Experimental details

Crystal data
Chemical formula C8H4N4Te2
Mr 411.35
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 90
a, b, c (Å) 7.6531 (8), 11.7862 (12), 16.8371 (18)
α, β, γ (°) 81.350 (2), 85.884 (2), 80.440 (2)
V3) 1478.9 (3)
Z 6
Radiation type Mo Kα
μ (mm−1) 5.88
Crystal size (mm) 0.19 × 0.17 × 0.16
 
Data collection
Diffractometer Bruker Kappa APEXII DUO CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.362, 0.453
No. of measured, independent and observed [I > 2σ(I)] reflections 158610, 158610, 145750
Rint 0.025
(sin θ/λ)max−1) 0.950
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.058, 1.10
No. of reflections 158610
No. of parameters 381
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.18, −0.97
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

[1,4]Ditellurino[2,3-b:5,6-b']dipyrazine top
Crystal data top
C8H4N4Te2Z = 6
Mr = 411.35F(000) = 1104
Triclinic, P1Dx = 2.771 Mg m3
a = 7.6531 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7862 (12) ÅCell parameters from 9342 reflections
c = 16.8371 (18) Åθ = 2.8–42.1°
α = 81.350 (2)°µ = 5.88 mm1
β = 85.884 (2)°T = 90 K
γ = 80.440 (2)°Fragment, yellow
V = 1478.9 (3) Å30.19 × 0.17 × 0.16 mm
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
158610 independent reflections
Radiation source: fine-focus sealed tube145750 reflections with I > 2σ(I)
TRIUMPH curved graphite monochromatorRint = 0.025
φ and ω scansθmax = 42.5°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1414
Tmin = 0.362, Tmax = 0.453k = 2222
158610 measured reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0009P)2 + 1.6438P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
158610 reflectionsΔρmax = 2.18 e Å3
381 parametersΔρmin = 0.97 e Å3
0 restraintsExtinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00036 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin using an HKL5 file prepared by ROTAX (Parsons et al., 2003). The BASF parameter is 0.0250 (4). All H atoms were located in difference maps and then treated as riding in geometrically idealized positions with C—H distances 0.95 Å and with Uiso(H) =1.2Ueq for the attached C atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Te10.49841 (2)0.50998 (2)0.85722 (2)0.01013 (2)
Te20.50106 (2)0.49957 (2)0.63430 (2)0.00816 (2)
N10.4741 (2)0.75856 (14)0.79682 (9)0.0131 (3)
N20.4700 (2)0.75553 (14)0.63202 (9)0.0113 (2)
N30.8440 (2)0.35839 (14)0.83665 (9)0.0103 (2)
N40.8595 (2)0.37038 (14)0.66970 (9)0.0104 (2)
C10.4830 (2)0.65832 (15)0.76698 (10)0.0098 (3)
C20.4806 (2)0.65701 (15)0.68373 (10)0.0090 (2)
C30.4596 (3)0.85524 (16)0.66225 (11)0.0131 (3)
H30.4507850.9264700.6267600.016*
C40.4615 (3)0.85661 (17)0.74470 (11)0.0139 (3)
H40.4535650.9288410.7643480.017*
C50.7087 (2)0.41601 (15)0.79341 (10)0.0086 (2)
C60.7142 (2)0.41927 (15)0.70924 (10)0.0084 (2)
C70.9955 (2)0.31457 (16)0.71338 (11)0.0118 (3)
H71.1004950.2800850.6870360.014*
C80.9850 (2)0.30641 (17)0.79687 (11)0.0118 (3)
H81.0808030.2625960.8264770.014*
Te30.02141 (2)0.96211 (2)0.37609 (2)0.00927 (2)
Te40.45479 (2)0.80313 (2)0.45840 (2)0.00845 (2)
N50.1035 (2)0.76067 (14)0.47346 (9)0.0109 (2)
N60.2130 (2)0.64559 (13)0.53966 (9)0.0094 (2)
N70.2250 (2)0.92573 (13)0.22221 (8)0.0094 (2)
N80.5463 (2)0.81350 (15)0.28562 (9)0.0116 (2)
C90.0482 (2)0.80356 (15)0.45639 (10)0.0087 (2)
C100.2078 (2)0.74554 (15)0.48943 (9)0.0084 (2)
C110.0613 (2)0.60249 (16)0.55555 (10)0.0111 (3)
H110.0611890.5310900.5903010.013*
C120.0961 (2)0.65951 (17)0.52251 (11)0.0120 (3)
H120.2011590.6259840.5349900.014*
C130.2442 (2)0.90429 (15)0.30184 (10)0.0085 (2)
C140.4045 (2)0.84565 (15)0.33377 (10)0.0088 (2)
C150.5256 (2)0.83823 (18)0.20617 (11)0.0134 (3)
H150.6236740.8182180.1703010.016*
C160.3656 (2)0.89205 (16)0.17491 (10)0.0111 (3)
H160.3555080.9053750.1182380.013*
Te50.92057 (2)0.34134 (2)0.00428 (2)0.00896 (2)
Te60.93205 (2)0.03850 (2)0.12002 (2)0.00860 (2)
N90.9987 (2)0.38464 (15)0.16384 (9)0.0133 (3)
N101.0234 (2)0.16105 (14)0.24945 (9)0.0118 (2)
N110.5643 (2)0.29991 (14)0.02659 (9)0.0100 (2)
N120.5688 (2)0.08150 (14)0.06426 (9)0.0105 (2)
C170.9704 (2)0.29510 (15)0.12895 (10)0.0094 (3)
C180.9813 (2)0.18233 (15)0.17227 (10)0.0092 (2)
C191.0551 (3)0.25069 (17)0.28327 (11)0.0143 (3)
H191.0876190.2379440.3376740.017*
C201.0417 (3)0.36185 (18)0.24084 (11)0.0155 (3)
H201.0635930.4235600.2672000.019*
C210.7081 (2)0.24611 (15)0.01189 (10)0.0084 (2)
C220.7113 (2)0.13526 (15)0.05717 (10)0.0085 (2)
C230.4234 (2)0.13848 (17)0.02780 (11)0.0117 (3)
H230.3188700.1038010.0333070.014*
C240.4216 (2)0.24684 (17)0.01780 (11)0.0115 (3)
H240.3164080.2841930.0433760.014*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te10.01103 (4)0.00946 (4)0.00761 (4)0.00239 (3)0.00198 (3)0.00057 (3)
Te20.00895 (4)0.00699 (4)0.00847 (4)0.00041 (3)0.00201 (3)0.00098 (3)
N10.0182 (7)0.0093 (6)0.0112 (6)0.0003 (5)0.0013 (5)0.0026 (5)
N20.0145 (6)0.0085 (6)0.0105 (5)0.0016 (5)0.0021 (5)0.0004 (4)
N30.0089 (5)0.0111 (6)0.0099 (5)0.0000 (5)0.0007 (4)0.0002 (5)
N40.0096 (6)0.0105 (6)0.0112 (5)0.0001 (5)0.0001 (4)0.0036 (5)
C10.0107 (6)0.0087 (6)0.0089 (6)0.0004 (5)0.0004 (5)0.0005 (5)
C20.0096 (6)0.0075 (6)0.0094 (6)0.0007 (5)0.0006 (5)0.0000 (5)
C30.0173 (8)0.0082 (7)0.0133 (7)0.0022 (6)0.0014 (6)0.0003 (5)
C40.0188 (8)0.0092 (7)0.0136 (7)0.0013 (6)0.0008 (6)0.0026 (5)
C50.0081 (6)0.0078 (6)0.0093 (6)0.0006 (5)0.0001 (5)0.0002 (5)
C60.0086 (6)0.0071 (6)0.0094 (6)0.0008 (5)0.0010 (5)0.0014 (5)
C70.0100 (6)0.0122 (7)0.0130 (6)0.0000 (5)0.0003 (5)0.0034 (5)
C80.0090 (6)0.0128 (7)0.0126 (6)0.0013 (5)0.0012 (5)0.0009 (5)
Te30.00845 (4)0.00910 (4)0.00846 (4)0.00204 (3)0.00024 (3)0.00044 (3)
Te40.00689 (4)0.00985 (4)0.00835 (4)0.00251 (3)0.00212 (3)0.00166 (3)
N50.0080 (5)0.0141 (6)0.0107 (5)0.0020 (5)0.0006 (4)0.0018 (5)
N60.0103 (6)0.0087 (6)0.0089 (5)0.0019 (5)0.0009 (4)0.0003 (4)
N70.0099 (6)0.0096 (6)0.0083 (5)0.0003 (5)0.0007 (4)0.0009 (4)
N80.0082 (6)0.0145 (7)0.0113 (6)0.0006 (5)0.0000 (4)0.0011 (5)
C90.0078 (6)0.0099 (6)0.0080 (5)0.0007 (5)0.0003 (4)0.0008 (5)
C100.0081 (6)0.0089 (6)0.0081 (5)0.0019 (5)0.0005 (5)0.0004 (5)
C110.0126 (7)0.0110 (7)0.0099 (6)0.0042 (6)0.0010 (5)0.0001 (5)
C120.0099 (6)0.0139 (7)0.0127 (6)0.0042 (6)0.0006 (5)0.0015 (6)
C130.0088 (6)0.0082 (6)0.0082 (5)0.0008 (5)0.0001 (5)0.0006 (5)
C140.0077 (6)0.0089 (6)0.0094 (6)0.0018 (5)0.0007 (5)0.0001 (5)
C150.0097 (7)0.0182 (8)0.0112 (6)0.0002 (6)0.0017 (5)0.0019 (6)
C160.0109 (7)0.0130 (7)0.0090 (6)0.0010 (5)0.0001 (5)0.0011 (5)
Te50.00776 (4)0.01048 (5)0.00853 (4)0.00312 (3)0.00108 (3)0.00122 (3)
Te60.00945 (4)0.00712 (4)0.00926 (4)0.00022 (3)0.00264 (3)0.00145 (3)
N90.0172 (7)0.0121 (7)0.0120 (6)0.0066 (5)0.0009 (5)0.0015 (5)
N100.0157 (7)0.0108 (6)0.0091 (5)0.0012 (5)0.0026 (5)0.0022 (5)
N110.0072 (5)0.0115 (6)0.0106 (5)0.0000 (5)0.0007 (4)0.0004 (5)
N120.0103 (6)0.0116 (6)0.0103 (5)0.0034 (5)0.0002 (4)0.0023 (5)
C170.0091 (6)0.0108 (7)0.0086 (6)0.0028 (5)0.0009 (5)0.0008 (5)
C180.0097 (6)0.0090 (6)0.0091 (6)0.0013 (5)0.0011 (5)0.0019 (5)
C190.0207 (8)0.0139 (8)0.0096 (6)0.0043 (6)0.0030 (6)0.0028 (6)
C200.0216 (9)0.0142 (8)0.0133 (7)0.0083 (7)0.0019 (6)0.0040 (6)
C210.0067 (6)0.0098 (6)0.0086 (6)0.0010 (5)0.0006 (4)0.0010 (5)
C220.0086 (6)0.0087 (6)0.0082 (6)0.0009 (5)0.0011 (5)0.0020 (5)
C230.0090 (6)0.0140 (7)0.0130 (6)0.0036 (5)0.0003 (5)0.0029 (6)
C240.0072 (6)0.0144 (7)0.0124 (6)0.0005 (5)0.0011 (5)0.0016 (5)
Geometric parameters (Å, º) top
Te1—C52.1185 (17)N8—C151.341 (2)
Te1—C12.1301 (17)N8—C141.345 (2)
Te2—C22.1237 (17)C9—C101.405 (2)
Te2—C62.1381 (17)C11—C121.388 (3)
N1—C41.336 (3)C11—H110.9500
N1—C11.342 (2)C12—H120.9500
N2—C21.337 (2)C13—C141.405 (2)
N2—C31.338 (2)C15—C161.383 (3)
N3—C81.337 (2)C15—H150.9500
N3—C51.338 (2)C16—H160.9500
N4—C71.339 (2)Te5—C212.1105 (16)
N4—C61.345 (2)Te5—C172.1332 (16)
C1—C21.406 (2)Te6—C182.1209 (17)
C3—C41.392 (3)Te6—C222.1281 (17)
C3—H30.9500N9—C171.337 (2)
C4—H40.9500N9—C201.337 (3)
C5—C61.410 (2)N10—C191.336 (2)
C7—C81.392 (3)N10—C181.338 (2)
C7—H70.9500N11—C211.334 (2)
C8—H80.9500N11—C241.335 (2)
Te3—C132.1211 (17)N12—C231.338 (2)
Te3—C92.1248 (17)N12—C221.339 (2)
Te4—C102.1180 (16)C17—C181.409 (2)
Te4—C142.1302 (16)C19—C201.386 (3)
N5—C91.338 (2)C19—H190.9500
N5—C121.340 (2)C20—H200.9500
N6—C111.337 (2)C21—C221.408 (2)
N6—C101.339 (2)C23—C241.386 (3)
N7—C161.334 (2)C23—H230.9500
N7—C131.340 (2)C24—H240.9500
C5—Te1—C192.54 (6)N5—C12—C11121.60 (16)
C2—Te2—C691.48 (6)N5—C12—H12119.2
C4—N1—C1117.64 (16)C11—C12—H12119.2
C2—N2—C3117.78 (15)N7—C13—C14121.05 (15)
C8—N3—C5117.52 (15)N7—C13—Te3116.77 (12)
C7—N4—C6117.69 (15)C14—C13—Te3122.17 (12)
N1—C1—C2120.90 (16)N8—C14—C13121.25 (15)
N1—C1—Te1113.35 (12)N8—C14—Te4113.13 (12)
C2—C1—Te1125.74 (13)C13—C14—Te4125.59 (12)
N2—C2—C1120.98 (16)N8—C15—C16121.90 (16)
N2—C2—Te2117.13 (12)N8—C15—H15119.0
C1—C2—Te2121.87 (12)C16—C15—H15119.0
N2—C3—C4121.26 (17)N7—C16—C15121.76 (16)
N2—C3—H3119.4N7—C16—H16119.1
C4—C3—H3119.4C15—C16—H16119.1
N1—C4—C3121.43 (17)C21—Te5—C1793.44 (6)
N1—C4—H4119.3C18—Te6—C2293.72 (6)
C3—C4—H4119.3C17—N9—C20117.07 (16)
N3—C5—C6120.83 (15)C19—N10—C18117.32 (16)
N3—C5—Te1116.33 (12)C21—N11—C24117.52 (16)
C6—C5—Te1122.70 (12)C23—N12—C22117.19 (16)
N4—C6—C5120.95 (15)N9—C17—C18121.22 (15)
N4—C6—Te2114.60 (12)N9—C17—Te5113.16 (12)
C5—C6—Te2124.45 (12)C18—C17—Te5125.57 (12)
N4—C7—C8120.88 (16)N10—C18—C17120.98 (15)
N4—C7—H7119.6N10—C18—Te6116.55 (12)
C8—C7—H7119.6C17—C18—Te6122.48 (12)
N3—C8—C7121.98 (17)N10—C19—C20121.55 (17)
N3—C8—H8119.0N10—C19—H19119.2
C7—C8—H8119.0C20—C19—H19119.2
C13—Te3—C993.30 (6)N9—C20—C19121.84 (17)
C10—Te4—C1493.80 (6)N9—C20—H20119.1
C9—N5—C12117.13 (16)C19—C20—H20119.1
C11—N6—C10117.26 (15)N11—C21—C22121.09 (15)
C16—N7—C13117.26 (15)N11—C21—Te5115.58 (12)
C15—N8—C14116.70 (16)C22—C21—Te5123.27 (12)
N5—C9—C10121.28 (16)N12—C22—C21120.99 (15)
N5—C9—Te3113.77 (12)N12—C22—Te6113.90 (12)
C10—C9—Te3124.94 (12)C21—C22—Te6125.11 (12)
N6—C10—C9121.09 (15)N12—C23—C24121.65 (16)
N6—C10—Te4115.90 (12)N12—C23—H23119.2
C9—C10—Te4122.91 (12)C24—C23—H23119.2
N6—C11—C12121.62 (16)N11—C24—C23121.50 (16)
N6—C11—H11119.2N11—C24—H24119.3
C12—C11—H11119.2C23—C24—H24119.3
C4—N1—C1—C20.5 (3)C16—N7—C13—C141.8 (2)
C4—N1—C1—Te1179.04 (14)C16—N7—C13—Te3178.54 (13)
C3—N2—C2—C10.8 (3)C15—N8—C14—C131.2 (3)
C3—N2—C2—Te2179.06 (13)C15—N8—C14—Te4179.44 (14)
N1—C1—C2—N20.2 (3)N7—C13—C14—N82.9 (3)
Te1—C1—C2—N2179.73 (13)Te3—C13—C14—N8177.51 (13)
N1—C1—C2—Te2178.42 (13)N7—C13—C14—Te4179.14 (12)
Te1—C1—C2—Te22.1 (2)Te3—C13—C14—Te40.5 (2)
C2—N2—C3—C40.6 (3)C14—N8—C15—C161.3 (3)
C1—N1—C4—C30.7 (3)C13—N7—C16—C150.7 (3)
N2—C3—C4—N10.2 (3)N8—C15—C16—N72.3 (3)
C8—N3—C5—C61.3 (2)C20—N9—C17—C181.5 (3)
C8—N3—C5—Te1174.55 (13)C20—N9—C17—Te5176.06 (14)
C7—N4—C6—C52.7 (2)C19—N10—C18—C170.2 (3)
C7—N4—C6—Te2177.44 (13)C19—N10—C18—Te6179.91 (14)
N3—C5—C6—N43.9 (3)N9—C17—C18—N101.2 (3)
Te1—C5—C6—N4171.65 (12)Te5—C17—C18—N10176.06 (13)
N3—C5—C6—Te2176.25 (12)N9—C17—C18—Te6178.68 (13)
Te1—C5—C6—Te28.2 (2)Te5—C17—C18—Te64.1 (2)
C6—N4—C7—C80.8 (3)C18—N10—C19—C201.2 (3)
C5—N3—C8—C72.3 (3)C17—N9—C20—C190.5 (3)
N4—C7—C8—N33.5 (3)N10—C19—C20—N90.9 (3)
C12—N5—C9—C100.8 (2)C24—N11—C21—C222.7 (2)
C12—N5—C9—Te3178.70 (13)C24—N11—C21—Te5174.54 (13)
C11—N6—C10—C91.4 (2)C23—N12—C22—C211.2 (2)
C11—N6—C10—Te4175.06 (12)C23—N12—C22—Te6178.49 (12)
N5—C9—C10—N60.5 (3)N11—C21—C22—N121.3 (2)
Te3—C9—C10—N6179.93 (12)Te5—C21—C22—N12175.69 (12)
N5—C9—C10—Te4175.68 (12)N11—C21—C22—Te6179.06 (12)
Te3—C9—C10—Te43.8 (2)Te5—C21—C22—Te63.9 (2)
C10—N6—C11—C121.0 (3)C22—N12—C23—C242.2 (3)
C9—N5—C12—C111.2 (3)C21—N11—C24—C231.7 (3)
N6—C11—C12—N50.3 (3)N12—C23—C24—N110.8 (3)
 

Acknowledgements

We are grateful to the Department of Chemistry, University of Louisiana at Lafayette for material support of this work.

Funding information

Funding for this research was provided by: Louisiana Board of Regents (grant No. LEQSF(2011-12)-ENH-TR-01).

References

First citationAli, A. M. M., Ramazanova, P. A., Abakarov, G. M., Tarakanova, A. V. & Anisimov, A. V. (2016). CSD Communication (CCDC 1506868). CCDC, Cambridge, England.  Google Scholar
First citationBruker (2016). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCozzolino, A. F., Yang, Q. & Vargas-Baca, I. (2010). Cryst. Growth Des. 10, 959–4964.  CrossRef Google Scholar
First citationDereu, N. L. M., Zingaro, R. A. & Meyers, E. A. (1981). Cryst. Struct. Commun. 10, 1359–1364.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHo, P. C., Rafique, J., Lee, J., Lee, L. M., Jenkins, H. A., Britten, J. F., Braga, A. L. & Vargas-Baca, I. (2017). Dalton Trans. 46, 6570–6579.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHo, P. C., Szydlowski, P., Sinclair, J., Elder, P. J. W., Kübel, J., Gendy, C., Lee, L. M., Jenkins, H., Britten, J. F., Morim, D. R. & Vargas-Baca, I. (2016). Nat. Commun. 7, 11299.  Web of Science CSD CrossRef PubMed Google Scholar
First citationJunk, T., Irgolic, K. J., Reibenspies, J. H. & Meyers, E. A. (1993). Acta Cryst. C49, 938–940.  CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKremer, A., Aurisicchio, C., De Leo, F., Ventura, B., Wouters, J., Armaroli, N., Barbieri, A. & Bonifazi, D. (2015). Chem. Eur. J. 21, 15377–15387.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKremer, A., Fermi, A., Biot, N., Wouters, J. & Bonifazi, D. (2016). Chem. Eur. J. 22, 5665–5675.  CrossRef CAS PubMed Google Scholar
First citationLynch, V. M., Simonsen, S. H., Davis, B. E., Martin, G. E., Musmar, M. J., Lam, W. W. & Smith, K. (1994). Acta Cryst. C50, 1470–1472.  CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeyers, E. A., Irgolic, K. J., Zingaro, R. A., Junk, T., Chakravorty, R., Dereu, N. L. M., French, K. & Pappalardo, G. C. (1988). Phosphorus Sulfur Relat. Elem. 38, 257–269.  CrossRef Google Scholar
First citationMyers, J. P., Fronczek, F. R. & Junk, T. (2016). Acta Cryst. C72, 1–5.  CrossRef IUCr Journals Google Scholar
First citationParsons, S., Gould, B., Cooper, R. & Farrugia, L. (2003). ROTAX. University of Edinburgh, Scotland.  Google Scholar
First citationSanford, G., Walker, K. E., Fronczek, F. R. & Junk, T. (2017). J. Heterocycl. Chem. 54, 575–579.  CrossRef CAS Google Scholar
First citationSemenov, N. A., Pushkarevsky, N. A., Beckmann, J., Finke, P., Lork, E., Mews, R., Bagryanskaya, I. Y., Gatilov, Y. V., Konchenko, S. N., Vasiliev, V. G. & Zibarev, A. V. (2012). Eur. J. Inorg. Chem. pp. 3693–3703.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, M. R., Mangion, M. M., Zingaro, R. A. & Meyers, E. A. (1973). Heteroatom Chem., 10, 527–531.  CrossRef CAS Google Scholar
First citationSmith, D. S., Alexis, D. N., Fronczek, F. R. & Junk, T. (2020). Heteroatom Chem., article ID 1765950.  Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds