organic compounds
2,6-Dibromo-4-methylaniline
aLaboratoire de Cristallographie, Département de Physique, Université Frères Mentouri-Constantine 1, 25000 Constantine, Algeria, bLaboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine 1, 25000 Constantine, Algeria, cUnité de Recherche de Chimie de l'envirenement et Moléculaire Structurale (CHEMS), Département de Chimie, Faculté des Sciences Exactes, Université de Constantine 1, 25000 Constantine, Algeria, dLaboratoire de Physicochimie Analytique et de Cristallochimie de Matériaux Organo-métalique et Biomoléculaire, 25000 Constantine, Algeria, and eInstitut Jean Lamour UMR, 7198 Parc de Saurup CS 14234, F 54042 Nancy, France
*Correspondence e-mail: ouardabrihi@yahoo.fr
In the title compound, C7H7Br2N, the C—C—C bond angles of the benzene ring are notably distorted and two short intamolecular N—H⋯Br contacts occur. In the crystal, the molecules are linked by N—H⋯N hydrogen bonds to generate C(2) chains propagating in the [100] direction.
Keywords: aniline; crystal structure; N—H⋯N hydrogen bonds.
CCDC reference: 2175519
Structure description
The solid-state structure of the title compound, C7H7Br2N, was established by single-crystal X-ray at 200 K and the molecular structure is illustrated in Fig. 1. The bromine atoms are slightly displaced from the mean plane of C1–C4/C6/C7 benzene ring, by 0.032 (1) and 0.065 (1) Å for Br1 and Br2, respectively. This can also be quantified by the C4—C3—C2—Br1 and C4—C6—C7—Br2 torsion angles, which are 179.7 (3) and −178.5 (3)°, respectively. The bond angles in the benzene ring are notably distorted from the ideal value of 120° with C7—C1—C2 = 115.1 (4), C1—C2—C3 = 122.8 (4) and C1—C7—C6 = 123.0 (4)°. The amine group lying between the bromine atoms results in two short intramolecular N—H⋯Br contacts (Table 1).
|
In the crystal, the molecules are linked by weak N1—H1B⋯N1 hydrogen bonds (Table 1) with N⋯N = 3.120 (7) Å to generate [100] C(2) chains with adjacent molecules related by the 21 screw axis. A similar hydrogen bond was observed in diaminomesithylene (Brihi et al., 2016). The packing is illustrated in Fig. 2, which shows the topology of the chain is a zigzag, with an angle of inclination of the benzene ring to the a axis of 53.73 (14)°.
Synthesis and crystallization
The title compound is commercially available (Lancaster Synthesis). It was purified by recrystallization from a solution of 80% ethanol and 20% distilled water. The colorless single crystals obtained are in the form of needles, which grow along the a axis.
Refinement
Crystal data, data collection and structure .
details of the compound are summarized in Table 2Structural data
CCDC reference: 2175519
https://doi.org/10.1107/S2414314622005776/hb4398sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622005776/hb4398Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314622005776/hb4398Isup3.cml
Data collection: APEX2 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).C7H7Br2N | F(000) = 504 |
Mr = 264.96 | Dx = 2.105 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 7750 reflections |
a = 4.3773 (7) Å | θ = 2.1–26.4° |
b = 13.585 (2) Å | µ = 9.62 mm−1 |
c = 14.057 (3) Å | T = 200 K |
V = 835.9 (2) Å3 | Needle, colorless |
Z = 4 | 0.12 × 0.05 × 0.04 mm |
Bruker APEXII QUAZAR CCD diffractometer | 1715 independent reflections |
Radiation source: ImuS | 1422 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
Detector resolution: 8.02 pixels mm-1 | θmax = 26.4°, θmin = 2.1° |
f\ and ω scans | h = −5→5 |
Absorption correction: multi-scan (SADABS; Bruker, 2016) | k = −15→16 |
Tmin = 0.396, Tmax = 0.746 | l = −17→17 |
7550 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters not refined |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.0409P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.91 | (Δ/σ)max = 0.001 |
1715 reflections | Δρmax = 0.36 e Å−3 |
92 parameters | Δρmin = −0.38 e Å−3 |
0 restraints | Absolute structure: Flack (1983) |
0 constraints | Absolute structure parameter: 0.02 (2) |
Primary atom site location: structure-invariant direct methods |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.69454 (12) | 0.51851 (3) | 0.40790 (4) | 0.0449 (2) | |
Br2 | 0.49325 (11) | 0.11063 (3) | 0.35184 (3) | 0.0374 (2) | |
N1 | 0.4343 (8) | 0.3124 (3) | 0.4488 (2) | 0.0340 (14) | |
C1 | 0.6072 (9) | 0.3165 (3) | 0.3674 (3) | 0.0255 (14) | |
C2 | 0.7481 (9) | 0.4015 (3) | 0.3360 (3) | 0.0277 (14) | |
C3 | 0.9295 (10) | 0.4045 (3) | 0.2553 (3) | 0.0323 (17) | |
C4 | 0.9781 (10) | 0.3217 (3) | 0.2004 (3) | 0.0313 (14) | |
C5 | 1.1658 (11) | 0.3259 (3) | 0.1108 (3) | 0.0447 (17) | |
C6 | 0.8409 (10) | 0.2336 (3) | 0.2315 (3) | 0.0317 (14) | |
C7 | 0.6636 (10) | 0.2322 (3) | 0.3118 (3) | 0.0280 (12) | |
H1 | 1.33755 | 0.28238 | 0.11654 | 0.0669* | |
H1A | 0.40957 | 0.36443 | 0.48284 | 0.0407* | |
H1B | 0.35064 | 0.25790 | 0.46576 | 0.0407* | |
H2 | 1.02080 | 0.46361 | 0.23780 | 0.0388* | |
H3 | 0.87095 | 0.17585 | 0.19722 | 0.0378* | |
H4 | 1.23699 | 0.39194 | 0.10090 | 0.0669* | |
H5 | 1.04240 | 0.30603 | 0.05765 | 0.0669* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0576 (3) | 0.0274 (2) | 0.0497 (3) | −0.0005 (2) | 0.0057 (3) | −0.0016 (2) |
Br2 | 0.0373 (3) | 0.0279 (2) | 0.0471 (3) | −0.0053 (2) | −0.0027 (3) | 0.0002 (2) |
N1 | 0.038 (3) | 0.031 (2) | 0.033 (2) | −0.0013 (18) | 0.0070 (18) | 0.0005 (17) |
C1 | 0.0174 (19) | 0.028 (2) | 0.031 (3) | 0.0015 (17) | −0.0052 (19) | 0.007 (2) |
C2 | 0.023 (2) | 0.027 (2) | 0.033 (3) | 0.0023 (18) | −0.0039 (19) | 0.0002 (19) |
C3 | 0.027 (3) | 0.029 (3) | 0.041 (3) | 0.0011 (19) | 0.001 (2) | 0.006 (2) |
C4 | 0.021 (2) | 0.041 (3) | 0.032 (2) | 0.005 (2) | 0.000 (2) | 0.007 (2) |
C5 | 0.036 (3) | 0.057 (3) | 0.041 (3) | 0.009 (3) | 0.005 (3) | 0.008 (3) |
C6 | 0.030 (2) | 0.038 (3) | 0.027 (2) | 0.004 (2) | −0.004 (2) | −0.002 (2) |
C7 | 0.024 (2) | 0.028 (2) | 0.032 (2) | 0.001 (2) | −0.006 (2) | −0.0010 (19) |
Br1—C2 | 1.898 (4) | C4—C5 | 1.505 (6) |
Br2—C7 | 1.898 (4) | C4—C6 | 1.409 (6) |
N1—C1 | 1.373 (5) | C6—C7 | 1.370 (6) |
N1—H1A | 0.8600 | C3—H2 | 0.9300 |
N1—H1B | 0.8600 | C5—H1 | 0.9600 |
C1—C7 | 1.408 (6) | C5—H4 | 0.9600 |
C1—C2 | 1.382 (6) | C5—H5 | 0.9600 |
C2—C3 | 1.385 (6) | C6—H3 | 0.9300 |
C3—C4 | 1.381 (6) | ||
C1—N1—H1B | 120.00 | Br2—C7—C1 | 118.3 (3) |
H1A—N1—H1B | 120.00 | Br2—C7—C6 | 118.6 (3) |
C1—N1—H1A | 120.00 | C1—C7—C6 | 123.0 (4) |
C2—C1—C7 | 115.1 (4) | C2—C3—H2 | 119.00 |
N1—C1—C7 | 121.8 (4) | C4—C3—H2 | 119.00 |
N1—C1—C2 | 123.1 (4) | C4—C5—H1 | 110.00 |
Br1—C2—C1 | 118.3 (3) | C4—C5—H4 | 110.00 |
Br1—C2—C3 | 118.8 (3) | C4—C5—H5 | 109.00 |
C1—C2—C3 | 122.8 (4) | H1—C5—H4 | 109.00 |
C2—C3—C4 | 121.5 (4) | H1—C5—H5 | 109.00 |
C5—C4—C6 | 121.7 (4) | H4—C5—H5 | 109.00 |
C3—C4—C5 | 121.4 (4) | C4—C6—H3 | 120.00 |
C3—C4—C6 | 116.9 (4) | C7—C6—H3 | 120.00 |
C4—C6—C7 | 120.6 (4) | ||
N1—C1—C2—Br1 | −1.0 (5) | Br1—C2—C3—C4 | 179.7 (3) |
N1—C1—C2—C3 | 178.1 (4) | C1—C2—C3—C4 | 0.6 (7) |
C7—C1—C2—Br1 | −178.5 (3) | C2—C3—C4—C5 | 177.7 (4) |
C7—C1—C2—C3 | 0.6 (6) | C2—C3—C4—C6 | −1.5 (6) |
N1—C1—C7—Br2 | 0.1 (6) | C3—C4—C6—C7 | 1.2 (6) |
N1—C1—C7—C6 | −178.5 (4) | C5—C4—C6—C7 | −178.1 (4) |
C2—C1—C7—Br2 | 177.6 (3) | C4—C6—C7—Br2 | −178.5 (3) |
C2—C1—C7—C6 | −1.0 (6) | C4—C6—C7—C1 | 0.1 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Br1 | 0.86 | 2.65 | 3.077 (4) | 112 |
N1—H1B···Br2 | 0.86 | 2.64 | 3.072 (4) | 113 |
N1—H1B···N1i | 0.86 | 2.38 | 3.120 (7) | 144 |
Symmetry code: (i) x−1/2, −y+1/2, −z+1. |
Acknowledgements
This work was supported by the Laboratoire de Cristallographie, Département de Physique, Université Mentouri-Constantine, Algérie and Institut Jean Lamour UMR 7198, Parc de Saurupt, CS 14234 F 54042 Nancy, France.
References
Brihi, O., Hamdouni, N., Boulcina, R., Medjani, M., Meinnel, J. & Boudjada, A. (2016). IUCrData, 1, x160351. Google Scholar
Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.