organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,1′-Methyl­enebis(4,4′-bipyridin-1-ium) dibromide

crossmark logo

aAustin College, 900 N Grand, Sherman, TX 75090, USA, and bDepartment of Chemistry, University of North Texas, 1508 W. Mulberry, Denton, TX, 76201, USA
*Correspondence e-mail: bsmucker@austincollege.edu

Edited by I. Brito, University of Antofagasta, Chile (Received 27 January 2022; accepted 17 May 2022; online 20 May 2022)

The asymmetric unit of the title salt, C21H18N42+·2Br, comprises half of the mol­ecule and a bromide ion. The chevron-shaped cations stack as columns in the [001] direction with suitable inter­molecular distance for ππ inter­actions. These cationic columns are further stabilized by inter­columnar C—H⋯N hydrogen bonding with the bromide ions distributed between them.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The N1—C1—N1(1 − x, 1 − y, z) bond angle of the chevron-shaped 1,1′-methyl­enebis-4,4′-bipyridinium cation in the title compound (Fig. 1[link]) is 111.1 (4)°, which is slightly smaller than the angle of 112.3 (4)° in the corresponding PF6 salt (Blanco et al., 2007[Blanco, V., Chas, M., Abella, D., Peinador, C. & Quintela, J. M. (2007). J. Am. Chem. Soc. 129, 13978-13986.]). The packing resulting from the smaller bromide results in the cations of the title compound stacking to form columns (Fig. 2[link]) in the [001] direction with the bromide ions distributed between them (Fig. 3[link]). The closest inter­molecular C⋯C distance between these stacked cations is 3.493 (5) Å between C5 and C8(x, y, 1 + z), which is indicative of through space electrostatic inter­actions (Martinez & Iverson, 2012[Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191-2201.]). The structure of the aforementioned PF6 salt does not form these stacked columns. Even with bromide ions, the structure of the slightly larger 1,1′-methyl­enebis{4-[(E)-2-(pyridin-4-yl)vin­yl]pyridinium} dibromide dihydrate packs in back-to-back zigzag ribbons (Neal et al., 2022[Neal, H. C., Nesterov, V. V. & Smucker, B. W. (2022). IUCrData, 7, x220525.]) instead of the columns seen in this structure. For the title compound, in the extended structure, the columns of the cation are positioned such that the H3 and H11 atoms of the bipyridinium moiety are 2.620 and 2.546 Å, respectively, from the N2(−[{1\over 4}] + x, [{5\over 4}] − y, [{3\over 4}] + z) atom of a pyridyl group in an adjacent column (Fig. 4[link]). The shorter N⋯H distance for H11 results from the rotation of the pyridyl ring relative to the pyridinium ring by 21.00 (14)° [dihedral angle between the planes of the pyridinium (N1/C2–C6) and pyridyl (N2/C7–C11) rings].

[Figure 1]
Figure 1
Ellipsoid (50%) representation of the title complex with the cation expanded by symmetry.
[Figure 2]
Figure 2
Ellipsoid (50%) representation of the columnar stacking of the cations with distance between C5 and C8(x, y, z + 1) shown. Bromide ions are omitted for clarity.
[Figure 3]
Figure 3
View down the crystallographic c axis showing the distribution of bromide ions (brown) between the columns of cations. Cell axes shown with ellipsoid (50%) representation.
[Figure 4]
Figure 4
Ellipsoid (50%) representation of the inter-columnar N⋯H distances between H3 and H11 atoms of the bipyridinium and the N2(−[{1\over 4}] + x, [{5\over 4}] − y, [{3\over 4}] + z) atom on the terminal pyridyl ring. Bromide ions are omitted for clarity.

Synthesis and crystallization

The title compound was synthesized following published procedures (Blanco et al., 2007[Blanco, V., Chas, M., Abella, D., Peinador, C. & Quintela, J. M. (2007). J. Am. Chem. Soc. 129, 13978-13986.]). Colorless block-shaped crystals were grown from the vapor diffusion of THF into a DMF solution of the compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C21H18N42+·2Br
Mr 486.21
Crystal system, space group Orthorhombic, Fdd2
Temperature (K) 220
a, b, c (Å) 18.0776 (2), 48.2301 (5), 4.5424 (2)
V3) 3960.45 (18)
Z 8
Radiation type Cu Kα
μ (mm−1) 5.29
Crystal size (mm) 0.04 × 0.02 × 0.01
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan CrysAlis PRO (Rigaku OD, 2021[Rigaku OD, (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.775, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21913, 2127, 2118
Rint 0.028
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.053, 1.16
No. of reflections 2127
No. of parameters 123
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.26
Absolute structure Flack x determined using 895 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.015 (7)
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD, (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1,1'-Methylenebis(4,4'-bipyridin-1-ium) dibromide top
Crystal data top
C21H18N42+·2BrDx = 1.631 Mg m3
Mr = 486.21Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Fdd2Cell parameters from 18629 reflections
a = 18.0776 (2) Åθ = 3.7–78.7°
b = 48.2301 (5) ŵ = 5.29 mm1
c = 4.5424 (2) ÅT = 220 K
V = 3960.45 (18) Å3Block, clear light colourless
Z = 80.04 × 0.02 × 0.01 mm
F(000) = 1936
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2127 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2118 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.0000 pixels mm-1θmax = 79.9°, θmin = 3.7°
ω scansh = 2222
Absorption correction: multi-scan
CrysAlisPro (Rigaku OD, 2021)
k = 6059
Tmin = 0.775, Tmax = 1.000l = 55
21913 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0076P)2 + 10.8403P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.053(Δ/σ)max = 0.002
S = 1.16Δρmax = 0.26 e Å3
2127 reflectionsΔρmin = 0.25 e Å3
123 parametersAbsolute structure: Flack x determined using 895 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.015 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.65219 (2)0.46137 (2)0.25829 (7)0.04764 (12)
N10.53731 (13)0.52084 (5)0.8226 (6)0.0304 (6)
N20.71760 (17)0.62446 (6)0.0002 (10)0.0532 (8)
C10.5000000.5000001.0054 (12)0.0327 (8)
H1A0.4639450.5090671.1308820.039*0.5
H1B0.5360510.4909341.1309080.039*0.5
C20.49878 (16)0.54322 (6)0.7299 (10)0.0360 (7)
H20.4490030.5450070.7780570.043*
C30.53289 (17)0.56327 (6)0.5653 (8)0.0370 (8)
H30.5060940.5786320.5023750.044*
C40.60776 (15)0.56086 (5)0.4907 (10)0.0318 (6)
C50.64502 (17)0.53725 (7)0.5872 (8)0.0383 (8)
H50.6946170.5348360.5391680.046*
C60.60952 (15)0.51762 (6)0.7513 (10)0.0365 (6)
H60.6350470.5019670.8143370.044*
C70.64574 (17)0.58273 (6)0.3206 (8)0.0353 (8)
C80.71058 (19)0.57758 (7)0.1703 (9)0.0425 (8)
H80.7317880.5600150.1742910.051*
C90.7435 (2)0.59865 (7)0.0146 (12)0.0515 (9)
H90.7868610.5946160.0872620.062*
C100.6558 (2)0.62938 (8)0.1498 (11)0.0561 (12)
H100.6372020.6473580.1489260.067*
C110.6175 (2)0.60960 (7)0.3062 (11)0.0492 (10)
H110.5735090.6140830.4008580.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03445 (16)0.0558 (2)0.0527 (2)0.01006 (15)0.00518 (18)0.0093 (2)
N10.0247 (11)0.0267 (11)0.0400 (16)0.0010 (9)0.0013 (10)0.0019 (10)
N20.0482 (16)0.0388 (14)0.073 (2)0.0034 (12)0.015 (2)0.0040 (19)
C10.0306 (18)0.0320 (18)0.035 (2)0.0004 (15)0.0000.000
C20.0255 (13)0.0324 (14)0.0500 (19)0.0050 (11)0.0050 (16)0.0038 (15)
C30.0287 (15)0.0304 (14)0.052 (2)0.0047 (11)0.0043 (14)0.0056 (14)
C40.0273 (13)0.0283 (12)0.0396 (16)0.0010 (10)0.0011 (15)0.0045 (16)
C50.0233 (14)0.0355 (16)0.056 (2)0.0030 (11)0.0061 (13)0.0021 (14)
C60.0245 (12)0.0331 (14)0.0520 (18)0.0053 (10)0.0012 (16)0.0047 (16)
C70.0315 (15)0.0295 (13)0.045 (2)0.0018 (11)0.0014 (13)0.0021 (13)
C80.0353 (17)0.0331 (16)0.059 (2)0.0028 (13)0.0115 (15)0.0021 (14)
C90.0421 (18)0.0399 (16)0.073 (3)0.0003 (13)0.021 (2)0.001 (2)
C100.050 (2)0.0330 (17)0.085 (3)0.0041 (15)0.022 (2)0.0093 (18)
C110.0384 (17)0.0357 (16)0.073 (3)0.0041 (13)0.0183 (19)0.0022 (18)
Geometric parameters (Å, º) top
N1—C11.468 (4)C4—C71.477 (4)
N1—C21.352 (4)C5—H50.9300
N1—C61.354 (4)C5—C61.365 (5)
N2—C91.332 (4)C6—H60.9300
N2—C101.330 (5)C7—C81.379 (4)
C1—H1A0.9700C7—C111.394 (4)
C1—H1B0.9700C8—H80.9300
C2—H20.9300C8—C91.374 (5)
C2—C31.369 (5)C9—H90.9300
C3—H30.9300C10—H100.9300
C3—C41.400 (4)C10—C111.376 (5)
C4—C51.394 (4)C11—H110.9300
C2—N1—C1119.1 (2)C6—C5—C4120.7 (3)
C2—N1—C6120.9 (3)C6—C5—H5119.6
C6—N1—C1120.0 (2)N1—C6—C5120.3 (3)
C10—N2—C9115.9 (3)N1—C6—H6119.9
N1—C1—N1i111.1 (4)C5—C6—H6119.9
N1—C1—H1A109.4C8—C7—C4121.7 (3)
N1i—C1—H1A109.4C8—C7—C11117.1 (3)
N1—C1—H1B109.4C11—C7—C4121.2 (3)
N1i—C1—H1B109.4C7—C8—H8120.3
H1A—C1—H1B108.0C9—C8—C7119.4 (3)
N1—C2—H2119.9C9—C8—H8120.3
N1—C2—C3120.1 (3)N2—C9—C8124.4 (3)
C3—C2—H2119.9N2—C9—H9117.8
C2—C3—H3119.7C8—C9—H9117.8
C2—C3—C4120.6 (3)N2—C10—H10117.9
C4—C3—H3119.7N2—C10—C11124.3 (3)
C3—C4—C7121.1 (3)C11—C10—H10117.9
C5—C4—C3117.3 (3)C7—C11—H11120.5
C5—C4—C7121.6 (3)C10—C11—C7119.0 (3)
C4—C5—H5119.6C10—C11—H11120.5
N1—C2—C3—C40.1 (6)C4—C7—C8—C9179.8 (4)
N2—C10—C11—C72.5 (8)C4—C7—C11—C10178.7 (4)
C1—N1—C2—C3178.4 (4)C5—C4—C7—C820.9 (6)
C1—N1—C6—C5178.5 (4)C5—C4—C7—C11158.9 (4)
C2—N1—C1—N1i87.1 (3)C6—N1—C1—N1i93.5 (3)
C2—N1—C6—C51.0 (6)C6—N1—C2—C31.0 (6)
C2—C3—C4—C50.9 (6)C7—C4—C5—C6178.1 (4)
C2—C3—C4—C7178.2 (4)C7—C8—C9—N20.9 (7)
C3—C4—C5—C60.9 (6)C8—C7—C11—C101.1 (6)
C3—C4—C7—C8160.1 (4)C9—N2—C10—C112.1 (8)
C3—C4—C7—C1120.1 (6)C10—N2—C9—C80.3 (7)
C4—C5—C6—N10.1 (6)C11—C7—C8—C90.4 (6)
Symmetry code: (i) x+1, y+1, z.
 

Funding information

Funding for this research was provided by: National Science Foundation (grant No. 1726652 to UNT; grant No. 1712066 to Austin College); Welch Foundation (grant No. AD-0007 to Austin College).

References

First citationBlanco, V., Chas, M., Abella, D., Peinador, C. & Quintela, J. M. (2007). J. Am. Chem. Soc. 129, 13978–13986.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191–2201.  Web of Science CrossRef CAS Google Scholar
First citationNeal, H. C., Nesterov, V. V. & Smucker, B. W. (2022). IUCrData, 7, x220525.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD, (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds