organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,6-Di­bromo-4-methyl­aniline

crossmark logo

aLaboratoire de Cristallographie, Département de Physique, Université Frères Mentouri-Constantine 1, 25000 Constantine, Algeria, bLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine 1, 25000 Constantine, Algeria, cUnité de Recherche de Chimie de l'envirenement et Moléculaire Structurale (CHEMS), Département de Chimie, Faculté des Sciences Exactes, Université de Constantine 1, 25000 Constantine, Algeria, dLaboratoire de Physicochimie Analytique et de Cristallochimie de Matériaux Organo-métalique et Biomoléculaire, 25000 Constantine, Algeria, and eInstitut Jean Lamour UMR, 7198 Parc de Saurup CS 14234, F 54042 Nancy, France
*Correspondence e-mail: ouardabrihi@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 12 January 2022; accepted 28 May 2022; online 7 June 2022)

In the title compound, C7H7Br2N, the C—C—C bond angles of the benzene ring are notably distorted and two short intamolecular N—H⋯Br contacts occur. In the crystal, the mol­ecules are linked by N—H⋯N hydrogen bonds to generate C(2) chains propagating in the [100] direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The solid-state structure of the title compound, C7H7Br2N, was established by single-crystal X-ray diffraction analysis at 200 K and the mol­ecular structure is illustrated in Fig. 1[link]. The bromine atoms are slightly displaced from the mean plane of C1–C4/C6/C7 benzene ring, by 0.032 (1) and 0.065 (1) Å for Br1 and Br2, respectively. This can also be qu­anti­fied by the C4—C3—C2—Br1 and C4—C6—C7—Br2 torsion angles, which are 179.7 (3) and −178.5 (3)°, respectively. The bond angles in the benzene ring are notably distorted from the ideal value of 120° with C7—C1—C2 = 115.1 (4), C1—C2—C3 = 122.8 (4) and C1—C7—C6 = 123.0 (4)°. The amine group lying between the bromine atoms results in two short intra­molecular N—H⋯Br contacts (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1 0.86 2.65 3.077 (4) 112
N1—H1B⋯Br2 0.86 2.64 3.072 (4) 113
N1—H1B⋯N1i 0.86 2.38 3.120 (7) 144
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing displacement ellipsoids at the 50% probability level.

In the crystal, the mol­ecules are linked by weak N1—H1B⋯N1 hydrogen bonds (Table 1[link]) with N⋯N = 3.120 (7) Å to generate [100] C(2) chains with adjacent mol­ecules related by the 21 screw axis. A similar hydrogen bond was observed in di­amino­mesithylene (Brihi et al., 2016[Brihi, O., Hamdouni, N., Boulcina, R., Medjani, M., Meinnel, J. & Boudjada, A. (2016). IUCrData, 1, x160351.]). The packing is illustrated in Fig. 2[link], which shows the topology of the chain is a zigzag, with an angle of inclination of the benzene ring to the a axis of 53.73 (14)°.

[Figure 2]
Figure 2
Views along the (a) b and (b) c axes of the crystal packing of the title compound with hydrogen bonds shown as dotted lines.

Synthesis and crystallization

The title compound is commercially available (Lancaster Synthesis). It was purified by recrystallization from a solution of 80% ethanol and 20% distilled water. The colorless single crystals obtained are in the form of needles, which grow along the a axis.

Refinement

Crystal data, data collection and structure refinement details of the compound are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C7H7Br2N
Mr 264.96
Crystal system, space group Orthorhombic, P212121
Temperature (K) 200
a, b, c (Å) 4.3773 (7), 13.585 (2), 14.057 (3)
V3) 835.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 9.62
Crystal size (mm) 0.12 × 0.05 × 0.04
 
Data collection
Diffractometer Bruker APEXII QUAZAR CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.396, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 7550, 1715, 1422
Rint 0.061
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.072, 0.91
No. of reflections 1715
No. of parameters 92
H-atom treatment H-atom parameters not refined
Δρmax, Δρmin (e Å−3) 0.36, −0.38
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter 0.02 (2)
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

2,6-Dibromo-4-methylaniline top
Crystal data top
C7H7Br2NF(000) = 504
Mr = 264.96Dx = 2.105 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7750 reflections
a = 4.3773 (7) Åθ = 2.1–26.4°
b = 13.585 (2) ŵ = 9.62 mm1
c = 14.057 (3) ÅT = 200 K
V = 835.9 (2) Å3Needle, colorless
Z = 40.12 × 0.05 × 0.04 mm
Data collection top
Bruker APEXII QUAZAR CCD
diffractometer
1715 independent reflections
Radiation source: ImuS1422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 8.02 pixels mm-1θmax = 26.4°, θmin = 2.1°
f\ and ω scansh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1516
Tmin = 0.396, Tmax = 0.746l = 1717
7550 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters not refined
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0409P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max = 0.001
1715 reflectionsΔρmax = 0.36 e Å3
92 parametersΔρmin = 0.38 e Å3
0 restraintsAbsolute structure: Flack (1983)
0 constraintsAbsolute structure parameter: 0.02 (2)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.69454 (12)0.51851 (3)0.40790 (4)0.0449 (2)
Br20.49325 (11)0.11063 (3)0.35184 (3)0.0374 (2)
N10.4343 (8)0.3124 (3)0.4488 (2)0.0340 (14)
C10.6072 (9)0.3165 (3)0.3674 (3)0.0255 (14)
C20.7481 (9)0.4015 (3)0.3360 (3)0.0277 (14)
C30.9295 (10)0.4045 (3)0.2553 (3)0.0323 (17)
C40.9781 (10)0.3217 (3)0.2004 (3)0.0313 (14)
C51.1658 (11)0.3259 (3)0.1108 (3)0.0447 (17)
C60.8409 (10)0.2336 (3)0.2315 (3)0.0317 (14)
C70.6636 (10)0.2322 (3)0.3118 (3)0.0280 (12)
H11.337550.282380.116540.0669*
H1A0.409570.364430.482840.0407*
H1B0.350640.257900.465760.0407*
H21.020800.463610.237800.0388*
H30.870950.175850.197220.0378*
H41.236990.391940.100900.0669*
H51.042400.306030.057650.0669*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0576 (3)0.0274 (2)0.0497 (3)0.0005 (2)0.0057 (3)0.0016 (2)
Br20.0373 (3)0.0279 (2)0.0471 (3)0.0053 (2)0.0027 (3)0.0002 (2)
N10.038 (3)0.031 (2)0.033 (2)0.0013 (18)0.0070 (18)0.0005 (17)
C10.0174 (19)0.028 (2)0.031 (3)0.0015 (17)0.0052 (19)0.007 (2)
C20.023 (2)0.027 (2)0.033 (3)0.0023 (18)0.0039 (19)0.0002 (19)
C30.027 (3)0.029 (3)0.041 (3)0.0011 (19)0.001 (2)0.006 (2)
C40.021 (2)0.041 (3)0.032 (2)0.005 (2)0.000 (2)0.007 (2)
C50.036 (3)0.057 (3)0.041 (3)0.009 (3)0.005 (3)0.008 (3)
C60.030 (2)0.038 (3)0.027 (2)0.004 (2)0.004 (2)0.002 (2)
C70.024 (2)0.028 (2)0.032 (2)0.001 (2)0.006 (2)0.0010 (19)
Geometric parameters (Å, º) top
Br1—C21.898 (4)C4—C51.505 (6)
Br2—C71.898 (4)C4—C61.409 (6)
N1—C11.373 (5)C6—C71.370 (6)
N1—H1A0.8600C3—H20.9300
N1—H1B0.8600C5—H10.9600
C1—C71.408 (6)C5—H40.9600
C1—C21.382 (6)C5—H50.9600
C2—C31.385 (6)C6—H30.9300
C3—C41.381 (6)
C1—N1—H1B120.00Br2—C7—C1118.3 (3)
H1A—N1—H1B120.00Br2—C7—C6118.6 (3)
C1—N1—H1A120.00C1—C7—C6123.0 (4)
C2—C1—C7115.1 (4)C2—C3—H2119.00
N1—C1—C7121.8 (4)C4—C3—H2119.00
N1—C1—C2123.1 (4)C4—C5—H1110.00
Br1—C2—C1118.3 (3)C4—C5—H4110.00
Br1—C2—C3118.8 (3)C4—C5—H5109.00
C1—C2—C3122.8 (4)H1—C5—H4109.00
C2—C3—C4121.5 (4)H1—C5—H5109.00
C5—C4—C6121.7 (4)H4—C5—H5109.00
C3—C4—C5121.4 (4)C4—C6—H3120.00
C3—C4—C6116.9 (4)C7—C6—H3120.00
C4—C6—C7120.6 (4)
N1—C1—C2—Br11.0 (5)Br1—C2—C3—C4179.7 (3)
N1—C1—C2—C3178.1 (4)C1—C2—C3—C40.6 (7)
C7—C1—C2—Br1178.5 (3)C2—C3—C4—C5177.7 (4)
C7—C1—C2—C30.6 (6)C2—C3—C4—C61.5 (6)
N1—C1—C7—Br20.1 (6)C3—C4—C6—C71.2 (6)
N1—C1—C7—C6178.5 (4)C5—C4—C6—C7178.1 (4)
C2—C1—C7—Br2177.6 (3)C4—C6—C7—Br2178.5 (3)
C2—C1—C7—C61.0 (6)C4—C6—C7—C10.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br10.862.653.077 (4)112
N1—H1B···Br20.862.643.072 (4)113
N1—H1B···N1i0.862.383.120 (7)144
Symmetry code: (i) x1/2, y+1/2, z+1.
 

Acknowledgements

This work was supported by the Laboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, Algérie and Institut Jean Lamour UMR 7198, Parc de Saurupt, CS 14234 F 54042 Nancy, France.

References

First citationBrihi, O., Hamdouni, N., Boulcina, R., Medjani, M., Meinnel, J. & Boudjada, A. (2016). IUCrData, 1, x160351.  Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds