organic compounds
1,1′-Methylenebis(4,4′-bipyridin-1-ium) dibromide
aAustin College, 900 N Grand, Sherman, TX 75090, USA, and bDepartment of Chemistry, University of North Texas, 1508 W. Mulberry, Denton, TX, 76201, USA
*Correspondence e-mail: bsmucker@austincollege.edu
The 21H18N42+·2Br−, comprises half of the molecule and a bromide ion. The chevron-shaped cations stack as columns in the [001] direction with suitable intermolecular distance for π–π interactions. These cationic columns are further stabilized by intercolumnar C—H⋯N hydrogen bonding with the bromide ions distributed between them.
of the title salt, CKeywords: crystal structure; pyridinium; hydrogen bonding; π–π interactions.
CCDC reference: 2173318
Structure description
The N1—C1—N1(1 − x, 1 − y, z) bond angle of the chevron-shaped 1,1′-methylenebis-4,4′-bipyridinium cation in the title compound (Fig. 1) is 111.1 (4)°, which is slightly smaller than the angle of 112.3 (4)° in the corresponding PF6− salt (Blanco et al., 2007). The packing resulting from the smaller bromide results in the cations of the title compound stacking to form columns (Fig. 2) in the [001] direction with the bromide ions distributed between them (Fig. 3). The closest intermolecular C⋯C distance between these stacked cations is 3.493 (5) Å between C5 and C8(x, y, 1 + z), which is indicative of through space electrostatic interactions (Martinez & Iverson, 2012). The structure of the aforementioned PF6− salt does not form these stacked columns. Even with bromide ions, the structure of the slightly larger 1,1′-methylenebis{4-[(E)-2-(pyridin-4-yl)vinyl]pyridinium} dibromide dihydrate packs in back-to-back zigzag ribbons (Neal et al., 2022) instead of the columns seen in this structure. For the title compound, in the extended structure, the columns of the cation are positioned such that the H3 and H11 atoms of the bipyridinium moiety are 2.620 and 2.546 Å, respectively, from the N2(− + x, − y, + z) atom of a pyridyl group in an adjacent column (Fig. 4). The shorter N⋯H distance for H11 results from the rotation of the pyridyl ring relative to the pyridinium ring by 21.00 (14)° [dihedral angle between the planes of the pyridinium (N1/C2–C6) and pyridyl (N2/C7–C11) rings].
Synthesis and crystallization
The title compound was synthesized following published procedures (Blanco et al., 2007). Colorless block-shaped crystals were grown from the vapor diffusion of THF into a DMF solution of the compound.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 2173318
https://doi.org/10.1107/S2414314622005260/bx4020sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622005260/bx4020Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314622005260/bx4020Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S2414314622005260/bx4020Isup4.cml
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C21H18N42+·2Br− | Dx = 1.631 Mg m−3 |
Mr = 486.21 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, Fdd2 | Cell parameters from 18629 reflections |
a = 18.0776 (2) Å | θ = 3.7–78.7° |
b = 48.2301 (5) Å | µ = 5.29 mm−1 |
c = 4.5424 (2) Å | T = 220 K |
V = 3960.45 (18) Å3 | Block, clear light colourless |
Z = 8 | 0.04 × 0.02 × 0.01 mm |
F(000) = 1936 |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 2127 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2118 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.028 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 79.9°, θmin = 3.7° |
ω scans | h = −22→22 |
Absorption correction: multi-scan CrysAlisPro (Rigaku OD, 2021) | k = −60→59 |
Tmin = 0.775, Tmax = 1.000 | l = −5→5 |
21913 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.022 | w = 1/[σ2(Fo2) + (0.0076P)2 + 10.8403P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.053 | (Δ/σ)max = 0.002 |
S = 1.16 | Δρmax = 0.26 e Å−3 |
2127 reflections | Δρmin = −0.25 e Å−3 |
123 parameters | Absolute structure: Flack x determined using 895 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.015 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.65219 (2) | 0.46137 (2) | 0.25829 (7) | 0.04764 (12) | |
N1 | 0.53731 (13) | 0.52084 (5) | 0.8226 (6) | 0.0304 (6) | |
N2 | 0.71760 (17) | 0.62446 (6) | −0.0002 (10) | 0.0532 (8) | |
C1 | 0.500000 | 0.500000 | 1.0054 (12) | 0.0327 (8) | |
H1A | 0.463945 | 0.509067 | 1.130882 | 0.039* | 0.5 |
H1B | 0.536051 | 0.490934 | 1.130908 | 0.039* | 0.5 |
C2 | 0.49878 (16) | 0.54322 (6) | 0.7299 (10) | 0.0360 (7) | |
H2 | 0.449003 | 0.545007 | 0.778057 | 0.043* | |
C3 | 0.53289 (17) | 0.56327 (6) | 0.5653 (8) | 0.0370 (8) | |
H3 | 0.506094 | 0.578632 | 0.502375 | 0.044* | |
C4 | 0.60776 (15) | 0.56086 (5) | 0.4907 (10) | 0.0318 (6) | |
C5 | 0.64502 (17) | 0.53725 (7) | 0.5872 (8) | 0.0383 (8) | |
H5 | 0.694617 | 0.534836 | 0.539168 | 0.046* | |
C6 | 0.60952 (15) | 0.51762 (6) | 0.7513 (10) | 0.0365 (6) | |
H6 | 0.635047 | 0.501967 | 0.814337 | 0.044* | |
C7 | 0.64574 (17) | 0.58273 (6) | 0.3206 (8) | 0.0353 (8) | |
C8 | 0.71058 (19) | 0.57758 (7) | 0.1703 (9) | 0.0425 (8) | |
H8 | 0.731788 | 0.560015 | 0.174291 | 0.051* | |
C9 | 0.7435 (2) | 0.59865 (7) | 0.0146 (12) | 0.0515 (9) | |
H9 | 0.786861 | 0.594616 | −0.087262 | 0.062* | |
C10 | 0.6558 (2) | 0.62938 (8) | 0.1498 (11) | 0.0561 (12) | |
H10 | 0.637202 | 0.647358 | 0.148926 | 0.067* | |
C11 | 0.6175 (2) | 0.60960 (7) | 0.3062 (11) | 0.0492 (10) | |
H11 | 0.573509 | 0.614083 | 0.400858 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.03445 (16) | 0.0558 (2) | 0.0527 (2) | 0.01006 (15) | −0.00518 (18) | 0.0093 (2) |
N1 | 0.0247 (11) | 0.0267 (11) | 0.0400 (16) | −0.0010 (9) | −0.0013 (10) | −0.0019 (10) |
N2 | 0.0482 (16) | 0.0388 (14) | 0.073 (2) | −0.0034 (12) | 0.015 (2) | 0.0040 (19) |
C1 | 0.0306 (18) | 0.0320 (18) | 0.035 (2) | −0.0004 (15) | 0.000 | 0.000 |
C2 | 0.0255 (13) | 0.0324 (14) | 0.0500 (19) | 0.0050 (11) | 0.0050 (16) | 0.0038 (15) |
C3 | 0.0287 (15) | 0.0304 (14) | 0.052 (2) | 0.0047 (11) | 0.0043 (14) | 0.0056 (14) |
C4 | 0.0273 (13) | 0.0283 (12) | 0.0396 (16) | −0.0010 (10) | 0.0011 (15) | −0.0045 (16) |
C5 | 0.0233 (14) | 0.0355 (16) | 0.056 (2) | 0.0030 (11) | 0.0061 (13) | 0.0021 (14) |
C6 | 0.0245 (12) | 0.0331 (14) | 0.0520 (18) | 0.0053 (10) | 0.0012 (16) | 0.0047 (16) |
C7 | 0.0315 (15) | 0.0295 (13) | 0.045 (2) | −0.0018 (11) | 0.0014 (13) | −0.0021 (13) |
C8 | 0.0353 (17) | 0.0331 (16) | 0.059 (2) | 0.0028 (13) | 0.0115 (15) | −0.0021 (14) |
C9 | 0.0421 (18) | 0.0399 (16) | 0.073 (3) | −0.0003 (13) | 0.021 (2) | −0.001 (2) |
C10 | 0.050 (2) | 0.0330 (17) | 0.085 (3) | 0.0041 (15) | 0.022 (2) | 0.0093 (18) |
C11 | 0.0384 (17) | 0.0357 (16) | 0.073 (3) | 0.0041 (13) | 0.0183 (19) | 0.0022 (18) |
N1—C1 | 1.468 (4) | C4—C7 | 1.477 (4) |
N1—C2 | 1.352 (4) | C5—H5 | 0.9300 |
N1—C6 | 1.354 (4) | C5—C6 | 1.365 (5) |
N2—C9 | 1.332 (4) | C6—H6 | 0.9300 |
N2—C10 | 1.330 (5) | C7—C8 | 1.379 (4) |
C1—H1A | 0.9700 | C7—C11 | 1.394 (4) |
C1—H1B | 0.9700 | C8—H8 | 0.9300 |
C2—H2 | 0.9300 | C8—C9 | 1.374 (5) |
C2—C3 | 1.369 (5) | C9—H9 | 0.9300 |
C3—H3 | 0.9300 | C10—H10 | 0.9300 |
C3—C4 | 1.400 (4) | C10—C11 | 1.376 (5) |
C4—C5 | 1.394 (4) | C11—H11 | 0.9300 |
C2—N1—C1 | 119.1 (2) | C6—C5—C4 | 120.7 (3) |
C2—N1—C6 | 120.9 (3) | C6—C5—H5 | 119.6 |
C6—N1—C1 | 120.0 (2) | N1—C6—C5 | 120.3 (3) |
C10—N2—C9 | 115.9 (3) | N1—C6—H6 | 119.9 |
N1—C1—N1i | 111.1 (4) | C5—C6—H6 | 119.9 |
N1—C1—H1A | 109.4 | C8—C7—C4 | 121.7 (3) |
N1i—C1—H1A | 109.4 | C8—C7—C11 | 117.1 (3) |
N1—C1—H1B | 109.4 | C11—C7—C4 | 121.2 (3) |
N1i—C1—H1B | 109.4 | C7—C8—H8 | 120.3 |
H1A—C1—H1B | 108.0 | C9—C8—C7 | 119.4 (3) |
N1—C2—H2 | 119.9 | C9—C8—H8 | 120.3 |
N1—C2—C3 | 120.1 (3) | N2—C9—C8 | 124.4 (3) |
C3—C2—H2 | 119.9 | N2—C9—H9 | 117.8 |
C2—C3—H3 | 119.7 | C8—C9—H9 | 117.8 |
C2—C3—C4 | 120.6 (3) | N2—C10—H10 | 117.9 |
C4—C3—H3 | 119.7 | N2—C10—C11 | 124.3 (3) |
C3—C4—C7 | 121.1 (3) | C11—C10—H10 | 117.9 |
C5—C4—C3 | 117.3 (3) | C7—C11—H11 | 120.5 |
C5—C4—C7 | 121.6 (3) | C10—C11—C7 | 119.0 (3) |
C4—C5—H5 | 119.6 | C10—C11—H11 | 120.5 |
N1—C2—C3—C4 | 0.1 (6) | C4—C7—C8—C9 | 179.8 (4) |
N2—C10—C11—C7 | 2.5 (8) | C4—C7—C11—C10 | 178.7 (4) |
C1—N1—C2—C3 | 178.4 (4) | C5—C4—C7—C8 | 20.9 (6) |
C1—N1—C6—C5 | −178.5 (4) | C5—C4—C7—C11 | −158.9 (4) |
C2—N1—C1—N1i | 87.1 (3) | C6—N1—C1—N1i | −93.5 (3) |
C2—N1—C6—C5 | 1.0 (6) | C6—N1—C2—C3 | −1.0 (6) |
C2—C3—C4—C5 | 0.9 (6) | C7—C4—C5—C6 | 178.1 (4) |
C2—C3—C4—C7 | −178.2 (4) | C7—C8—C9—N2 | 0.9 (7) |
C3—C4—C5—C6 | −0.9 (6) | C8—C7—C11—C10 | −1.1 (6) |
C3—C4—C7—C8 | −160.1 (4) | C9—N2—C10—C11 | −2.1 (8) |
C3—C4—C7—C11 | 20.1 (6) | C10—N2—C9—C8 | 0.3 (7) |
C4—C5—C6—N1 | 0.1 (6) | C11—C7—C8—C9 | −0.4 (6) |
Symmetry code: (i) −x+1, −y+1, z. |
Funding information
Funding for this research was provided by: National Science Foundation (grant No. 1726652 to UNT; grant No. 1712066 to Austin College); Welch Foundation (grant No. AD-0007 to Austin College).
References
Blanco, V., Chas, M., Abella, D., Peinador, C. & Quintela, J. M. (2007). J. Am. Chem. Soc. 129, 13978–13986. CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191–2201. Web of Science CrossRef CAS Google Scholar
Neal, H. C., Nesterov, V. V. & Smucker, B. W. (2022). IUCrData, 7, x220525. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD, (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.