organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,1′-Methyl­enebis{4-[(E)-2-(pyridin-4-yl)ethen­yl]pyridinium} dibromide dihydrate

crossmark logo

aAustin College, 900 N Grand, Sherman, TX 75090, USA, and bDepartment of Chemistry, University of North Texas, 1508 W. Mulberry, Denton, TX, 76201, USA
*Correspondence e-mail: bsmucker@austincollege.edu

Edited by I. Brito, University of Antofagasta, Chile (Received 27 January 2022; accepted 17 May 2022; online 20 May 2022)

The chevron-shaped cations of the title hydrated salt, C25H22N42+·2Br·2H2O, are arranged in back-to-back alternating directions to form a zigzag ribbon propagating along the [010] direction. Inter­molecular inter­actions comprising these ribbons are ππ inter­actions between the pyridinium and adjacent pyridyl rings, as well as O—H⋯O hydrogen bonding between water molecules and two adjacent pyridyl N atoms. Half of the cation is generated by the mirror plane. The water O atoms, the central C atom and one Br atom are located on this mirror plane while the other Br atom is on a twofold screw axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Half of the cation is generated by the mirror plane (x, [{1\over 2}] − y, z). The O1, O2, Br1, and C1 atoms are located on this mirror plane and the Br2 atom is on a twofold screw axis (−x, [{1\over 2}] + y, −z). The pyrid­yl–vin­yl–pyridinium moiety (Fig. 1[link]) is essentially planar with a 1.7 (3)° dihedral angle between the planes of the pyridinium (N1/C2–C6) and pyridyl (N2/C9–C13) rings. The N1—C1—N1(x, [{1\over 2}] − y, z) angle is 110.9 (10)°, which is similar to the N—C—N angles of 111.1 (4) or 112.3 (4)° found in the bromide (Schuster et al. 2022[Schuster, S. A., Nesterov, V. V. & Smucker, B. W. (2022). IUCrData, 7, x220526.]) or PF6 (Blanco et al., 2007[Blanco, V., Chas, M., Abella, D., Peinador, C. & Quintela, J. M. (2007). J. Am. Chem. Soc. 129, 13978-13986.]) salts, respectively, of the 1,1′-methyl­enebis-4,4′-bipyridinium cation. When two of the title cations are used in a supra­molecular cyclic compound with two Pd(ethyl­enedi­amine) moieties, the crystal structure had this same N—C—N angle remaining relatively unchanged at 109.1 (19) and 111.2 (11)° (Blanco et al., 2009[Blanco, V., Gutiérrez, A., Platas-Iglesias, C., Peinador, C. & Quintela, J. M. (2009). J. Org. Chem. 74, 6577-6583.]).

[Figure 1]
Figure 1
Ellipsoid (50%) representation of the title complex with disorder omitted for clarity.

In the extended structure, the chevron-shaped cations of the title compound arrange in back-to-back alternating directions to form a zigzag ribbon (Fig. 2[link]) propagating along the [010] direction. Water mol­ecules are positioned to inter­act with the terminal pyridyl nitro­gen atom, N2, with an N2—H1D([{3\over 2}] − x, 1 − y, [{1\over 2}] + z) distance of 2.01 Å (Table 1[link]). The distance between back-to-back pyridinium and pyridyl rings [the closest distance between carbon atoms, C6 of the pyridinium and C13(1 − x, 1 − y, 1 − z) of a pyridyl ring, being 3.46 (1) Å (Fig. 2[link])] is suitable for ππ inter­actions (Sinnokrot et al., 2002[Sinnokrot, M. O., Valeev, E. F. & Sherrill, C. D. (2002). J. Am. Chem. Soc. 124, 10887-10893.]), which further consolidate these zigzag ribbons. Water molecules and bromide ions pack between the ribbons (Fig. 3[link]). Other hydrogen-bonded zigzag ribbon structures are observed in 1,3-bis­[(tetra­hydro­furan-2-yl)meth­yl]thio­urea (Peña et al., 2009[Peña, Ú., Bernès, S. & Gutiérrez, R. (2009). Acta Cryst. E65, o96.]) or 1-(4-bromo­phen­yl)-3-(4-eth­oxy­phen­yl)prop-2-en-1-one (Fun et al., 2008[Fun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2008). Acta Cryst. E64, o1540-o1541.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯N2i 0.88 2.26 2.880 (11) 128
O1—H1D⋯N2ii 0.88 2.01 2.880 (11) 171
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Zigzag ribbons composed of back-to-back chevron-shaped cations of the title complex. The distance between N2 and H1D([{3\over 2}] − x, 1 − y, [{1\over 2}] + z) is shown. Ellipsoids at 50% with disorder, bromide ions and some water mol­ecules omitted for clarity.
[Figure 3]
Figure 3
Ellipsoid (50%) representation of ribbons of cations with bromide ions (brown) and water mol­ecules positioned between them. Ellipsoids at 50% with disorder omitted for clarity.

Synthesis and crystallization

The title compound was synthesized according to published procedures (Blanco et al., 2009[Blanco, V., Gutiérrez, A., Platas-Iglesias, C., Peinador, C. & Quintela, J. M. (2009). J. Org. Chem. 74, 6577-6583.]). Colorless plates were grown from liquid diffusion of tetra­hydro­furan into a di­methyl­formamide solution of the pyridinium bromide salt.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Disorder of the 4-[(E)-2-(pyridin-4-yl)ethen­yl]pyridinium moiety was refined using `PART 1' and `PART 2' with the ratio of occupancies at 47 and 53%. All our attempts to refine the structure to achieve equal occupancies led to a drastic worsening of R1 and wR2 values.

Table 2
Experimental details

Crystal data
Chemical formula C25H22N42+·2Br·2H2O
Mr 574.32
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 220
a, b, c (Å) 15.4863 (2), 22.2936 (3), 7.2100 (1)
V3) 2489.22 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.37
Crystal size (mm) 0.04 × 0.03 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.671, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25704, 2780, 2439
Rint 0.030
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.104, 1.09
No. of reflections 2780
No. of parameters 244
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.99, −0.86
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1,1'-Methylenebis{4-[(E)-2-(pyridin-4-yl)ethenyl]pyridinium} dibromide dihydrate top
Crystal data top
C25H22N42+·2Br·2H2ODx = 1.532 Mg m3
Mr = 574.32Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PnmaCell parameters from 14220 reflections
a = 15.4863 (2) Åθ = 6.1–79.8°
b = 22.2936 (3) ŵ = 4.37 mm1
c = 7.2100 (1) ÅT = 220 K
V = 2489.22 (6) Å3Plate, clear light colourless
Z = 40.04 × 0.03 × 0.02 mm
F(000) = 1160
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2780 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2439 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.0000 pixels mm-1θmax = 80.3°, θmin = 4.0°
ω scansh = 1719
Absorption correction: multi-scan
CrysAlisPro (Rigaku OD, 2021)
k = 2827
Tmin = 0.671, Tmax = 1.000l = 99
25704 measured reflections
Refinement top
Refinement on F28 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0464P)2 + 1.8748P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2780 reflectionsΔρmax = 0.99 e Å3
244 parametersΔρmin = 0.86 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.83013 (2)0.2500000.51496 (5)0.05780 (16)
Br20.5000000.5000000.0000000.06787 (19)
O10.59949 (18)0.2500000.0276 (5)0.0644 (5)
H1C0.6280970.2287120.0538300.097*0.5
H1D0.6373530.2791270.0304940.097*0.5
O20.61749 (17)0.2500000.5693 (5)0.0644 (5)
H2B0.6660460.2340750.5343820.097*0.5
H2C0.6162430.2295000.6764210.097*0.5
N10.4441 (7)0.3047 (4)0.4944 (11)0.0280 (19)0.471 (7)
C20.4622 (7)0.3261 (4)0.6635 (9)0.0336 (16)0.471 (7)
H20.4410550.3064910.7695340.040*0.471 (7)
C30.5120 (5)0.3769 (3)0.6814 (7)0.0338 (14)0.471 (7)
H30.5235340.3921170.8003740.041*0.471 (7)
C40.5451 (3)0.4059 (2)0.5289 (9)0.0259 (12)0.471 (7)
C50.5254 (4)0.3821 (3)0.3578 (7)0.0355 (15)0.471 (7)
H50.5466740.4009060.2503620.043*0.471 (7)
C60.4753 (6)0.3316 (4)0.3410 (8)0.0375 (17)0.471 (7)
H60.4628400.3158410.2230420.045*0.471 (7)
N20.7822 (9)0.6508 (4)0.5018 (14)0.048 (3)0.471 (7)
C110.7660 (7)0.6282 (4)0.3350 (11)0.0430 (17)0.471 (7)
H110.7888490.6478260.2305650.052*0.471 (7)
C100.7170 (5)0.5769 (3)0.3083 (8)0.0383 (15)0.471 (7)
H100.7074210.5625610.1873800.046*0.471 (7)
C90.6822 (3)0.54692 (19)0.4566 (10)0.0301 (12)0.471 (7)
C130.6980 (5)0.5710 (3)0.6290 (8)0.0394 (16)0.471 (7)
H130.6749160.5527110.7355060.047*0.471 (7)
C120.7480 (8)0.6224 (4)0.6452 (10)0.050 (2)0.471 (7)
H120.7580170.6379270.7645480.060*0.471 (7)
C10.39067 (17)0.2500000.4756 (4)0.0281 (5)
C70.5974 (3)0.4592 (2)0.5575 (7)0.0328 (12)0.471 (7)
H70.6084610.4706890.6806420.039*0.471 (7)
C80.6307 (3)0.4929 (2)0.4239 (6)0.0321 (13)0.471 (7)
H80.6205760.4813880.3004190.038*0.471 (7)
C8A0.6252 (3)0.4946 (2)0.5660 (6)0.0352 (12)0.529 (7)
H8A0.6043220.4856750.6852110.042*0.529 (7)
C7A0.6033 (3)0.4578 (2)0.4290 (6)0.0330 (11)0.529 (7)
H7A0.6241140.4666700.3095810.040*0.529 (7)
N1A0.4453 (6)0.3041 (3)0.4673 (9)0.0244 (15)0.529 (7)
C2A0.4791 (5)0.3212 (3)0.3033 (8)0.0290 (12)0.529 (7)
H2A0.4675370.2988610.1954590.035*0.529 (7)
C3A0.5305 (3)0.3713 (2)0.2945 (6)0.0307 (12)0.529 (7)
H3A0.5534790.3832220.1796610.037*0.529 (7)
C4A0.5489 (3)0.40443 (19)0.4506 (8)0.0264 (11)0.529 (7)
C5A0.5131 (4)0.3853 (3)0.6147 (7)0.0341 (13)0.529 (7)
H5A0.5237930.4071690.7238300.041*0.529 (7)
C6A0.4621 (6)0.3349 (3)0.6226 (7)0.0323 (13)0.529 (7)
H6A0.4390490.3221490.7365400.039*0.529 (7)
N2A0.7859 (8)0.6497 (4)0.5226 (13)0.052 (3)0.529 (7)
C11A0.7539 (7)0.6311 (4)0.6829 (10)0.0468 (16)0.529 (7)
H11A0.7677540.6527900.7905610.056*0.529 (7)
C10A0.7011 (4)0.5811 (3)0.7003 (7)0.0401 (14)0.529 (7)
H10A0.6800770.5697190.8174950.048*0.529 (7)
C9A0.6796 (3)0.54816 (18)0.5456 (9)0.0325 (11)0.529 (7)
C13A0.7118 (4)0.5682 (3)0.3798 (8)0.0442 (15)0.529 (7)
H13A0.6983430.5476220.2697870.053*0.529 (7)
C12A0.7641 (7)0.6187 (4)0.3728 (10)0.054 (2)0.529 (7)
H12A0.7850180.6313990.2568910.065*0.529 (7)
H1A0.359 (2)0.2500000.584 (4)0.025 (7)*
H1B0.363 (2)0.2500000.372 (5)0.036 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0341 (2)0.1080 (4)0.03128 (19)0.0000.00029 (12)0.000
Br20.1255 (5)0.0507 (2)0.0274 (2)0.0236 (2)0.00356 (18)0.00004 (13)
O10.0401 (9)0.0554 (10)0.0978 (16)0.0000.0060 (10)0.000
O20.0401 (9)0.0554 (10)0.0978 (16)0.0000.0060 (10)0.000
N10.023 (3)0.025 (4)0.036 (3)0.001 (3)0.004 (2)0.007 (3)
C20.045 (3)0.030 (3)0.025 (3)0.006 (3)0.007 (3)0.003 (2)
C30.046 (3)0.033 (3)0.022 (3)0.006 (2)0.003 (3)0.008 (3)
C40.029 (2)0.023 (2)0.026 (3)0.0000 (16)0.002 (2)0.004 (3)
C50.048 (3)0.033 (3)0.025 (4)0.002 (2)0.008 (3)0.008 (3)
C60.051 (4)0.036 (3)0.026 (3)0.003 (3)0.010 (3)0.004 (3)
N20.039 (6)0.025 (6)0.078 (6)0.000 (5)0.003 (5)0.007 (5)
C110.042 (3)0.028 (3)0.060 (4)0.005 (2)0.005 (3)0.006 (3)
C100.040 (3)0.035 (3)0.040 (4)0.002 (2)0.004 (3)0.001 (3)
C90.028 (2)0.023 (2)0.039 (4)0.0008 (16)0.001 (3)0.001 (3)
C130.040 (3)0.036 (4)0.042 (4)0.004 (2)0.000 (3)0.001 (3)
C120.052 (4)0.032 (3)0.065 (5)0.001 (3)0.014 (4)0.011 (3)
C10.0243 (12)0.0240 (11)0.0360 (14)0.0000.0007 (11)0.000
C70.033 (2)0.027 (3)0.038 (3)0.0030 (19)0.0006 (18)0.0038 (17)
C80.032 (2)0.028 (3)0.035 (3)0.0021 (19)0.0027 (17)0.0009 (16)
C8A0.0346 (19)0.032 (2)0.039 (3)0.0033 (18)0.0025 (16)0.0023 (16)
C7A0.0326 (19)0.029 (2)0.037 (2)0.0024 (17)0.0024 (15)0.0007 (16)
N1A0.026 (3)0.022 (3)0.026 (2)0.000 (2)0.004 (2)0.004 (2)
C2A0.034 (2)0.032 (3)0.022 (2)0.008 (2)0.0000 (18)0.0004 (19)
C3A0.032 (2)0.034 (2)0.026 (3)0.0048 (18)0.004 (2)0.003 (2)
C4A0.0276 (18)0.027 (2)0.024 (3)0.0010 (14)0.001 (2)0.008 (2)
C5A0.047 (3)0.032 (3)0.024 (3)0.002 (2)0.000 (3)0.008 (3)
C6A0.039 (3)0.034 (3)0.023 (3)0.001 (2)0.006 (2)0.002 (2)
N2A0.041 (5)0.033 (6)0.081 (5)0.010 (5)0.001 (5)0.007 (5)
C11A0.045 (3)0.035 (3)0.061 (4)0.006 (2)0.007 (3)0.007 (3)
C10A0.042 (2)0.034 (3)0.044 (3)0.001 (2)0.006 (3)0.000 (3)
C9A0.0290 (19)0.028 (2)0.041 (3)0.0021 (16)0.001 (2)0.003 (3)
C13A0.053 (3)0.037 (3)0.042 (4)0.007 (2)0.005 (3)0.005 (3)
C12A0.058 (4)0.036 (3)0.068 (5)0.005 (3)0.017 (4)0.003 (3)
Geometric parameters (Å, º) top
O1—H1C0.8753C1—N1Ai1.474 (4)
O1—H1Ci0.88 (6)C1—H1A0.92 (3)
O1—H1D0.8752C1—H1B0.86 (4)
O1—H1Di0.88 (8)C7—H70.9400
O2—H2B0.8688C7—C81.326 (7)
O2—H2Bi0.87 (5)C8—H80.9400
O2—H2C0.8975C8A—H8A0.9400
O2—H2Ci0.90 (6)C8A—C7A1.328 (6)
N1—C21.3385C8A—C9A1.468 (6)
N1—C61.3481C7A—H7A0.9400
N1—C11.480 (5)C7A—C4A1.467 (7)
C2—H20.9400N1A—C2A1.3482
C2—C31.3755N1A—C6A1.3387
C3—H30.9400C2A—H2A0.9400
C3—C41.3742C2A—C3A1.3735
C4—C51.3759C3A—H3A0.9400
C4—C71.453 (7)C3A—C4A1.3761
C5—H50.9400C4A—C5A1.3737
C5—C61.3734C5A—H5A0.9400
C6—H60.9400C5A—C6A1.3753
N2—C111.3275C6A—H6A0.9400
N2—C121.3235N2A—C11A1.3241
C11—H110.9400N2A—C12A1.3271
C11—C101.3868C11A—H11A0.9400
C10—H100.9400C11A—C10A1.3883
C10—C91.3715C10A—H10A0.9400
C9—C131.3756C10A—C9A1.3758
C9—C81.464 (7)C9A—C13A1.3709
C13—H130.9400C13A—H13A0.9400
C13—C121.3883C13A—C12A1.3864
C12—H120.9400C12A—H12A0.9400
C1—N1A1.474 (4)
H1C—O1—H1Ci65.7N1A—C1—H1A110.0 (10)
H1Ci—O1—H1Di94.5N1Ai—C1—H1A110.0 (10)
H1C—O1—H1Di43.5N1Ai—C1—H1B104.5 (13)
H1C—O1—H1D94.5N1A—C1—H1B104.5 (13)
H1D—O1—H1Ci43.5H1A—C1—H1B118 (3)
H1D—O1—H1Di95.8C4—C7—H7117.4
H2B—O2—H2Bi48.2C8—C7—C4125.3 (6)
H2Bi—O2—H2Ci93.4C8—C7—H7117.4
H2B—O2—H2Ci118.4C9—C8—H8117.9
H2B—O2—H2C93.4C7—C8—C9124.2 (5)
H2C—O2—H2Bi118.4C7—C8—H8117.9
H2C—O2—H2Ci61.2C7A—C8A—H8A117.5
C2—N1—C6120.9C7A—C8A—C9A125.1 (5)
C2—N1—C1119.6 (5)C9A—C8A—H8A117.5
C6—N1—C1119.4 (5)C8A—C7A—H7A117.7
N1—C2—H2120.1C8A—C7A—C4A124.7 (5)
N1—C2—C3119.8C4A—C7A—H7A117.7
C3—C2—H2120.1C2A—N1A—C1119.3 (4)
C2—C3—H3119.3C6A—N1A—C1119.8 (4)
C4—C3—C2121.4C6A—N1A—C2A120.9
C4—C3—H3119.3N1A—C2A—H2A120.2
C3—C4—C5117.0N1A—C2A—C3A119.7
C3—C4—C7118.6 (4)C3A—C2A—H2A120.2
C5—C4—C7124.4 (4)C2A—C3A—H3A119.4
C4—C5—H5119.4C2A—C3A—C4A121.3
C6—C5—C4121.3C4A—C3A—H3A119.4
C6—C5—H5119.4C3A—C4A—C7A117.9 (4)
N1—C6—C5119.7C5A—C4A—C7A125.1 (4)
N1—C6—H6120.2C5A—C4A—C3A117.0
C5—C6—H6120.2C4A—C5A—H5A119.3
C12—N2—C11116.8C4A—C5A—C6A121.4
N2—C11—H11118.6C6A—C5A—H5A119.3
N2—C11—C10122.9N1A—C6A—C5A119.8
C10—C11—H11118.6N1A—C6A—H6A120.1
C11—C10—H10119.7C5A—C6A—H6A120.1
C9—C10—C11120.6C11A—N2A—C12A116.8
C9—C10—H10119.7N2A—C11A—H11A118.2
C10—C9—C13116.4N2A—C11A—C10A123.5
C10—C9—C8119.3 (5)C10A—C11A—H11A118.2
C13—C9—C8124.3 (5)C11A—C10A—H10A120.1
C9—C13—H13120.1C9A—C10A—C11A119.8
C9—C13—C12119.8C9A—C10A—H10A120.1
C12—C13—H13120.1C10A—C9A—C8A119.4 (4)
N2—C12—C13123.5C13A—C9A—C8A124.2 (4)
N2—C12—H12118.2C13A—C9A—C10A116.4
C13—C12—H12118.2C9A—C13A—H13A119.7
N1i—C1—N1110.9 (10)C9A—C13A—C12A120.6
N1—C1—H1A102.9 (11)C12A—C13A—H13A119.7
N1i—C1—H1A102.9 (11)N2A—C12A—C13A122.8
N1—C1—H1B110.9 (11)N2A—C12A—H12A118.6
N1i—C1—H1B110.9 (11)C13A—C12A—H12A118.6
N1A—C1—N1Ai109.8 (9)
N1—C2—C3—C41.2C7—C4—C5—C6179.8 (6)
C2—N1—C6—C50.9C8—C9—C13—C12179.8 (6)
C2—N1—C1—N1i84.1 (7)C8A—C7A—C4A—C3A178.8 (4)
C2—C3—C4—C50.7C8A—C7A—C4A—C5A0.2 (6)
C2—C3—C4—C7179.8 (6)C8A—C9A—C13A—C12A178.8 (6)
C3—C4—C5—C60.3C7A—C8A—C9A—C10A176.9 (4)
C3—C4—C7—C8177.3 (5)C7A—C8A—C9A—C13A2.7 (7)
C4—C5—C6—N10.4C7A—C4A—C5A—C6A179.4 (5)
C4—C7—C8—C9179.1 (4)N1Ai—C1—N1A—C2A76.4 (7)
C5—C4—C7—C82.2 (7)N1Ai—C1—N1A—C6A102.3 (5)
C6—N1—C2—C31.3N1A—C2A—C3A—C4A0.5
C6—N1—C1—N1i94.7 (7)C2A—N1A—C6A—C5A1.2
N2—C11—C10—C90.2C2A—C3A—C4A—C7A179.2 (5)
C11—N2—C12—C130.7C2A—C3A—C4A—C5A0.5
C11—C10—C9—C130.8C3A—C4A—C5A—C6A0.8
C11—C10—C9—C8180.0 (6)C4A—C5A—C6A—N1A1.2
C10—C9—C13—C121.1C6A—N1A—C2A—C3A0.9
C10—C9—C8—C7177.0 (5)N2A—C11A—C10A—C9A0.0
C9—C13—C12—N20.3C11A—N2A—C12A—C13A1.1
C13—C9—C8—C73.9 (7)C11A—C10A—C9A—C8A178.7 (6)
C12—N2—C11—C101.0C11A—C10A—C9A—C13A1.0
C1—N1—C2—C3180.0 (10)C10A—C9A—C13A—C12A0.8
C1—N1—C6—C5179.6 (9)C9A—C8A—C7A—C4A180.0 (4)
C1—N1A—C2A—C3A179.6 (8)C9A—C13A—C12A—N2A0.2
C1—N1A—C6A—C5A179.9 (8)C12A—N2A—C11A—C10A1.0
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···N2ii0.882.262.880 (11)128
O1—H1D···N2iii0.882.012.880 (11)171
Symmetry codes: (ii) x+3/2, y1/2, z1/2; (iii) x+3/2, y+1, z1/2.
 

Funding information

Funding for this research was provided by: National Science Foundation (grant No. 1726652 to UNT; grant No. 1712066 to Austin College); Welch Foundation (grant No. AD-0007 to Austin College).

References

First citationBlanco, V., Chas, M., Abella, D., Peinador, C. & Quintela, J. M. (2007). J. Am. Chem. Soc. 129, 13978–13986.  CrossRef PubMed CAS Google Scholar
First citationBlanco, V., Gutiérrez, A., Platas-Iglesias, C., Peinador, C. & Quintela, J. M. (2009). J. Org. Chem. 74, 6577–6583.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2008). Acta Cryst. E64, o1540–o1541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeña, Ú., Bernès, S. & Gutiérrez, R. (2009). Acta Cryst. E65, o96.  CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSchuster, S. A., Nesterov, V. V. & Smucker, B. W. (2022). IUCrData, 7, x220526.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSinnokrot, M. O., Valeev, E. F. & Sherrill, C. D. (2002). J. Am. Chem. Soc. 124, 10887–10893.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds