metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[bis­­[μ2-4,4′-bis­­(imidazol-1-ylmeth­yl)bi­phenyl-κ2N:N′]di­chlorido­nickel(II)]

crossmark logo

aFaculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650050, People's Republic of China
*Correspondence e-mail: zaxchem@126.com

Edited by M. Zeller, Purdue University, USA (Received 1 April 2022; accepted 6 April 2022; online 12 April 2022)

In the title compound, [NiCl2(C20H18N4)2]n, the Ni2+ cation is situated on an inversion center and is coordinated by two chloride ions and four imidazole N atoms of four different 4,4′-bis­[(1H-imidazol-1-yl)meth­yl]-1,1′-biphenyl (BIMB), forming a slightly distorted octa­hedral geometry. Each BIMB ligand adopts a linear linker to connect Ni2+ ions, forming a two-dimensional layer with an sql network. In the crystal, neighboring layers repeat in an ABAB stacking mode, and weak inter­molecular C—H⋯Cl hydrogen bonds between alternate layers lead to a three-dimensional, twofold inter­penetrated, supra­molecular framework with a pcu topology net.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Over the last two decades, imidazole and its derivatives have attracted a lot of attention as N-heterocyclic aromatic ligands, since they can easily form metal–imidazole frameworks with special luminescent, magnetic and favorable gas-adsorption abilities (Banerjee et al. 2008[Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. (2008). Science, 319, 939-943.]; Zhang et al. 2012[Zhang, J.-P., Zhang, Y.-B., Lin, J.-B. & Chen, X.-M. (2012). Chem. Rev. 112, 1001-1033.]; Zhu et al. 2012[Zhu, A.-X., Lin, R.-B., Qi, X.-L., Liu, Y., Lin, Y.-Y., Zhang, J.-P. & Chen, X.-M. (2012). Microporous Mesoporous Mater. 157, 42-49.]; Chen et al. 2014[Chen, B., Yang, Z., Zhu, Y. & Xia, Y. (2014). J. Mater. Chem. A, 2, 16811-16831.]). As an extended imidazole-type linker, the flexible ligand 4,4′-bis­[(1H-imidazol-1-yl)meth­yl]-1,1′-biphenyl (BIMB) exhibits a geometrical diversity with cis or trans conformations, leading to diverse structures of coordination compounds. Until now, most reported metal–organic compounds based on BIMB ligands have employed organic multi­carboxyl­ates as co-ligands because BIMB is a neutral ligand and another anion is needed to balance the charge requirement to form a neutral framework. Common inorganic anions such as Cl, Br, I, NO3, SO42−, N3, etc. can also be used as co-ligands to balance the charge requirement. However, only ten examples of neutral, BIMB-based metal–organic compounds have been reported [according to the Cambridge Structural Database (CSD, Version 5.43 with update of March, 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with inorganic anions as co-ligands.

The asymmetric unit of the title compound, [NiCl2(C20H18N4)2]n, contains one half nickel(II) ion, two half BIMB ligands and one chloride ion (Fig. 1[link]). The nickel(II) ion sits on an inversion center and is coordinated by four imidazole nitro­gen atoms from four different BIMB ligands [Ni—N = 2.100 (3)–2.108 (3) Å] and two chloride ions [Ni—Cl = 2.4793 (11) Å], forming a slightly distorted octa­hedral geometry. In the crystal, the BIMB ligands have twofold rotational symmetry, being bis­ected by rotation axes, and the biphenyl groups are not coplanar, with dihedral angles of 33.21 (10) and 35.4 (10)° between the ring planes. The dihedral angles between the imidazole ring plane and the average plane of the biphenyl group are 87.71 (14) and 81.93 (14)°. Each BIMB ligand exhibits a cis-conformation relative to the average plane of the biphenyl group, and acts as a linear linker between Ni2+ ions, which gives a corrugated two-dimensional layer structure with an sql (square lattice) network as illustrated in Fig. 2[link]. The layers stack in an –ABAB– mode, and the Ni2+ ion in one layer is located at the center of the grid of adjacent layers. Thus, there are no residual solvent-accessible voids in this compound. Alternate layers between AA or BB layers are further linked by C—H⋯Cl hydrogen bonds (Table 1[link], Figs. 3[link] and 4[link]) to form a three-dimensional, twofold inter­penetrated, supra­molecular framework with a pcu (primitive cubic) topology network (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cl1i 0.93 2.79 3.605 (4) 147
C14—H14B⋯Cl1i 0.97 2.80 3.686 (5) 153
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 1]
Figure 1
The coordination environment of the zinc ions and the BIMB ligands in the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity. [Symmetry codes: (A) [{1\over 2}] − x, [{1\over 2}] − y, 1 − z; (B) −x, y, [{1\over 2}] − z; (C) 1 − x, y, [{1\over 2}] − z; (D) [{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z; (E) x − [{1\over 2}], [{1\over 2}] − y, [{1\over 2}] + z.]
[Figure 2]
Figure 2
The two-dimensional structure of the title compound with sql network viewed along the b axis.
[Figure 3]
Figure 3
The packing of the title compound viewed along the b axis. H atoms are omitted for clarity.
[Figure 4]
Figure 4
View of the C—H⋯Cl hydrogen bonds (dashed lines) between alternate layers along the c axis. H atoms not involved in hydrogen bonding are omitted.
[Figure 5]
Figure 5
The twofold inter­penetrated supra­molecular framework with a pcu topology network connected by C—H⋯Cl hydrogen bonds (shown as dashed lines).

The structure of the title compound is isomorphous to that of the cadmium(II) compound, whose structure has been studied at 200 K (Zhao et al. 2003[Zhao, W., Zhu, H.-F., Okamura, T.-A., Sun, W.-Y. & Ueyama, N. (2003). Supramol. Chem. 15, 345-352.]). This structural similarity of the CdII and NiII compounds is somewhat unexpected in view of the different effective radii of these ions (Shannon & Prewitt, 1969[Shannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925-946.], 1970[Shannon, R. D. & Prewitt, C. T. (1970). Acta Cryst. B26, 1046-1048.]), which causes the differences between M—N distances [Cd—-N = 2.339 (2)–2.364 (2) Å in the cadmium(II) compound]. It should also be noted that the title compound was easily obtained within one day using solvothermal conditions, whereas the cadmium(II) compound was obtained after several weeks using a slow-diffusion method.

Synthesis and crystallization

A mixture of NiCl2·H2O (24 mg, 0.1 mmol), BIMB (62 mg, 0.2 mmol) and DMF (6 ml) was added to a 20 ml glass vial and then ultrasonicated for 1 minute. The vial was capped tightly and placed in an oven at 120°C. After 12 h, the vial was removed from the oven and allowed to cool to room temperature. The light-green transparent needle-like crystals were collected by filtration, washed with DMF and dried under ambient conditions. About 34 mg of product was obtained (44% yield based on BIMB ligand). The phase purity of the bulk sample was verified by powder X-ray diffraction (PXRD). The experimental and simulated powder XRD patterns of the title compound are displayed in Fig. S1 of the supporting information. Their peak positions are in good agreement with each other, indicating the phase purity of the title compound (slight intensity mismatches due to preferred orientation are observed).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [NiCl2(C20H18N4)2]
Mr 758.38
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 26.453 (3), 7.3571 (7), 18.099 (2)
β (°) 93.223 (11)
V3) 3516.8 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.75
Crystal size (mm) 0.30 × 0.22 × 0.16
 
Data collection
Diffractometer Oxford Diffraction, Xcalibur, Eos, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.856, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16025, 4343, 2543
Rint 0.078
(sin θ/λ)max−1) 0.692
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.161, 1.06
No. of reflections 4343
No. of parameters 232
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.61, −0.27
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: DIAMOND (Brandenburg, 1999).

Poly[bis[µ2-4,4'-bis(imidazol-1-ylmethyl)biphenyl-κ2N:N']dichloridonickel(II)] top
Crystal data top
[NiCl2(C20H18N4)2]F(000) = 1576
Mr = 758.38Dx = 1.432 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 26.453 (3) ÅCell parameters from 3041 reflections
b = 7.3571 (7) Åθ = 2.7–22.6°
c = 18.099 (2) ŵ = 0.75 mm1
β = 93.223 (11)°T = 296 K
V = 3516.8 (7) Å3Needle, green
Z = 40.30 × 0.22 × 0.16 mm
Data collection top
Oxford Diffraction, Xcalibur, Eos, Gemini
diffractometer
2543 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.078
ω scansθmax = 29.5°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 3535
Tmin = 0.856, Tmax = 1.000k = 910
16025 measured reflectionsl = 2419
4343 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0438P)2 + 5.351P]
where P = (Fo2 + 2Fc2)/3
4343 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were placed in idealized positions (C—H = 0.93 Å for aromatic H; C—H = 0.97 Å for methylene H) and refined as riding atoms with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.2500000.2500000.5000000.0419 (2)
Cl10.21866 (4)0.51154 (14)0.57071 (6)0.0488 (3)
N10.22244 (12)0.3739 (5)0.40075 (19)0.0423 (8)
N20.20188 (12)0.5693 (5)0.31205 (19)0.0454 (9)
N30.32078 (12)0.3777 (5)0.49579 (19)0.0451 (9)
N40.38019 (12)0.5864 (5)0.4895 (2)0.0454 (9)
C10.21920 (15)0.5462 (6)0.3818 (2)0.0480 (11)
H10.2280550.6415020.4137250.058*
C20.19229 (17)0.4035 (7)0.2839 (3)0.0605 (13)
H20.1793570.3758180.2364140.073*
C30.20524 (17)0.2848 (7)0.3387 (3)0.0594 (13)
H30.2027110.1590980.3344590.071*
C40.19061 (16)0.7409 (7)0.2746 (3)0.0598 (13)
H4A0.2050600.7404340.2265550.072*
H4B0.2059270.8398970.3033680.072*
C50.13415 (16)0.7708 (6)0.2650 (3)0.0485 (11)
C60.10774 (17)0.7322 (6)0.1991 (3)0.0555 (12)
H60.1252070.6979580.1581490.067*
C70.05550 (17)0.7438 (6)0.1933 (3)0.0511 (11)
H70.0384710.7169960.1482300.061*
C80.02803 (15)0.7940 (5)0.2523 (2)0.0443 (11)
C90.05500 (17)0.8394 (7)0.3182 (3)0.0568 (12)
H90.0377670.8776170.3587950.068*
C100.10719 (17)0.8279 (7)0.3234 (3)0.0601 (13)
H100.1245560.8596170.3675910.072*
C110.33046 (15)0.5513 (6)0.4876 (2)0.0460 (11)
H110.3055540.6399860.4812240.055*
C120.36761 (17)0.2989 (6)0.5055 (3)0.0573 (13)
H120.3731600.1756610.5139870.069*
C130.40491 (18)0.4252 (6)0.5009 (3)0.0580 (13)
H130.4397010.4058190.5048300.070*
C140.40289 (17)0.7651 (6)0.4815 (3)0.0523 (12)
H14A0.4250990.7908090.5247420.063*
H14B0.3764260.8565600.4788230.063*
C150.43247 (16)0.7761 (6)0.4137 (3)0.0474 (11)
C160.48277 (16)0.8245 (6)0.4154 (3)0.0558 (12)
H160.4993480.8523390.4606920.067*
C170.50950 (17)0.8329 (7)0.3518 (3)0.0588 (13)
H170.5433350.8678280.3546910.071*
C180.48594 (16)0.7894 (5)0.2841 (2)0.0468 (11)
C190.43553 (17)0.7414 (6)0.2819 (3)0.0544 (12)
H190.4188790.7135210.2367010.065*
C200.40927 (17)0.7340 (6)0.3457 (3)0.0556 (12)
H200.3753520.7000110.3428000.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0420 (4)0.0360 (4)0.0478 (5)0.0039 (3)0.0020 (3)0.0062 (4)
Cl10.0494 (6)0.0406 (6)0.0563 (7)0.0077 (5)0.0024 (5)0.0018 (5)
N10.0364 (19)0.042 (2)0.048 (2)0.0009 (16)0.0007 (16)0.0031 (17)
N20.0367 (19)0.050 (2)0.049 (2)0.0005 (17)0.0055 (16)0.0120 (18)
N30.0380 (19)0.039 (2)0.059 (2)0.0035 (16)0.0041 (17)0.0061 (18)
N40.040 (2)0.036 (2)0.060 (2)0.0003 (16)0.0051 (17)0.0076 (17)
C10.046 (3)0.047 (3)0.050 (3)0.002 (2)0.007 (2)0.000 (2)
C20.060 (3)0.060 (3)0.059 (3)0.014 (3)0.016 (2)0.005 (3)
C30.055 (3)0.046 (3)0.075 (4)0.009 (2)0.013 (3)0.005 (3)
C40.044 (3)0.065 (3)0.069 (3)0.003 (2)0.004 (2)0.027 (3)
C50.045 (2)0.045 (3)0.055 (3)0.000 (2)0.005 (2)0.015 (2)
C60.052 (3)0.056 (3)0.058 (3)0.005 (2)0.004 (2)0.002 (2)
C70.053 (3)0.051 (3)0.048 (3)0.001 (2)0.013 (2)0.002 (2)
C80.048 (2)0.037 (2)0.046 (3)0.0001 (18)0.009 (2)0.004 (2)
C90.053 (3)0.068 (3)0.048 (3)0.002 (2)0.006 (2)0.001 (3)
C100.052 (3)0.072 (3)0.055 (3)0.002 (3)0.018 (2)0.001 (3)
C110.037 (2)0.045 (3)0.056 (3)0.0067 (19)0.001 (2)0.006 (2)
C120.055 (3)0.040 (3)0.077 (4)0.008 (2)0.007 (3)0.012 (2)
C130.049 (3)0.046 (3)0.079 (4)0.008 (2)0.002 (2)0.004 (3)
C140.051 (3)0.046 (3)0.060 (3)0.003 (2)0.005 (2)0.001 (2)
C150.045 (2)0.040 (3)0.057 (3)0.001 (2)0.003 (2)0.001 (2)
C160.044 (3)0.062 (3)0.061 (3)0.004 (2)0.000 (2)0.000 (3)
C170.039 (2)0.060 (3)0.078 (4)0.006 (2)0.005 (2)0.002 (3)
C180.046 (3)0.032 (2)0.062 (3)0.0030 (18)0.005 (2)0.000 (2)
C190.048 (3)0.058 (3)0.057 (3)0.002 (2)0.001 (2)0.002 (2)
C200.043 (3)0.058 (3)0.066 (3)0.004 (2)0.003 (2)0.001 (3)
Geometric parameters (Å, º) top
Ni1—N3i2.100 (3)C6—H60.9300
Ni1—N32.100 (3)C7—C81.377 (6)
Ni1—N12.108 (3)C7—H70.9300
Ni1—N1i2.108 (3)C8—C91.395 (6)
Ni1—Cl12.4793 (11)C8—C8ii1.480 (8)
Ni1—Cl1i2.4793 (11)C9—C101.381 (6)
N1—C11.315 (5)C9—H90.9300
N1—C31.357 (5)C10—H100.9300
N2—C11.330 (5)C11—H110.9300
N2—C21.341 (6)C12—C131.361 (6)
N2—C41.456 (5)C12—H120.9300
N3—C111.312 (5)C13—H130.9300
N3—C121.370 (5)C14—C151.495 (6)
N4—C111.339 (5)C14—H14A0.9700
N4—C131.365 (5)C14—H14B0.9700
N4—C141.456 (5)C15—C161.376 (6)
C1—H10.9300C15—C201.378 (6)
C2—C31.351 (6)C16—C171.386 (6)
C2—H20.9300C16—H160.9300
C3—H30.9300C17—C181.380 (6)
C4—C51.510 (6)C17—H170.9300
C4—H4A0.9700C18—C191.378 (6)
C4—H4B0.9700C18—C18iii1.476 (9)
C5—C101.374 (6)C19—C201.382 (6)
C5—C61.377 (6)C19—H190.9300
C6—C71.383 (6)C20—H200.9300
N3i—Ni1—N3180.0C7—C6—H6119.7
N3i—Ni1—N187.59 (13)C8—C7—C6121.8 (4)
N3—Ni1—N192.41 (13)C8—C7—H7119.1
N3i—Ni1—N1i92.41 (13)C6—C7—H7119.1
N3—Ni1—N1i87.59 (13)C7—C8—C9117.4 (4)
N1—Ni1—N1i180.00 (17)C7—C8—C8ii121.8 (4)
N3i—Ni1—Cl190.22 (10)C9—C8—C8ii120.8 (5)
N3—Ni1—Cl189.78 (10)C10—C9—C8120.3 (5)
N1—Ni1—Cl189.69 (10)C10—C9—H9119.8
N1i—Ni1—Cl190.31 (10)C8—C9—H9119.8
N3i—Ni1—Cl1i89.78 (10)C5—C10—C9121.8 (4)
N3—Ni1—Cl1i90.22 (10)C5—C10—H10119.1
N1—Ni1—Cl1i90.31 (10)C9—C10—H10119.1
N1i—Ni1—Cl1i89.69 (10)N3—C11—N4112.5 (4)
Cl1—Ni1—Cl1i180.0N3—C11—H11123.8
C1—N1—C3103.7 (4)N4—C11—H11123.8
C1—N1—Ni1130.8 (3)C13—C12—N3110.9 (4)
C3—N1—Ni1125.5 (3)C13—C12—H12124.6
C1—N2—C2107.0 (4)N3—C12—H12124.6
C1—N2—C4127.1 (4)C12—C13—N4105.0 (4)
C2—N2—C4125.7 (4)C12—C13—H13127.5
C11—N3—C12104.2 (4)N4—C13—H13127.5
C11—N3—Ni1128.3 (3)N4—C14—C15111.6 (4)
C12—N3—Ni1127.4 (3)N4—C14—H14A109.3
C11—N4—C13107.3 (4)C15—C14—H14A109.3
C11—N4—C14125.6 (4)N4—C14—H14B109.3
C13—N4—C14127.1 (4)C15—C14—H14B109.3
N1—C1—N2112.6 (4)H14A—C14—H14B108.0
N1—C1—H1123.7C16—C15—C20117.4 (4)
N2—C1—H1123.7C16—C15—C14123.0 (4)
N2—C2—C3106.0 (4)C20—C15—C14119.6 (4)
N2—C2—H2127.0C15—C16—C17122.0 (4)
C3—C2—H2127.0C15—C16—H16119.0
C2—C3—N1110.8 (4)C17—C16—H16119.0
C2—C3—H3124.6C18—C17—C16120.1 (4)
N1—C3—H3124.6C18—C17—H17120.0
N2—C4—C5110.8 (3)C16—C17—H17120.0
N2—C4—H4A109.5C19—C18—C17118.2 (4)
C5—C4—H4A109.5C19—C18—C18iii120.6 (5)
N2—C4—H4B109.5C17—C18—C18iii121.2 (5)
C5—C4—H4B109.5C18—C19—C20121.1 (4)
H4A—C4—H4B108.1C18—C19—H19119.4
C10—C5—C6118.0 (4)C20—C19—H19119.4
C10—C5—C4120.5 (4)C15—C20—C19121.1 (4)
C6—C5—C4121.4 (5)C15—C20—H20119.4
C5—C6—C7120.6 (5)C19—C20—H20119.4
C5—C6—H6119.7
C3—N1—C1—N20.9 (5)C12—N3—C11—N41.7 (5)
Ni1—N1—C1—N2176.6 (3)Ni1—N3—C11—N4178.2 (3)
C2—N2—C1—N11.2 (5)C13—N4—C11—N31.1 (5)
C4—N2—C1—N1175.8 (4)C14—N4—C11—N3179.6 (4)
C1—N2—C2—C30.9 (5)C11—N3—C12—C131.7 (5)
C4—N2—C2—C3175.6 (4)Ni1—N3—C12—C13178.2 (3)
N2—C2—C3—N10.4 (6)N3—C12—C13—N41.1 (6)
C1—N1—C3—C20.3 (5)C11—N4—C13—C120.0 (5)
Ni1—N1—C3—C2177.4 (3)C14—N4—C13—C12179.3 (4)
C1—N2—C4—C5105.6 (5)C11—N4—C14—C15116.3 (5)
C2—N2—C4—C568.0 (6)C13—N4—C14—C1564.6 (6)
N2—C4—C5—C1077.7 (6)N4—C14—C15—C16123.9 (5)
N2—C4—C5—C698.6 (5)N4—C14—C15—C2055.2 (5)
C10—C5—C6—C72.6 (7)C20—C15—C16—C170.6 (7)
C4—C5—C6—C7173.8 (4)C14—C15—C16—C17179.7 (4)
C5—C6—C7—C80.0 (7)C15—C16—C17—C181.0 (7)
C6—C7—C8—C92.2 (7)C16—C17—C18—C191.2 (7)
C6—C7—C8—C8ii175.6 (3)C16—C17—C18—C18iii177.3 (3)
C7—C8—C9—C102.0 (7)C17—C18—C19—C201.0 (7)
C8ii—C8—C9—C10175.9 (4)C18iii—C18—C19—C20177.5 (3)
C6—C5—C10—C92.8 (7)C16—C15—C20—C190.4 (7)
C4—C5—C10—C9173.6 (4)C14—C15—C20—C19179.5 (4)
C8—C9—C10—C50.5 (8)C18—C19—C20—C150.7 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+1/2; (iii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Cl1iv0.932.793.605 (4)147
C14—H14B···Cl1iv0.972.803.686 (5)153
Symmetry code: (iv) x+1/2, y+3/2, z+1.
 

Funding information

Funding for this research was provided by: the Research Training Program (KX2021018) for College Students of Yunnan Normal University.

References

First citationBanerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. (2008). Science, 319, 939–943.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, B., Yang, Z., Zhu, Y. & Xia, Y. (2014). J. Mater. Chem. A, 2, 16811–16831.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationShannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925–946.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationShannon, R. D. & Prewitt, C. T. (1970). Acta Cryst. B26, 1046–1048.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, J.-P., Zhang, Y.-B., Lin, J.-B. & Chen, X.-M. (2012). Chem. Rev. 112, 1001–1033.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhao, W., Zhu, H.-F., Okamura, T.-A., Sun, W.-Y. & Ueyama, N. (2003). Supramol. Chem. 15, 345–352.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, A.-X., Lin, R.-B., Qi, X.-L., Liu, Y., Lin, Y.-Y., Zhang, J.-P. & Chen, X.-M. (2012). Microporous Mesoporous Mater. 157, 42–49.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds