organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(oxotremorine) fumarate bis­­(fumaric acid)

crossmark logo

aUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bCaaMTech, Inc., 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by M. Zeller, Purdue University, USA (Received 28 March 2022; accepted 1 April 2022; online 7 April 2022)

The title compound, bis­(oxotremorine) fumarate bis­(fumaric acid) {systematic name: 1-[4-(2-oxopyrrolidin-1-yl)but-2-yn­yl]pyrrolidinium (2E)-but-2-ene­di­o­ate bis­[(2E)-but-2-enedioic acid]}, 2C12H19N2O+·C4H2O42−·2C4H4O4, has a single oxotremorine monocation protonated at the pyrrolidine nitro­gen, one fumaric acid mol­ecule and half of a fumarate dianion in the asymmetric unit. The ions and fumaric acid mol­ecules are held together by N—H⋯O and O–H-⋯O hydrogen bonds in 40-membered rings with graph-set notation R66(40). The fumarate ions join these rings into infinite chains along [001].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Oxotremorine is a selective agonist of the muscarinic acetyl­choline receptor, which reproduces many of the symptoms observed in Parkinson's disease. This property has made it an invaluable tool in studying potential pharmaceuticals for Parkinson's (Ringdahl & Jenden, 1983[Ringdahl, B. & Jenden, D. J. (1983). Life Sci. 32, 2401-2413.]). A salt of oxotremorine that is commonly used in biological studies is produced by treating oxotremorine free base with fumaric acid. The resulting salt is reported as the sesquifumarate, indicating that the compound possesses an empirical formula with a 1:1.5 ratio of cation to fumarate dianion. However, the structure reported here shows that in the solid-state, the compound consists of two monocationic, protonated oxotremorines, one doubly deprotonated dianionic fumarate, and two fully protonated fumaric acid mol­ecules. One half of these ions and mol­ecules are present in the asymmetric unit (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. The asymmetric unit contains one half of a fumarate dianion, which is disordered over two positions. The other half of the inversion-generated fumarate dianion is shown. Symmetry code: (i) 2 − x, 1 − y, −z.

The only compound found by searching on `sesquifumarate' in the Cambridge Structural Database (CSD, version 5.43, update of March 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) is that of the anti-arrhythmic agent tedisamil, which also exists as the bis­(cation) bis­(fumaric acid) fumarate and not the technical sesquifumarate (Jones et al., 2004[Jones, P. G., Schön, U. & Finner, E. (2004). Acta Cryst. E60, o1285-o1287.]: CSD refcode EYOYUM). There are seven other bis­(cation) bis­(fumaric acid) fumarate salts (Haynes et al., 2006[Haynes, D. A., Jones, W. & Motherwell, W. D. S. (2006). CrystEngComm, 8, 830-840.]: RESGEC, RESGUS; Provins et al., 2006[Provins, L., Christophe, B., Danhaive, P., Dulieu, J., Durieu, V., Gillard, M., Lebon, F., Lengelé, S., Quéré, L. & van Keulen, B. (2006). Bioorg. Med. Chem. Lett. 16, 1834-1839.]: SEGSAZ: Li & Zheng, 2005[Li, Z.-F. & Zheng, Y.-Q. (2005). J. Coord. Chem. 58, 883-890.]: QARKOK; Lin & Zheng, 2004[Lin, J.-L. & Zheng, Y.-Q. (2004). Z. Kristallogr. New Cryst. Struct. 219, 230-232.]: DAMYIA; Mohamed et al., 2009[Mohamed, S., Tocher, D. A., Vickers, M., Karamertzanis, P. G. & Price, S. L. (2009). Cryst. Growth Des. 9, 2881-2889.]: FUTNIS; Fang et al., 2022[Fang, Z.-Y., Zhang, B.-X., Xing, W.-H., Jia, H.-L., Wang, X., Gong, N.-B., Lu, Y. & Du, G.-H. (2022). Chin. Lett. Chem. In the press.]: CCDC 2092690), and one bis­(cation) bis­(fumarate) fumaric acid salt (Collin et al., 1987[Collin, S., Norberg, B., Evrard, G. & Durant, F. (1987). Acta Cryst. C43, 572-577.]: FEMKIR) found in a search of the CSD. Although all of these structures incorporate three equivalents of fumaric acid into their structures relative to two cations, none is a formal sesquifumarate. The only such example in the CSD is that of Λ-cobalt(III) tris­(ethyl­enedi­amine), which shows all three fumaric acid mol­ecules to be fully deprotonated and in a 3:2 ratio with the tricationic cobalt complex ions (Liebig & Ruschewitz, 2012[Liebig, T. J. & Ruschewitz, U. (2012). Cryst. Growth Des. 12, 5402-5410.]: PEJGAO). In general, there is a lack of precision when characterizing salts of fumaric acid, and diffraction studies are invaluable in distinguishing the different forms.

In the structure of the title compound, the pyrrolidinium N—H of oxotremorine has bifurcated hydrogen bonds to two O atoms of a symmetry-generated fumarate dianion. One fumaric acid O—H hydrogen bonds to the carbonyl oxygen of the oxopyrrolidine of oxotremorine. The other fumaric acid O—H hydrogen bonds to one of the fumarate dianion oxygen atoms (Table 1[link]). These hydrogen bonds connect two oxotremorine cations, two fumaric acid mol­ecules and two fumarate dianions into rings that have graph-set notation R66(40) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) (Fig. 2[link]). The fumarate ions connect these rings together into infinite one-dimensional chains along [001]. The crystal packing of the title compound is shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O5i 0.93 2.65 3.498 (2) 152
C3—H3B⋯O1i 0.97 2.43 3.381 (3) 166
C5—H5B⋯O2ii 0.97 2.51 3.434 (2) 159
C8—H8A⋯O4iii 0.97 2.54 3.191 (2) 125
C8—H8A⋯O6iii 0.97 2.53 3.456 (3) 161
C8—H8B⋯O5iv 0.97 2.52 3.480 (2) 173
C9—H9A⋯O6iv 0.97 2.56 3.228 (3) 126
C10—H10A⋯O5v 0.97 2.66 3.624 (3) 175
C11—H11A⋯O4vi 0.97 2.64 3.553 (3) 157
C12—H12B⋯O7vii 0.97 2.68 3.399 (2) 132
C12—H12B⋯O7Avii 0.97 2.37 3.139 (15) 135
O4—H4⋯O6 0.91 (1) 1.58 (1) 2.483 (2) 167 (2)
O3—H3⋯O1 0.90 (1) 1.69 (1) 2.5739 (16) 167 (2)
N2—H2⋯O6iv 0.908 (19) 2.554 (18) 3.172 (3) 125.8 (14)
N2—H2⋯O7iv 0.908 (19) 1.809 (19) 2.705 (2) 168.3 (17)
N2—H2⋯O6Aiv 0.908 (19) 2.43 (3) 3.131 (19) 133.6 (15)
N2—H2⋯O7Aiv 0.908 (19) 1.61 (2) 2.489 (15) 161.7 (17)
Symmetry codes: (i) [x-1, y, z]; (ii) [-x, -y, -z+1]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x+2, -y+1, -z+1]; (v) [-x+2, -y, -z+1]; (vi) [-x+1, -y, -z+1]; (vii) [x-1, y-1, z+1].
[Figure 2]
Figure 2
The hydrogen-bonding network forms chains along [001], which consist of R66(40) rings that are joined together by the fumarate dianions. The ring structure is shown above. Hydrogen atoms not involved in hydrogen bonds, and the second component of the disordered fumarate dianion are omitted for clarity.
[Figure 3]
Figure 3
The crystal packing of the title compound viewed along the b axis. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonds, and the second component of the disordered fumarate dianion are omitted for clarity.

The fumaric acid and the fumarate dianion are near planar with r.m.s. deviations from planarity of 0.092 and 0.033 Å, respectively. The C—O distances of the fumarate mol­ecules are delocalized with values of 1.270 (3) and 1.243 (2) Å. The C—O distances in the fumaric acid mol­ecules are localized, with the carbonyl distances being 1.209 (2) and 1.203 (2) Å and the carbon–hydroxyl distances being 1.310 (2) and 1.316 (18) Å. The C—O distances and the location of the hydrogen atoms from the difference-Fourier map make the assignment of fumarate and fumaric acid clear.

In the reported structure, the amino­but-2-ynyl­ammonium unit has a near anti conformation, with a N2—C8—C5—N1 torsion angle of 163.17 (13)°. The other known structure of oxotremorine is reported as the sesquioxalate, but is similarly composed of the bis­(oxotremorine) bis­(oxalic acid) oxalate, and shows a torsion angle of 38.35 (3)° for the equivalent nitro­gen and carbon atoms (Clarke et al., 1975[Clarke, P. J., Pauling, P. J. & Petcher, T. J. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 774-778.]: OXTREO). The other two similar structures reported, trimethyl-[4-(2-oxopyrrolidin-1-yl)but-2-yn­yl]-ammonium iodide (Baker & Pauling, 1973[Baker, R. W. & Pauling, P. J. (1973). J. Chem. Soc. Perkin Trans. 2, pp. 1247-1249.]: MXPBYA), and a related acetyl­enic imidazole (Moon et al., 1991[Moon, M. W., Chidester, C. G., Heier, R. F., Morris, J. K., Collins, R. J., Russell, R. R., Francis, J. W., Sage, G. P. & Sethy, V. H. (1991). J. Med. Chem. 34, 2314-2327.]: KOGCEO) show equivalent torsion angles of 143.50 (3) and 53.3 (4)°, respectively. The significant separation provided by the but-2-ynyl unit makes it so that there is no significant inter­action between the two units, giving no conformational preference.

Synthesis and crystallization

Single crystals suitable for X-ray diffraction studies were grown by dissolving 15 mg of oxotremorine sesquifumarate purchased from Sigma–Aldrich in 5 ml of water. Solvent was allowed to evaporate at ambient temperature and pressure and crystals formed after 12 h.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The fumarate dianion is disordered over two positions (C17, C18, O6, O7 and C17A, C18A, O6A, O7A), which were modeled using a SAME restraint, as well as EADP instructions. The two components showed a 0.855 (4) to 0.145 (4) occupancy ratio.

Table 2
Experimental details

Crystal data
Chemical formula 2C12H19N2O+·C4H2O42−·2C4H4O4
Mr 760.78
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 297
a, b, c (Å) 6.0921 (3), 8.5778 (5), 18.7260 (11)
α, β, γ (°) 94.922 (2), 90.428 (2), 98.945 (2)
V3) 962.88 (9)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.30 × 0.20 × 0.04
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.717, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 27417, 3651, 2975
Rint 0.035
(sin θ/λ)max−1) 0.612
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.03
No. of reflections 3651
No. of parameters 269
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.15
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

1-[4-(2-Oxopyrrolidin-1-yl)but-2-ynyl]pyrrolidinium (2E)-but-2-enedioate bis[(2E)-but-2-enedioic acid] top
Crystal data top
2C12H19N2O+·C4H2O42·2C4H4O4Z = 1
Mr = 760.78F(000) = 404
Triclinic, P1Dx = 1.312 Mg m3
a = 6.0921 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5778 (5) ÅCell parameters from 9070 reflections
c = 18.7260 (11) Åθ = 2.6–25.7°
α = 94.922 (2)°µ = 0.10 mm1
β = 90.428 (2)°T = 297 K
γ = 98.945 (2)°Block, colourless
V = 962.88 (9) Å30.30 × 0.20 × 0.04 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2975 reflections with I > 2σ(I)
φ and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 25.8°, θmin = 2.6°
Tmin = 0.717, Tmax = 0.745h = 77
27417 measured reflectionsk = 1010
3651 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: mixed
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.2757P]
where P = (Fo2 + 2Fc2)/3
3651 reflections(Δ/σ)max < 0.001
269 parametersΔρmax = 0.18 e Å3
8 restraintsΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms H2, H3 and H4 were found from a difference-Fourier map and were refined isotropically, using DFIX restraints with O–H distances of 0.90 (1) Å. Isotropic displacement parameters were set to 1.2 Ueq of the parent nitrogen atom and 1.5 Ueq of the parent oxygen atom. All other hydrogen atoms were placed in calculated positions with C–H = 0.93 Å (sp2) or 0.97 Å (sp3). Isotropic displacement parameters were set to 1.2 Ueq of the parent carbon atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O20.1880 (2)0.32007 (19)0.36008 (8)0.0785 (5)
O30.5181 (2)0.34987 (18)0.41423 (7)0.0648 (4)
O40.69301 (19)0.57836 (15)0.18323 (6)0.0575 (3)
O51.0269 (2)0.56449 (19)0.22771 (8)0.0732 (4)
C150.7126 (3)0.45921 (19)0.29059 (8)0.0457 (4)
H150.7985080.4155010.3224440.055*
C130.3847 (3)0.36674 (19)0.36123 (9)0.0466 (4)
C140.4977 (3)0.44695 (18)0.30158 (8)0.0453 (4)
H140.4117620.4913130.2699940.054*
C160.8265 (3)0.53832 (18)0.23060 (8)0.0445 (4)
O10.3504 (2)0.16999 (17)0.50962 (7)0.0673 (4)
N10.12900 (19)0.08762 (16)0.60010 (6)0.0421 (3)
N20.65707 (19)0.00872 (15)0.85784 (6)0.0380 (3)
C20.0229 (3)0.2911 (2)0.54231 (10)0.0578 (5)
H2A0.0430390.2810570.4944970.069*
H2B0.0944530.3997400.5535530.069*
C10.1861 (2)0.17907 (19)0.54731 (8)0.0445 (4)
C30.1513 (3)0.2442 (3)0.59673 (12)0.0758 (6)
H3A0.1689670.3348140.6296410.091*
H3B0.2932540.2038540.5729330.091*
C40.0716 (3)0.1172 (2)0.63662 (10)0.0576 (4)
H4A0.0396820.1538810.6866130.069*
H4B0.1819120.0221440.6339100.069*
C50.2587 (3)0.02922 (19)0.62190 (8)0.0458 (4)
H5A0.3707500.0438440.5864680.055*
H5B0.1621520.1298650.6239170.055*
C60.3680 (2)0.01937 (19)0.69249 (8)0.0453 (4)
C70.4569 (3)0.0611 (2)0.74894 (9)0.0476 (4)
C80.5696 (3)0.1275 (2)0.81681 (9)0.0526 (4)
H8A0.4660710.1777650.8464590.063*
H8B0.6919690.2088020.8067850.063*
C90.8224 (3)0.0784 (2)0.82116 (8)0.0463 (4)
H9A0.9637320.0100260.8174880.056*
H9B0.7697880.1224250.7735410.056*
C100.8423 (3)0.2081 (3)0.86974 (11)0.0690 (5)
H10A0.8674680.3040450.8418430.083*
H10B0.9648960.1752710.9038090.083*
C110.6245 (3)0.2359 (3)0.90830 (12)0.0729 (6)
H11A0.5485970.3430530.8960190.087*
H11B0.6499150.2205320.9598020.087*
C120.4880 (3)0.1170 (2)0.88405 (9)0.0561 (4)
H12A0.3837550.1644570.8459400.067*
H12B0.4064200.0747410.9235450.067*
H40.773 (3)0.632 (3)0.1495 (10)0.089 (7)*
H30.440 (4)0.291 (3)0.4458 (11)0.098 (8)*
H20.724 (3)0.068 (2)0.8967 (10)0.053 (5)*
O60.8934 (4)0.7598 (3)0.10050 (12)0.0504 (5)0.855 (4)
O71.1822 (4)0.7858 (2)0.02939 (11)0.0519 (4)0.855 (4)
C171.0122 (5)0.7065 (2)0.05155 (12)0.0381 (5)0.855 (4)
C180.9417 (3)0.5389 (2)0.02174 (10)0.0442 (5)0.855 (4)
H180.8047980.4870270.0352880.053*0.855 (4)
O6A0.939 (3)0.737 (2)0.0861 (11)0.0504 (5)0.145 (4)
O7A1.239 (2)0.8253 (18)0.0278 (9)0.0519 (4)0.145 (4)
C17A1.096 (3)0.7175 (18)0.0433 (9)0.0381 (5)0.145 (4)
C18A1.074 (2)0.5595 (14)0.0004 (6)0.0442 (5)0.145 (4)
H18A1.1894970.5482240.0309180.053*0.145 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0462 (7)0.1052 (12)0.0848 (10)0.0063 (7)0.0006 (6)0.0461 (9)
O30.0503 (7)0.0919 (10)0.0556 (7)0.0070 (6)0.0046 (6)0.0340 (7)
O40.0508 (7)0.0692 (8)0.0536 (7)0.0034 (6)0.0024 (5)0.0224 (6)
O50.0460 (7)0.0988 (11)0.0808 (9)0.0140 (7)0.0119 (6)0.0357 (8)
C150.0460 (8)0.0463 (9)0.0464 (9)0.0088 (7)0.0000 (7)0.0097 (7)
C130.0450 (9)0.0450 (9)0.0518 (9)0.0094 (7)0.0042 (7)0.0119 (7)
C140.0485 (9)0.0434 (8)0.0455 (8)0.0073 (7)0.0010 (7)0.0118 (7)
C160.0447 (9)0.0417 (8)0.0481 (9)0.0090 (7)0.0054 (7)0.0043 (7)
O10.0591 (7)0.0944 (10)0.0584 (8)0.0248 (7)0.0179 (6)0.0389 (7)
N10.0367 (6)0.0536 (8)0.0374 (7)0.0076 (5)0.0000 (5)0.0113 (6)
N20.0371 (6)0.0446 (7)0.0316 (6)0.0043 (5)0.0009 (5)0.0029 (5)
C20.0654 (11)0.0583 (11)0.0530 (10)0.0192 (9)0.0103 (8)0.0070 (8)
C10.0422 (8)0.0542 (9)0.0372 (8)0.0050 (7)0.0054 (6)0.0096 (7)
C30.0560 (11)0.0972 (16)0.0831 (14)0.0325 (11)0.0053 (10)0.0203 (12)
C40.0504 (9)0.0678 (11)0.0563 (10)0.0127 (8)0.0130 (8)0.0077 (8)
C50.0472 (8)0.0510 (9)0.0409 (8)0.0088 (7)0.0014 (7)0.0115 (7)
C60.0423 (8)0.0526 (9)0.0438 (9)0.0090 (7)0.0019 (7)0.0178 (7)
C70.0446 (8)0.0573 (10)0.0439 (9)0.0126 (7)0.0001 (7)0.0138 (7)
C80.0626 (10)0.0514 (10)0.0463 (9)0.0166 (8)0.0070 (8)0.0060 (7)
C90.0411 (8)0.0559 (10)0.0412 (8)0.0090 (7)0.0030 (6)0.0020 (7)
C100.0741 (13)0.0688 (13)0.0702 (12)0.0277 (10)0.0078 (10)0.0112 (10)
C110.0741 (13)0.0640 (12)0.0794 (14)0.0056 (10)0.0103 (11)0.0305 (11)
C120.0410 (8)0.0748 (12)0.0499 (9)0.0049 (8)0.0030 (7)0.0164 (8)
O60.0583 (12)0.0436 (10)0.0486 (13)0.0053 (7)0.0167 (7)0.0044 (8)
O70.0575 (14)0.0492 (13)0.0408 (7)0.0149 (9)0.0115 (9)0.0009 (9)
C170.0421 (14)0.0411 (9)0.0297 (10)0.0013 (10)0.0020 (11)0.0048 (7)
C180.0432 (10)0.0447 (11)0.0402 (10)0.0065 (8)0.0062 (8)0.0030 (8)
O6A0.0583 (12)0.0436 (10)0.0486 (13)0.0053 (7)0.0167 (7)0.0044 (8)
O7A0.0575 (14)0.0492 (13)0.0408 (7)0.0149 (9)0.0115 (9)0.0009 (9)
C17A0.0421 (14)0.0411 (9)0.0297 (10)0.0013 (10)0.0020 (11)0.0048 (7)
C18A0.0432 (10)0.0447 (11)0.0402 (10)0.0065 (8)0.0062 (8)0.0030 (8)
Geometric parameters (Å, º) top
O2—C131.2026 (19)C5—H5A0.9700
O3—C131.310 (2)C5—H5B0.9700
O3—H30.902 (10)C5—C61.473 (2)
O4—C161.3016 (19)C6—C71.185 (2)
O4—H40.914 (10)C7—C81.467 (2)
O5—C161.2092 (19)C8—H8A0.9700
C15—H150.9300C8—H8B0.9700
C15—C141.316 (2)C9—H9A0.9700
C15—C161.483 (2)C9—H9B0.9700
C13—C141.480 (2)C9—C101.515 (3)
C14—H140.9300C10—H10A0.9700
O1—C11.2372 (19)C10—H10B0.9700
N1—C11.3293 (19)C10—C111.511 (3)
N1—C41.451 (2)C11—H11A0.9700
N1—C51.452 (2)C11—H11B0.9700
N2—C81.486 (2)C11—C121.509 (3)
N2—C91.4833 (19)C12—H12A0.9700
N2—C121.490 (2)C12—H12B0.9700
N2—H20.908 (19)O6—C171.270 (3)
C2—H2A0.9700O7—C171.243 (2)
C2—H2B0.9700C17—C181.492 (3)
C2—C11.495 (2)C18—C18i1.295 (4)
C2—C31.510 (3)C18—H180.9300
C3—H3A0.9700O6A—C17A1.273 (14)
C3—H3B0.9700O7A—C17A1.222 (14)
C3—C41.509 (3)C17A—C18A1.502 (14)
C4—H4A0.9700C18A—C18Ai1.25 (2)
C4—H4B0.9700C18A—H18A0.9300
C13—O3—H3108.7 (16)H5A—C5—H5B107.9
C16—O4—H4110.0 (15)C6—C5—H5A109.3
C14—C15—H15117.9C6—C5—H5B109.3
C14—C15—C16124.13 (15)C7—C6—C5178.83 (17)
C16—C15—H15117.9C6—C7—C8174.81 (17)
O2—C13—O3123.57 (15)N2—C8—H8A108.7
O2—C13—C14122.35 (15)N2—C8—H8B108.7
O3—C13—C14114.08 (14)C7—C8—N2114.07 (14)
C15—C14—C13123.90 (15)C7—C8—H8A108.7
C15—C14—H14118.1C7—C8—H8B108.7
C13—C14—H14118.1H8A—C8—H8B107.6
O4—C16—C15114.39 (13)N2—C9—H9A111.2
O5—C16—O4123.90 (15)N2—C9—H9B111.2
O5—C16—C15121.70 (15)N2—C9—C10102.94 (13)
C1—N1—C4114.58 (13)H9A—C9—H9B109.1
C1—N1—C5123.48 (13)C10—C9—H9A111.2
C4—N1—C5121.90 (13)C10—C9—H9B111.2
C8—N2—C12116.01 (13)C9—C10—H10A110.5
C8—N2—H2103.0 (11)C9—C10—H10B110.5
C9—N2—C8116.32 (12)H10A—C10—H10B108.7
C9—N2—C12104.70 (13)C11—C10—C9106.06 (15)
C9—N2—H2108.6 (11)C11—C10—H10A110.5
C12—N2—H2107.8 (11)C11—C10—H10B110.5
H2A—C2—H2B108.8C10—C11—H11A110.5
C1—C2—H2A110.7C10—C11—H11B110.5
C1—C2—H2B110.7H11A—C11—H11B108.7
C1—C2—C3105.11 (15)C12—C11—C10106.27 (15)
C3—C2—H2A110.7C12—C11—H11A110.5
C3—C2—H2B110.7C12—C11—H11B110.5
O1—C1—N1123.90 (15)N2—C12—C11103.58 (13)
O1—C1—C2126.98 (15)N2—C12—H12A111.0
N1—C1—C2109.11 (14)N2—C12—H12B111.0
C2—C3—H3A110.4C11—C12—H12A111.0
C2—C3—H3B110.4C11—C12—H12B111.0
H3A—C3—H3B108.6H12A—C12—H12B109.0
C4—C3—C2106.81 (15)O6—C17—C18116.8 (2)
C4—C3—H3A110.4O7—C17—O6123.1 (2)
C4—C3—H3B110.4O7—C17—C18120.1 (2)
N1—C4—C3104.08 (14)C17—C18—H18117.8
N1—C4—H4A110.9C18i—C18—C17124.4 (2)
N1—C4—H4B110.9C18i—C18—H18117.8
C3—C4—H4A110.9O6A—C17A—C18A116.1 (16)
C3—C4—H4B110.9O7A—C17A—O6A123.5 (16)
H4A—C4—H4B109.0O7A—C17A—C18A119.4 (16)
N1—C5—H5A109.3C17A—C18A—H18A114.6
N1—C5—H5B109.3C18Ai—C18A—C17A130.7 (16)
N1—C5—C6111.67 (13)C18Ai—C18A—H18A114.6
O2—C13—C14—C15159.84 (18)C5—N1—C1—O12.9 (2)
O3—C13—C14—C1519.3 (2)C5—N1—C1—C2176.77 (14)
C14—C15—C16—O48.4 (2)C5—N1—C4—C3179.65 (16)
C14—C15—C16—O5170.45 (18)C8—N2—C9—C10169.44 (14)
C16—C15—C14—C13179.50 (15)C8—N2—C12—C11168.12 (15)
N2—C9—C10—C1125.88 (19)C9—N2—C8—C759.62 (19)
C2—C3—C4—N14.8 (2)C9—N2—C12—C1138.48 (17)
C1—N1—C4—C32.4 (2)C9—C10—C11—C122.6 (2)
C1—N1—C5—C6109.44 (16)C10—C11—C12—N221.6 (2)
C1—C2—C3—C45.5 (2)C12—N2—C8—C764.18 (19)
C3—C2—C1—O1176.15 (18)C12—N2—C9—C1039.98 (16)
C3—C2—C1—N14.2 (2)O6—C17—C18—C18i171.2 (3)
C4—N1—C1—O1179.16 (16)O7—C17—C18—C18i7.4 (4)
C4—N1—C1—C21.17 (19)O6A—C17A—C18A—C18Ai1 (3)
C4—N1—C5—C668.36 (19)O7A—C17A—C18A—C18Ai169 (2)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O5ii0.932.653.498 (2)152
C3—H3B···O1ii0.972.433.381 (3)166
C5—H5B···O2iii0.972.513.434 (2)159
C8—H8A···O4iv0.972.543.191 (2)125
C8—H8A···O6iv0.972.533.456 (3)161
C8—H8B···O5v0.972.523.480 (2)173
C9—H9A···O6v0.972.563.228 (3)126
C10—H10A···O5vi0.972.663.624 (3)175
C11—H11A···O4vii0.972.643.553 (3)157
C12—H12B···O7viii0.972.683.399 (2)132
C12—H12B···O7Aviii0.972.373.139 (15)135
O4—H4···O60.91 (1)1.58 (1)2.483 (2)167 (2)
O3—H3···O10.90 (1)1.69 (1)2.5739 (16)167 (2)
N2—H2···O6v0.908 (19)2.554 (18)3.172 (3)125.8 (14)
N2—H2···O7v0.908 (19)1.809 (19)2.705 (2)168.3 (17)
N2—H2···O6Av0.908 (19)2.43 (3)3.131 (19)133.6 (15)
N2—H2···O7Av0.908 (19)1.61 (2)2.489 (15)161.7 (17)
Symmetry codes: (ii) x1, y, z; (iii) x, y, z+1; (iv) x+1, y+1, z+1; (v) x+2, y+1, z+1; (vi) x+2, y, z+1; (vii) x+1, y, z+1; (viii) x1, y1, z+1.
 

Acknowledgements

Financial statements and conflict of inter­est: This study was funded by CaaMTech, Inc. ARC reports ownership inter­est in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086); CaaMTech, Inc.

References

First citationBaker, R. W. & Pauling, P. J. (1973). J. Chem. Soc. Perkin Trans. 2, pp. 1247–1249.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClarke, P. J., Pauling, P. J. & Petcher, T. J. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 774–778.  CSD CrossRef Web of Science Google Scholar
First citationCollin, S., Norberg, B., Evrard, G. & Durant, F. (1987). Acta Cryst. C43, 572–577.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFang, Z.-Y., Zhang, B.-X., Xing, W.-H., Jia, H.-L., Wang, X., Gong, N.-B., Lu, Y. & Du, G.-H. (2022). Chin. Lett. Chem. In the press.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHaynes, D. A., Jones, W. & Motherwell, W. D. S. (2006). CrystEngComm, 8, 830–840.  Web of Science CSD CrossRef CAS Google Scholar
First citationJones, P. G., Schön, U. & Finner, E. (2004). Acta Cryst. E60, o1285–o1287.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, Z.-F. & Zheng, Y.-Q. (2005). J. Coord. Chem. 58, 883–890.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiebig, T. J. & Ruschewitz, U. (2012). Cryst. Growth Des. 12, 5402–5410.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, J.-L. & Zheng, Y.-Q. (2004). Z. Kristallogr. New Cryst. Struct. 219, 230–232.  CAS Google Scholar
First citationMohamed, S., Tocher, D. A., Vickers, M., Karamertzanis, P. G. & Price, S. L. (2009). Cryst. Growth Des. 9, 2881–2889.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoon, M. W., Chidester, C. G., Heier, R. F., Morris, J. K., Collins, R. J., Russell, R. R., Francis, J. W., Sage, G. P. & Sethy, V. H. (1991). J. Med. Chem. 34, 2314–2327.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationProvins, L., Christophe, B., Danhaive, P., Dulieu, J., Durieu, V., Gillard, M., Lebon, F., Lengelé, S., Quéré, L. & van Keulen, B. (2006). Bioorg. Med. Chem. Lett. 16, 1834–1839.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRingdahl, B. & Jenden, D. J. (1983). Life Sci. 32, 2401–2413.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds