organic compounds
[1,4]Ditellurino[2,3-b:5,6-b′]dipyrazine
aDepartment of Chemistry, Lafayette, LA 70403, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: thomas.junk@louisiana.edu
[1,4]Ditellurino[2,3-b:5,6-b′]dipyrazine represents the first reported [1,4]chalcogena[2,3-b:5,6-b′]dipyrazine containing a heavy chalcogens The consists of three molecules. In contrast to its sulfur analog, which is planar [Lynch et al. (1994) Cryst. Struct. Commun. 50,1470–1472], C8H4N4Te2 is folded along the Te⋯Te axis to accommodate the larger chalcogenide atoms. The dihedral angle between the two Te2C2 rings of the central ring is 57.9° (mean of three). C—Te bond lengths range from 2.1105 (16) Å to 2.1381 (17) Å, in good agreement with those predicted by their covalent radii. All Te atoms are involved in intermolecular Te⋯N contacts, with distances in the range 2.894 (2) to 2.963 (2) Å. These result in a spiral supramolecular assembly, forming helical columns.
Keywords: tellurium; pyrazine; heterocyclic; supramolecular; crystal structure.
CCDC reference: 2179053
Structure description
Heterocyclic tellurium compounds have found considerable attention due to their tendency to form supramolecular assemblies including molecular wires (Kremer et al., 2016), ribbons (Cozzolino et al., 2010) and rings (Ho et al., 2016, 2017). Such assembles can give rise to materials with non-linear optical properties (Cozzolino et al., 2010), as well as novel phosphorescent organic emitters (Kremer et al., 2015). A ribbon motif resulting from secondary intermolecular N⋯Te bonding interactions of 2.767 (6) and 2.659 (6) Å was reported for 3,4-dicyano-1,2,5-telluradiazole (Cozzolino et al., 2010). Similarly, molecular wire motifs resulting from secondary intermolecular N⋯Te bonding were observed for 2-substituted benzo-1,3-tellurazoles, but with significantly longer N⋯Te distances. This is exemplified by 2-(2-furanyl) benzo-1,3-tellurazole, 3.17 Å (Kremer et al., 2016) and 1,3-benzotellurazol-2-ylacetonitrile, 3.16 Å (Sanford et al., 2017). Not all Te, N-containing heterocycles form supramolecular wires or ribbons. Thus, 10H-pyrazino[2,3-b][1,4]benzotellurazine (Smith et al., 2020), 2H-1,4-benzo-tellurazin-3(4H)-one and 2,3-dihydro-1,5-benzotellurazepin-4(5H)-one (Myers et al., 2016) lack this feature. The [1,4]dichalcogena[2,3-b:5,6-b′]dipyrazines remain poorly explored and no examples containing heavy chalcogens were reported prior to this study.
The three molecules of the , which illustrates their folded V shapes. The degree of folding along the Te⋯Te line can be described by φ, the dihedral angle between the two C2Te2 moieties of the central ring. This dihedral angle has a value of 60.08 (5)° for the molecule containing Te1 and Te2, 57.16 (5)° for the Te3/Te4 molecule, and 56.54 (5)° for the Te5/Te6 molecule, with a mean value of 57.9°. A sulfur analog of the title compound has been structurally characterized (Lynch et al., 1994), but is planar rather than folded along the chalcogen–chalcogen axis. The corresponding selenium congener remains unreported. The shape of the title compound shows structural similarity to those of 9,10-dichalcogenanthracenes containing tellurium and one other chalcogen atom in the central ring (Dereu et al., 1981; Meyers et al., 1988), as well as to the recently characterized 10H-pyrazino[2,3-b][1,4]benzotellurazine (Smith et al., 2020). All are V-shaped, but the extent to which the center ring is folded varies considerably. The title compound and telluranthrene (φ = 57.86°) are nearly identical in this respect, while analogous compounds containing nitrogen as one apex heteroatom show much a less pronounced V shape. This is exemplified by dibenzo[b,e]tellurazine, with φ = 18.28°(Junk et al., 1993) and 10H-pyrazino[2,3-b][1,4]benzotellurazine, φ = 18.29° (Smith et al., 2020) for the central C2TeN moieties.
are shown in Fig. 1The C—Te—C angles for the three independent molecules of the title compound range from 91.48 (6) to 93.80 (6)°, similar to those of 95.3 and 95.9°, respectively, previously reported for telluranthrene (Dereu et al., 1981). C—Te bond lengths range from 2.1105 (16) Å to 2.1381 (17) Å, in good agreement with those predicted by their covalent radii.
Intermolecular features are dominated by Te⋯N interactions involving all Te atoms, as shown in Fig. 2. The range of distances for these contacts is 2.894 (2) to 2.963 (2) Å. These fall between those of 2.767 (6) and 2.659 (6) Å reported for 3,4-dicyano-1,2,5-telluradiazole (Cozzolino et al., 2010) and those for benzo-1,3-tellurazoles, ranging from 2.985 Å for 2-(methylsulfanyl)-1,3-benzotellurazole (Ali et al., 2016) to 3.169 Å for 2-(2-furyl)-1,3-benzotellurazole (Kremer et al., 2016). In contrast, despite its structural similarity, 10H-pyrazino[2,3-b][1,4]benzotellurazine does not exhibit any supramolecular Te⋯N bonding but forms hydrogen-bonded dimers instead (Smith et al., 2020).
Each molecule of the title compound is involved in four Te⋯N contacts, forming helical chains, as shown in Figs. 3 and 4. The helices have approximate threefold helical symmetry, with a three-molecule repeat period. The helical chains are in the [11] direction and have a repeat distance of 20.244 (2) Å.
The Hirshfeld surface enclosing the Te3/Te4 molecule was calculated with respect to de, di and dnorm using Crystal Explorer (Spackman et al., 2021), where de and di represent the nearest distance of external or internal nucleus from a point of interest on the iso-surface. The dominant N⋯Te interactions with the adjacent Te1/Te2 molecule can be seen as the bright red areas on the Hirshfeld surface. The two-dimensional fingerprint plot and a two-dimensional fingerprint plot highlighting close reciprocal N⋯Te contacts are shown in Fig. 5. These contacts include 14.6% of the surface area.
A search of the Cambridge Structural Database (May 2021 update; Groom et al., 2016) for similar organochalcogen heterocycles yielded 9,10-dichalcogenaanthracenes, C12H8(X,Y), (X,Y) = (O, Te), (S, Te), (Se, Te) and (Te, Te): PXTELL (Smith et al., 1973), VEHVUZ (Meyers et al., 1988), VEHWEK (Meyers et al., 1988), and BAVJIR (Dereu et al., 1981), respectively. A further comparison was carried out with the sulfur analog of the title compound, WIBWEJ (Lynch et al., 1994), as well as with benzo[1,4]tellurazine derivatives HABJID (Junk et al., 1993), UGIHIEL (Smith et al., 2020) and BUTNOV (Myers et al., 2016). A comparison with other Te, N-containing heterocycles known to undergo supramolecular Te⋯N bonding included 1,3-benzotellurazoles OLUQIX (Kremer et al., 2016), RUVWUC (Kremer et al., 2015), HALWID (Sanford et al., 2017) and 3,4-dicyano-1,2,5-telluradiazole AREGEK01 (Semenov et al., 2012).
Synthesis and crystallization
Preparation of [1,4]ditellurino[2,3-b:5,6-b′]dipyrazine: a 100 ml round-bottom flask equipped with mechanical stirring and inlet was charged with tellurium power (200 mesh, 1.28 g, 10 mmol), sodium hydride (0.6 g of 60% emulsion in mineral oil, 15 mmol) and dry N-methyl-2-pyrrolidone (12 ml). The mixture was purged with nitrogen, placed in a Wood's metal bath and heated to 453 K with mechanical stirring for two hours. 2,3-Dichloropyrazine (1.49 g, 10 mmol) was then added, followed by continued stirring at 453 K. The mixture was allowed to cool and diluted with water (100 ml). Solids were collected by filtration and dried. They were subsequently extracted with 2 × 10 ml of chloroform. The combined extracts were chromatographed on a 1.5 × 10 cm column (silica gel, neutral, 200 mesh) using chloroform as mobile phase, followed by chloroform: acetonitrile (10:1 v/v). A yellow band eluted first and was identified as bis(pyrazin-2-yl)tellurium by This was followed by a blue band, identified as bis(3-chloropyrazin-2-yl)ditellurium. The following yellow band contained the title compound. Crystallization from chloroform solution furnished yellow crystals, m.p. 413–415 K, yield 46 mg (2.2%).
Properties: 1H NMR (CDCl3, p.p.m.): 8.31 (s, 4H). 13C NMR (CDCl3, p.p.m.): 1443.46, 154.32. The compound slowly oxidizes when exposed to air in solution. A sample suitable for X-ray crystallography was obtained by evaporation of a solution in chloroform.
Refinement
Crystal data, data collection and structure . In the later stages of a small amount of was detected, by 180° rotation about the reciprocal 110 direction. Final was as a twin-component twin using an HKL5 file prepared by ROTAX (Parsons et al., 2003). The BASF parameter is 0.0250 (4).
details are summarized in Table 1Structural data
CCDC reference: 2179053
https://doi.org/10.1107/S2414314622006228/hb4407sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622006228/hb4407Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314622006228/hb4407Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C8H4N4Te2 | Z = 6 |
Mr = 411.35 | F(000) = 1104 |
Triclinic, P1 | Dx = 2.771 Mg m−3 |
a = 7.6531 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.7862 (12) Å | Cell parameters from 9342 reflections |
c = 16.8371 (18) Å | θ = 2.8–42.1° |
α = 81.350 (2)° | µ = 5.88 mm−1 |
β = 85.884 (2)° | T = 90 K |
γ = 80.440 (2)° | Fragment, yellow |
V = 1478.9 (3) Å3 | 0.19 × 0.17 × 0.16 mm |
Bruker Kappa APEXII DUO CCD diffractometer | 158610 independent reflections |
Radiation source: fine-focus sealed tube | 145750 reflections with I > 2σ(I) |
TRIUMPH curved graphite monochromator | Rint = 0.025 |
φ and ω scans | θmax = 42.5°, θmin = 1.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −14→14 |
Tmin = 0.362, Tmax = 0.453 | k = −22→22 |
158610 measured reflections | l = −31→31 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.058 | w = 1/[σ2(Fo2) + (0.0009P)2 + 1.6438P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.002 |
158610 reflections | Δρmax = 2.18 e Å−3 |
381 parameters | Δρmin = −0.97 e Å−3 |
0 restraints | Extinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00036 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a two-component twin using an HKL5 file prepared by ROTAX (Parsons et al., 2003). The BASF parameter is 0.0250 (4). All H atoms were located in difference maps and then treated as riding in geometrically idealized positions with C—H distances 0.95 Å and with Uiso(H) =1.2Ueq for the attached C atom. |
x | y | z | Uiso*/Ueq | ||
Te1 | 0.49841 (2) | 0.50998 (2) | 0.85722 (2) | 0.01013 (2) | |
Te2 | 0.50106 (2) | 0.49957 (2) | 0.63430 (2) | 0.00816 (2) | |
N1 | 0.4741 (2) | 0.75856 (14) | 0.79682 (9) | 0.0131 (3) | |
N2 | 0.4700 (2) | 0.75553 (14) | 0.63202 (9) | 0.0113 (2) | |
N3 | 0.8440 (2) | 0.35839 (14) | 0.83665 (9) | 0.0103 (2) | |
N4 | 0.8595 (2) | 0.37038 (14) | 0.66970 (9) | 0.0104 (2) | |
C1 | 0.4830 (2) | 0.65832 (15) | 0.76698 (10) | 0.0098 (3) | |
C2 | 0.4806 (2) | 0.65701 (15) | 0.68373 (10) | 0.0090 (2) | |
C3 | 0.4596 (3) | 0.85524 (16) | 0.66225 (11) | 0.0131 (3) | |
H3 | 0.450785 | 0.926470 | 0.626760 | 0.016* | |
C4 | 0.4615 (3) | 0.85661 (17) | 0.74470 (11) | 0.0139 (3) | |
H4 | 0.453565 | 0.928841 | 0.764348 | 0.017* | |
C5 | 0.7087 (2) | 0.41601 (15) | 0.79341 (10) | 0.0086 (2) | |
C6 | 0.7142 (2) | 0.41927 (15) | 0.70924 (10) | 0.0084 (2) | |
C7 | 0.9955 (2) | 0.31457 (16) | 0.71338 (11) | 0.0118 (3) | |
H7 | 1.100495 | 0.280085 | 0.687036 | 0.014* | |
C8 | 0.9850 (2) | 0.30641 (17) | 0.79687 (11) | 0.0118 (3) | |
H8 | 1.080803 | 0.262596 | 0.826477 | 0.014* | |
Te3 | 0.02141 (2) | 0.96211 (2) | 0.37609 (2) | 0.00927 (2) | |
Te4 | 0.45479 (2) | 0.80313 (2) | 0.45840 (2) | 0.00845 (2) | |
N5 | −0.1035 (2) | 0.76067 (14) | 0.47346 (9) | 0.0109 (2) | |
N6 | 0.2130 (2) | 0.64559 (13) | 0.53966 (9) | 0.0094 (2) | |
N7 | 0.2250 (2) | 0.92573 (13) | 0.22221 (8) | 0.0094 (2) | |
N8 | 0.5463 (2) | 0.81350 (15) | 0.28562 (9) | 0.0116 (2) | |
C9 | 0.0482 (2) | 0.80356 (15) | 0.45639 (10) | 0.0087 (2) | |
C10 | 0.2078 (2) | 0.74554 (15) | 0.48943 (9) | 0.0084 (2) | |
C11 | 0.0613 (2) | 0.60249 (16) | 0.55555 (10) | 0.0111 (3) | |
H11 | 0.061189 | 0.531090 | 0.590301 | 0.013* | |
C12 | −0.0961 (2) | 0.65951 (17) | 0.52251 (11) | 0.0120 (3) | |
H12 | −0.201159 | 0.625984 | 0.534990 | 0.014* | |
C13 | 0.2442 (2) | 0.90429 (15) | 0.30184 (10) | 0.0085 (2) | |
C14 | 0.4045 (2) | 0.84565 (15) | 0.33377 (10) | 0.0088 (2) | |
C15 | 0.5256 (2) | 0.83823 (18) | 0.20617 (11) | 0.0134 (3) | |
H15 | 0.623674 | 0.818218 | 0.170301 | 0.016* | |
C16 | 0.3656 (2) | 0.89205 (16) | 0.17491 (10) | 0.0111 (3) | |
H16 | 0.355508 | 0.905375 | 0.118238 | 0.013* | |
Te5 | 0.92057 (2) | 0.34134 (2) | 0.00428 (2) | 0.00896 (2) | |
Te6 | 0.93205 (2) | 0.03850 (2) | 0.12002 (2) | 0.00860 (2) | |
N9 | 0.9987 (2) | 0.38464 (15) | 0.16384 (9) | 0.0133 (3) | |
N10 | 1.0234 (2) | 0.16105 (14) | 0.24945 (9) | 0.0118 (2) | |
N11 | 0.5643 (2) | 0.29991 (14) | −0.02659 (9) | 0.0100 (2) | |
N12 | 0.5688 (2) | 0.08150 (14) | 0.06426 (9) | 0.0105 (2) | |
C17 | 0.9704 (2) | 0.29510 (15) | 0.12895 (10) | 0.0094 (3) | |
C18 | 0.9813 (2) | 0.18233 (15) | 0.17227 (10) | 0.0092 (2) | |
C19 | 1.0551 (3) | 0.25069 (17) | 0.28327 (11) | 0.0143 (3) | |
H19 | 1.087619 | 0.237944 | 0.337674 | 0.017* | |
C20 | 1.0417 (3) | 0.36185 (18) | 0.24084 (11) | 0.0155 (3) | |
H20 | 1.063593 | 0.423560 | 0.267200 | 0.019* | |
C21 | 0.7081 (2) | 0.24611 (15) | 0.01189 (10) | 0.0084 (2) | |
C22 | 0.7113 (2) | 0.13526 (15) | 0.05717 (10) | 0.0085 (2) | |
C23 | 0.4234 (2) | 0.13848 (17) | 0.02780 (11) | 0.0117 (3) | |
H23 | 0.318870 | 0.103801 | 0.033307 | 0.014* | |
C24 | 0.4216 (2) | 0.24684 (17) | −0.01780 (11) | 0.0115 (3) | |
H24 | 0.316408 | 0.284193 | −0.043376 | 0.014* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Te1 | 0.01103 (4) | 0.00946 (4) | 0.00761 (4) | 0.00239 (3) | 0.00198 (3) | 0.00057 (3) |
Te2 | 0.00895 (4) | 0.00699 (4) | 0.00847 (4) | −0.00041 (3) | −0.00201 (3) | −0.00098 (3) |
N1 | 0.0182 (7) | 0.0093 (6) | 0.0112 (6) | −0.0003 (5) | 0.0013 (5) | −0.0026 (5) |
N2 | 0.0145 (6) | 0.0085 (6) | 0.0105 (5) | −0.0016 (5) | −0.0021 (5) | 0.0004 (4) |
N3 | 0.0089 (5) | 0.0111 (6) | 0.0099 (5) | 0.0000 (5) | −0.0007 (4) | −0.0002 (5) |
N4 | 0.0096 (6) | 0.0105 (6) | 0.0112 (5) | −0.0001 (5) | −0.0001 (4) | −0.0036 (5) |
C1 | 0.0107 (6) | 0.0087 (6) | 0.0089 (6) | 0.0004 (5) | 0.0004 (5) | −0.0005 (5) |
C2 | 0.0096 (6) | 0.0075 (6) | 0.0094 (6) | −0.0007 (5) | −0.0006 (5) | 0.0000 (5) |
C3 | 0.0173 (8) | 0.0082 (7) | 0.0133 (7) | −0.0022 (6) | −0.0014 (6) | 0.0003 (5) |
C4 | 0.0188 (8) | 0.0092 (7) | 0.0136 (7) | −0.0013 (6) | 0.0008 (6) | −0.0026 (5) |
C5 | 0.0081 (6) | 0.0078 (6) | 0.0093 (6) | −0.0006 (5) | 0.0001 (5) | −0.0002 (5) |
C6 | 0.0086 (6) | 0.0071 (6) | 0.0094 (6) | −0.0008 (5) | −0.0010 (5) | −0.0014 (5) |
C7 | 0.0100 (6) | 0.0122 (7) | 0.0130 (6) | 0.0000 (5) | −0.0003 (5) | −0.0034 (5) |
C8 | 0.0090 (6) | 0.0128 (7) | 0.0126 (6) | 0.0013 (5) | −0.0012 (5) | −0.0009 (5) |
Te3 | 0.00845 (4) | 0.00910 (4) | 0.00846 (4) | 0.00204 (3) | 0.00024 (3) | 0.00044 (3) |
Te4 | 0.00689 (4) | 0.00985 (4) | 0.00835 (4) | −0.00251 (3) | −0.00212 (3) | 0.00166 (3) |
N5 | 0.0080 (5) | 0.0141 (6) | 0.0107 (5) | −0.0020 (5) | 0.0006 (4) | −0.0018 (5) |
N6 | 0.0103 (6) | 0.0087 (6) | 0.0089 (5) | −0.0019 (5) | −0.0009 (4) | 0.0003 (4) |
N7 | 0.0099 (6) | 0.0096 (6) | 0.0083 (5) | −0.0003 (5) | −0.0007 (4) | −0.0009 (4) |
N8 | 0.0082 (6) | 0.0145 (7) | 0.0113 (6) | −0.0006 (5) | 0.0000 (4) | −0.0011 (5) |
C9 | 0.0078 (6) | 0.0099 (6) | 0.0080 (5) | −0.0007 (5) | −0.0003 (4) | −0.0008 (5) |
C10 | 0.0081 (6) | 0.0089 (6) | 0.0081 (5) | −0.0019 (5) | −0.0005 (5) | −0.0004 (5) |
C11 | 0.0126 (7) | 0.0110 (7) | 0.0099 (6) | −0.0042 (6) | 0.0010 (5) | 0.0001 (5) |
C12 | 0.0099 (6) | 0.0139 (7) | 0.0127 (6) | −0.0042 (6) | 0.0006 (5) | −0.0015 (6) |
C13 | 0.0088 (6) | 0.0082 (6) | 0.0082 (5) | −0.0008 (5) | −0.0001 (5) | −0.0006 (5) |
C14 | 0.0077 (6) | 0.0089 (6) | 0.0094 (6) | −0.0018 (5) | −0.0007 (5) | 0.0001 (5) |
C15 | 0.0097 (7) | 0.0182 (8) | 0.0112 (6) | 0.0002 (6) | 0.0017 (5) | −0.0019 (6) |
C16 | 0.0109 (7) | 0.0130 (7) | 0.0090 (6) | −0.0010 (5) | −0.0001 (5) | −0.0011 (5) |
Te5 | 0.00776 (4) | 0.01048 (5) | 0.00853 (4) | −0.00312 (3) | −0.00108 (3) | 0.00122 (3) |
Te6 | 0.00945 (4) | 0.00712 (4) | 0.00926 (4) | −0.00022 (3) | −0.00264 (3) | −0.00145 (3) |
N9 | 0.0172 (7) | 0.0121 (7) | 0.0120 (6) | −0.0066 (5) | −0.0009 (5) | −0.0015 (5) |
N10 | 0.0157 (7) | 0.0108 (6) | 0.0091 (5) | −0.0012 (5) | −0.0026 (5) | −0.0022 (5) |
N11 | 0.0072 (5) | 0.0115 (6) | 0.0106 (5) | 0.0000 (5) | −0.0007 (4) | −0.0004 (5) |
N12 | 0.0103 (6) | 0.0116 (6) | 0.0103 (5) | −0.0034 (5) | −0.0002 (4) | −0.0023 (5) |
C17 | 0.0091 (6) | 0.0108 (7) | 0.0086 (6) | −0.0028 (5) | −0.0009 (5) | −0.0008 (5) |
C18 | 0.0097 (6) | 0.0090 (6) | 0.0091 (6) | −0.0013 (5) | −0.0011 (5) | −0.0019 (5) |
C19 | 0.0207 (8) | 0.0139 (8) | 0.0096 (6) | −0.0043 (6) | −0.0030 (6) | −0.0028 (6) |
C20 | 0.0216 (9) | 0.0142 (8) | 0.0133 (7) | −0.0083 (7) | −0.0019 (6) | −0.0040 (6) |
C21 | 0.0067 (6) | 0.0098 (6) | 0.0086 (6) | −0.0010 (5) | −0.0006 (4) | −0.0010 (5) |
C22 | 0.0086 (6) | 0.0087 (6) | 0.0082 (6) | −0.0009 (5) | −0.0011 (5) | −0.0020 (5) |
C23 | 0.0090 (6) | 0.0140 (7) | 0.0130 (6) | −0.0036 (5) | −0.0003 (5) | −0.0029 (6) |
C24 | 0.0072 (6) | 0.0144 (7) | 0.0124 (6) | −0.0005 (5) | −0.0011 (5) | −0.0016 (5) |
Te1—C5 | 2.1185 (17) | N8—C15 | 1.341 (2) |
Te1—C1 | 2.1301 (17) | N8—C14 | 1.345 (2) |
Te2—C2 | 2.1237 (17) | C9—C10 | 1.405 (2) |
Te2—C6 | 2.1381 (17) | C11—C12 | 1.388 (3) |
N1—C4 | 1.336 (3) | C11—H11 | 0.9500 |
N1—C1 | 1.342 (2) | C12—H12 | 0.9500 |
N2—C2 | 1.337 (2) | C13—C14 | 1.405 (2) |
N2—C3 | 1.338 (2) | C15—C16 | 1.383 (3) |
N3—C8 | 1.337 (2) | C15—H15 | 0.9500 |
N3—C5 | 1.338 (2) | C16—H16 | 0.9500 |
N4—C7 | 1.339 (2) | Te5—C21 | 2.1105 (16) |
N4—C6 | 1.345 (2) | Te5—C17 | 2.1332 (16) |
C1—C2 | 1.406 (2) | Te6—C18 | 2.1209 (17) |
C3—C4 | 1.392 (3) | Te6—C22 | 2.1281 (17) |
C3—H3 | 0.9500 | N9—C17 | 1.337 (2) |
C4—H4 | 0.9500 | N9—C20 | 1.337 (3) |
C5—C6 | 1.410 (2) | N10—C19 | 1.336 (2) |
C7—C8 | 1.392 (3) | N10—C18 | 1.338 (2) |
C7—H7 | 0.9500 | N11—C21 | 1.334 (2) |
C8—H8 | 0.9500 | N11—C24 | 1.335 (2) |
Te3—C13 | 2.1211 (17) | N12—C23 | 1.338 (2) |
Te3—C9 | 2.1248 (17) | N12—C22 | 1.339 (2) |
Te4—C10 | 2.1180 (16) | C17—C18 | 1.409 (2) |
Te4—C14 | 2.1302 (16) | C19—C20 | 1.386 (3) |
N5—C9 | 1.338 (2) | C19—H19 | 0.9500 |
N5—C12 | 1.340 (2) | C20—H20 | 0.9500 |
N6—C11 | 1.337 (2) | C21—C22 | 1.408 (2) |
N6—C10 | 1.339 (2) | C23—C24 | 1.386 (3) |
N7—C16 | 1.334 (2) | C23—H23 | 0.9500 |
N7—C13 | 1.340 (2) | C24—H24 | 0.9500 |
C5—Te1—C1 | 92.54 (6) | N5—C12—C11 | 121.60 (16) |
C2—Te2—C6 | 91.48 (6) | N5—C12—H12 | 119.2 |
C4—N1—C1 | 117.64 (16) | C11—C12—H12 | 119.2 |
C2—N2—C3 | 117.78 (15) | N7—C13—C14 | 121.05 (15) |
C8—N3—C5 | 117.52 (15) | N7—C13—Te3 | 116.77 (12) |
C7—N4—C6 | 117.69 (15) | C14—C13—Te3 | 122.17 (12) |
N1—C1—C2 | 120.90 (16) | N8—C14—C13 | 121.25 (15) |
N1—C1—Te1 | 113.35 (12) | N8—C14—Te4 | 113.13 (12) |
C2—C1—Te1 | 125.74 (13) | C13—C14—Te4 | 125.59 (12) |
N2—C2—C1 | 120.98 (16) | N8—C15—C16 | 121.90 (16) |
N2—C2—Te2 | 117.13 (12) | N8—C15—H15 | 119.0 |
C1—C2—Te2 | 121.87 (12) | C16—C15—H15 | 119.0 |
N2—C3—C4 | 121.26 (17) | N7—C16—C15 | 121.76 (16) |
N2—C3—H3 | 119.4 | N7—C16—H16 | 119.1 |
C4—C3—H3 | 119.4 | C15—C16—H16 | 119.1 |
N1—C4—C3 | 121.43 (17) | C21—Te5—C17 | 93.44 (6) |
N1—C4—H4 | 119.3 | C18—Te6—C22 | 93.72 (6) |
C3—C4—H4 | 119.3 | C17—N9—C20 | 117.07 (16) |
N3—C5—C6 | 120.83 (15) | C19—N10—C18 | 117.32 (16) |
N3—C5—Te1 | 116.33 (12) | C21—N11—C24 | 117.52 (16) |
C6—C5—Te1 | 122.70 (12) | C23—N12—C22 | 117.19 (16) |
N4—C6—C5 | 120.95 (15) | N9—C17—C18 | 121.22 (15) |
N4—C6—Te2 | 114.60 (12) | N9—C17—Te5 | 113.16 (12) |
C5—C6—Te2 | 124.45 (12) | C18—C17—Te5 | 125.57 (12) |
N4—C7—C8 | 120.88 (16) | N10—C18—C17 | 120.98 (15) |
N4—C7—H7 | 119.6 | N10—C18—Te6 | 116.55 (12) |
C8—C7—H7 | 119.6 | C17—C18—Te6 | 122.48 (12) |
N3—C8—C7 | 121.98 (17) | N10—C19—C20 | 121.55 (17) |
N3—C8—H8 | 119.0 | N10—C19—H19 | 119.2 |
C7—C8—H8 | 119.0 | C20—C19—H19 | 119.2 |
C13—Te3—C9 | 93.30 (6) | N9—C20—C19 | 121.84 (17) |
C10—Te4—C14 | 93.80 (6) | N9—C20—H20 | 119.1 |
C9—N5—C12 | 117.13 (16) | C19—C20—H20 | 119.1 |
C11—N6—C10 | 117.26 (15) | N11—C21—C22 | 121.09 (15) |
C16—N7—C13 | 117.26 (15) | N11—C21—Te5 | 115.58 (12) |
C15—N8—C14 | 116.70 (16) | C22—C21—Te5 | 123.27 (12) |
N5—C9—C10 | 121.28 (16) | N12—C22—C21 | 120.99 (15) |
N5—C9—Te3 | 113.77 (12) | N12—C22—Te6 | 113.90 (12) |
C10—C9—Te3 | 124.94 (12) | C21—C22—Te6 | 125.11 (12) |
N6—C10—C9 | 121.09 (15) | N12—C23—C24 | 121.65 (16) |
N6—C10—Te4 | 115.90 (12) | N12—C23—H23 | 119.2 |
C9—C10—Te4 | 122.91 (12) | C24—C23—H23 | 119.2 |
N6—C11—C12 | 121.62 (16) | N11—C24—C23 | 121.50 (16) |
N6—C11—H11 | 119.2 | N11—C24—H24 | 119.3 |
C12—C11—H11 | 119.2 | C23—C24—H24 | 119.3 |
C4—N1—C1—C2 | 0.5 (3) | C16—N7—C13—C14 | −1.8 (2) |
C4—N1—C1—Te1 | −179.04 (14) | C16—N7—C13—Te3 | 178.54 (13) |
C3—N2—C2—C1 | −0.8 (3) | C15—N8—C14—C13 | −1.2 (3) |
C3—N2—C2—Te2 | −179.06 (13) | C15—N8—C14—Te4 | −179.44 (14) |
N1—C1—C2—N2 | 0.2 (3) | N7—C13—C14—N8 | 2.9 (3) |
Te1—C1—C2—N2 | 179.73 (13) | Te3—C13—C14—N8 | −177.51 (13) |
N1—C1—C2—Te2 | 178.42 (13) | N7—C13—C14—Te4 | −179.14 (12) |
Te1—C1—C2—Te2 | −2.1 (2) | Te3—C13—C14—Te4 | 0.5 (2) |
C2—N2—C3—C4 | 0.6 (3) | C14—N8—C15—C16 | −1.3 (3) |
C1—N1—C4—C3 | −0.7 (3) | C13—N7—C16—C15 | −0.7 (3) |
N2—C3—C4—N1 | 0.2 (3) | N8—C15—C16—N7 | 2.3 (3) |
C8—N3—C5—C6 | 1.3 (2) | C20—N9—C17—C18 | 1.5 (3) |
C8—N3—C5—Te1 | −174.55 (13) | C20—N9—C17—Te5 | −176.06 (14) |
C7—N4—C6—C5 | 2.7 (2) | C19—N10—C18—C17 | −0.2 (3) |
C7—N4—C6—Te2 | −177.44 (13) | C19—N10—C18—Te6 | 179.91 (14) |
N3—C5—C6—N4 | −3.9 (3) | N9—C17—C18—N10 | −1.2 (3) |
Te1—C5—C6—N4 | 171.65 (12) | Te5—C17—C18—N10 | 176.06 (13) |
N3—C5—C6—Te2 | 176.25 (12) | N9—C17—C18—Te6 | 178.68 (13) |
Te1—C5—C6—Te2 | −8.2 (2) | Te5—C17—C18—Te6 | −4.1 (2) |
C6—N4—C7—C8 | 0.8 (3) | C18—N10—C19—C20 | 1.2 (3) |
C5—N3—C8—C7 | 2.3 (3) | C17—N9—C20—C19 | −0.5 (3) |
N4—C7—C8—N3 | −3.5 (3) | N10—C19—C20—N9 | −0.9 (3) |
C12—N5—C9—C10 | −0.8 (2) | C24—N11—C21—C22 | 2.7 (2) |
C12—N5—C9—Te3 | 178.70 (13) | C24—N11—C21—Te5 | −174.54 (13) |
C11—N6—C10—C9 | 1.4 (2) | C23—N12—C22—C21 | −1.2 (2) |
C11—N6—C10—Te4 | −175.06 (12) | C23—N12—C22—Te6 | 178.49 (12) |
N5—C9—C10—N6 | −0.5 (3) | N11—C21—C22—N12 | −1.3 (2) |
Te3—C9—C10—N6 | −179.93 (12) | Te5—C21—C22—N12 | 175.69 (12) |
N5—C9—C10—Te4 | 175.68 (12) | N11—C21—C22—Te6 | 179.06 (12) |
Te3—C9—C10—Te4 | −3.8 (2) | Te5—C21—C22—Te6 | −3.9 (2) |
C10—N6—C11—C12 | −1.0 (3) | C22—N12—C23—C24 | 2.2 (3) |
C9—N5—C12—C11 | 1.2 (3) | C21—N11—C24—C23 | −1.7 (3) |
N6—C11—C12—N5 | −0.3 (3) | N12—C23—C24—N11 | −0.8 (3) |
Acknowledgements
We are grateful to the Department of Chemistry, University of Louisiana at Lafayette for material support of this work.
Funding information
Funding for this research was provided by: Louisiana Board of Regents (grant No. LEQSF(2011-12)-ENH-TR-01).
References
Ali, A. M. M., Ramazanova, P. A., Abakarov, G. M., Tarakanova, A. V. & Anisimov, A. V. (2016). CSD Communication (CCDC 1506868). CCDC, Cambridge, England. Google Scholar
Bruker (2016). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cozzolino, A. F., Yang, Q. & Vargas-Baca, I. (2010). Cryst. Growth Des. 10, 959–4964. CrossRef Google Scholar
Dereu, N. L. M., Zingaro, R. A. & Meyers, E. A. (1981). Cryst. Struct. Commun. 10, 1359–1364. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Ho, P. C., Rafique, J., Lee, J., Lee, L. M., Jenkins, H. A., Britten, J. F., Braga, A. L. & Vargas-Baca, I. (2017). Dalton Trans. 46, 6570–6579. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ho, P. C., Szydlowski, P., Sinclair, J., Elder, P. J. W., Kübel, J., Gendy, C., Lee, L. M., Jenkins, H., Britten, J. F., Morim, D. R. & Vargas-Baca, I. (2016). Nat. Commun. 7, 11299. Web of Science CSD CrossRef PubMed Google Scholar
Junk, T., Irgolic, K. J., Reibenspies, J. H. & Meyers, E. A. (1993). Acta Cryst. C49, 938–940. CrossRef CAS IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kremer, A., Aurisicchio, C., De Leo, F., Ventura, B., Wouters, J., Armaroli, N., Barbieri, A. & Bonifazi, D. (2015). Chem. Eur. J. 21, 15377–15387. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kremer, A., Fermi, A., Biot, N., Wouters, J. & Bonifazi, D. (2016). Chem. Eur. J. 22, 5665–5675. CrossRef CAS PubMed Google Scholar
Lynch, V. M., Simonsen, S. H., Davis, B. E., Martin, G. E., Musmar, M. J., Lam, W. W. & Smith, K. (1994). Acta Cryst. C50, 1470–1472. CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Meyers, E. A., Irgolic, K. J., Zingaro, R. A., Junk, T., Chakravorty, R., Dereu, N. L. M., French, K. & Pappalardo, G. C. (1988). Phosphorus Sulfur Relat. Elem. 38, 257–269. CrossRef Google Scholar
Myers, J. P., Fronczek, F. R. & Junk, T. (2016). Acta Cryst. C72, 1–5. CrossRef IUCr Journals Google Scholar
Parsons, S., Gould, B., Cooper, R. & Farrugia, L. (2003). ROTAX. University of Edinburgh, Scotland. Google Scholar
Sanford, G., Walker, K. E., Fronczek, F. R. & Junk, T. (2017). J. Heterocycl. Chem. 54, 575–579. CrossRef CAS Google Scholar
Semenov, N. A., Pushkarevsky, N. A., Beckmann, J., Finke, P., Lork, E., Mews, R., Bagryanskaya, I. Y., Gatilov, Y. V., Konchenko, S. N., Vasiliev, V. G. & Zibarev, A. V. (2012). Eur. J. Inorg. Chem. pp. 3693–3703. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, M. R., Mangion, M. M., Zingaro, R. A. & Meyers, E. A. (1973). Heteroatom Chem., 10, 527–531. CrossRef CAS Google Scholar
Smith, D. S., Alexis, D. N., Fronczek, F. R. & Junk, T. (2020). Heteroatom Chem., article ID 1765950. Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.