organic compounds
Bis(oxotremorine) fumarate bis(fumaric acid)
aUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bCaaMTech, Inc., 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA
*Correspondence e-mail: dmanke@umassd.edu
The title compound, bis(oxotremorine) fumarate bis(fumaric acid) {systematic name: 1-[4-(2-oxopyrrolidin-1-yl)but-2-ynyl]pyrrolidinium (2E)-but-2-enedioate bis[(2E)-but-2-enedioic acid]}, 2C12H19N2O+·C4H2O42−·2C4H4O4, has a single oxotremorine monocation protonated at the pyrrolidine nitrogen, one fumaric acid molecule and half of a fumarate dianion in the The ions and fumaric acid molecules are held together by N—H⋯O and O–H-⋯O hydrogen bonds in 40-membered rings with graph-set notation R66(40). The fumarate ions join these rings into infinite chains along [001].
Keywords: crystal structure; hydrogen bonding; alkynes; pyrrolidines; fumarates.
CCDC reference: 2163782
Structure description
Oxotremorine is a selective agonist of the muscarinic acetylcholine receptor, which reproduces many of the symptoms observed in Parkinson's disease. This property has made it an invaluable tool in studying potential pharmaceuticals for Parkinson's (Ringdahl & Jenden, 1983). A salt of oxotremorine that is commonly used in biological studies is produced by treating oxotremorine free base with fumaric acid. The resulting salt is reported as the sesquifumarate, indicating that the compound possesses an with a 1:1.5 ratio of cation to fumarate dianion. However, the structure reported here shows that in the solid-state, the compound consists of two monocationic, protonated oxotremorines, one doubly deprotonated dianionic fumarate, and two fully protonated fumaric acid molecules. One half of these ions and molecules are present in the (Fig. 1).
The only compound found by searching on `sesquifumarate' in the Cambridge Structural Database (CSD, version 5.43, update of March 2022; Groom et al., 2016) is that of the anti-arrhythmic agent tedisamil, which also exists as the bis(cation) bis(fumaric acid) fumarate and not the technical sesquifumarate (Jones et al., 2004: CSD refcode EYOYUM). There are seven other bis(cation) bis(fumaric acid) fumarate salts (Haynes et al., 2006: RESGEC, RESGUS; Provins et al., 2006: SEGSAZ: Li & Zheng, 2005: QARKOK; Lin & Zheng, 2004: DAMYIA; Mohamed et al., 2009: FUTNIS; Fang et al., 2022: CCDC 2092690), and one bis(cation) bis(fumarate) fumaric acid salt (Collin et al., 1987: FEMKIR) found in a search of the CSD. Although all of these structures incorporate three equivalents of fumaric acid into their structures relative to two cations, none is a formal sesquifumarate. The only such example in the CSD is that of Λ-cobalt(III) tris(ethylenediamine), which shows all three fumaric acid molecules to be fully deprotonated and in a 3:2 ratio with the tricationic cobalt complex ions (Liebig & Ruschewitz, 2012: PEJGAO). In general, there is a lack of precision when characterizing salts of fumaric acid, and diffraction studies are invaluable in distinguishing the different forms.
In the structure of the title compound, the pyrrolidinium N—H of oxotremorine has bifurcated hydrogen bonds to two O atoms of a symmetry-generated fumarate dianion. One fumaric acid O—H hydrogen bonds to the carbonyl oxygen of the oxopyrrolidine of oxotremorine. The other fumaric acid O—H hydrogen bonds to one of the fumarate dianion oxygen atoms (Table 1). These hydrogen bonds connect two oxotremorine cations, two fumaric acid molecules and two fumarate dianions into rings that have graph-set notation R66(40) (Etter et al., 1990) (Fig. 2). The fumarate ions connect these rings together into infinite one-dimensional chains along [001]. The crystal packing of the title compound is shown in Fig. 3.
The fumaric acid and the fumarate dianion are near planar with r.m.s. deviations from planarity of 0.092 and 0.033 Å, respectively. The C—O distances of the fumarate molecules are delocalized with values of 1.270 (3) and 1.243 (2) Å. The C—O distances in the fumaric acid molecules are localized, with the carbonyl distances being 1.209 (2) and 1.203 (2) Å and the carbon–hydroxyl distances being 1.310 (2) and 1.316 (18) Å. The C—O distances and the location of the hydrogen atoms from the difference-Fourier map make the assignment of fumarate and fumaric acid clear.
In the reported structure, the aminobut-2-ynylammonium unit has a near anti conformation, with a N2—C8—C5—N1 torsion angle of 163.17 (13)°. The other known structure of oxotremorine is reported as the sesquioxalate, but is similarly composed of the bis(oxotremorine) bis(oxalic acid) oxalate, and shows a torsion angle of 38.35 (3)° for the equivalent nitrogen and carbon atoms (Clarke et al., 1975: OXTREO). The other two similar structures reported, trimethyl-[4-(2-oxopyrrolidin-1-yl)but-2-ynyl]-ammonium iodide (Baker & Pauling, 1973: MXPBYA), and a related acetylenic imidazole (Moon et al., 1991: KOGCEO) show equivalent torsion angles of 143.50 (3) and 53.3 (4)°, respectively. The significant separation provided by the but-2-ynyl unit makes it so that there is no significant interaction between the two units, giving no conformational preference.
Synthesis and crystallization
Single crystals suitable for X-ray diffraction studies were grown by dissolving 15 mg of oxotremorine sesquifumarate purchased from Sigma–Aldrich in 5 ml of water. Solvent was allowed to evaporate at ambient temperature and pressure and crystals formed after 12 h.
Refinement
Crystal data, data collection and structure . The fumarate dianion is disordered over two positions (C17, C18, O6, O7 and C17A, C18A, O6A, O7A), which were modeled using a SAME restraint, as well as EADP instructions. The two components showed a 0.855 (4) to 0.145 (4) occupancy ratio.
details are summarized in Table 2
|
Structural data
CCDC reference: 2163782
https://doi.org/10.1107/S2414314622003649/zl4049sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622003649/zl4049Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314622003649/zl4049Isup3.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).2C12H19N2O+·C4H2O42−·2C4H4O4 | Z = 1 |
Mr = 760.78 | F(000) = 404 |
Triclinic, P1 | Dx = 1.312 Mg m−3 |
a = 6.0921 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.5778 (5) Å | Cell parameters from 9070 reflections |
c = 18.7260 (11) Å | θ = 2.6–25.7° |
α = 94.922 (2)° | µ = 0.10 mm−1 |
β = 90.428 (2)° | T = 297 K |
γ = 98.945 (2)° | Block, colourless |
V = 962.88 (9) Å3 | 0.30 × 0.20 × 0.04 mm |
Bruker D8 Venture CMOS diffractometer | 2975 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.035 |
Absorption correction: multi-scan (SADABS; Bruker, 2018) | θmax = 25.8°, θmin = 2.6° |
Tmin = 0.717, Tmax = 0.745 | h = −7→7 |
27417 measured reflections | k = −10→10 |
3651 independent reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: mixed |
wR(F2) = 0.109 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0473P)2 + 0.2757P] where P = (Fo2 + 2Fc2)/3 |
3651 reflections | (Δ/σ)max < 0.001 |
269 parameters | Δρmax = 0.18 e Å−3 |
8 restraints | Δρmin = −0.15 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Hydrogen atoms H2, H3 and H4 were found from a difference-Fourier map and were refined isotropically, using DFIX restraints with O–H distances of 0.90 (1) Å. Isotropic displacement parameters were set to 1.2 Ueq of the parent nitrogen atom and 1.5 Ueq of the parent oxygen atom. All other hydrogen atoms were placed in calculated positions with C–H = 0.93 Å (sp2) or 0.97 Å (sp3). Isotropic displacement parameters were set to 1.2 Ueq of the parent carbon atom. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O2 | 0.1880 (2) | 0.32007 (19) | 0.36008 (8) | 0.0785 (5) | |
O3 | 0.5181 (2) | 0.34987 (18) | 0.41423 (7) | 0.0648 (4) | |
O4 | 0.69301 (19) | 0.57836 (15) | 0.18323 (6) | 0.0575 (3) | |
O5 | 1.0269 (2) | 0.56449 (19) | 0.22771 (8) | 0.0732 (4) | |
C15 | 0.7126 (3) | 0.45921 (19) | 0.29059 (8) | 0.0457 (4) | |
H15 | 0.798508 | 0.415501 | 0.322444 | 0.055* | |
C13 | 0.3847 (3) | 0.36674 (19) | 0.36123 (9) | 0.0466 (4) | |
C14 | 0.4977 (3) | 0.44695 (18) | 0.30158 (8) | 0.0453 (4) | |
H14 | 0.411762 | 0.491313 | 0.269994 | 0.054* | |
C16 | 0.8265 (3) | 0.53832 (18) | 0.23060 (8) | 0.0445 (4) | |
O1 | 0.3504 (2) | 0.16999 (17) | 0.50962 (7) | 0.0673 (4) | |
N1 | 0.12900 (19) | 0.08762 (16) | 0.60010 (6) | 0.0421 (3) | |
N2 | 0.65707 (19) | 0.00872 (15) | 0.85784 (6) | 0.0380 (3) | |
C2 | 0.0229 (3) | 0.2911 (2) | 0.54231 (10) | 0.0578 (5) | |
H2A | −0.043039 | 0.281057 | 0.494497 | 0.069* | |
H2B | 0.094453 | 0.399740 | 0.553553 | 0.069* | |
C1 | 0.1861 (2) | 0.17907 (19) | 0.54731 (8) | 0.0445 (4) | |
C3 | −0.1513 (3) | 0.2442 (3) | 0.59673 (12) | 0.0758 (6) | |
H3A | −0.168967 | 0.334814 | 0.629641 | 0.091* | |
H3B | −0.293254 | 0.203854 | 0.572933 | 0.091* | |
C4 | −0.0716 (3) | 0.1172 (2) | 0.63662 (10) | 0.0576 (4) | |
H4A | −0.039682 | 0.153881 | 0.686613 | 0.069* | |
H4B | −0.181912 | 0.022144 | 0.633910 | 0.069* | |
C5 | 0.2587 (3) | −0.02922 (19) | 0.62190 (8) | 0.0458 (4) | |
H5A | 0.370750 | −0.043844 | 0.586468 | 0.055* | |
H5B | 0.162152 | −0.129865 | 0.623917 | 0.055* | |
C6 | 0.3680 (2) | 0.01937 (19) | 0.69249 (8) | 0.0453 (4) | |
C7 | 0.4569 (3) | 0.0611 (2) | 0.74894 (9) | 0.0476 (4) | |
C8 | 0.5696 (3) | 0.1275 (2) | 0.81681 (9) | 0.0526 (4) | |
H8A | 0.466071 | 0.177765 | 0.846459 | 0.063* | |
H8B | 0.691969 | 0.208802 | 0.806785 | 0.063* | |
C9 | 0.8224 (3) | −0.0784 (2) | 0.82116 (8) | 0.0463 (4) | |
H9A | 0.963732 | −0.010026 | 0.817488 | 0.056* | |
H9B | 0.769788 | −0.122425 | 0.773541 | 0.056* | |
C10 | 0.8423 (3) | −0.2081 (3) | 0.86974 (11) | 0.0690 (5) | |
H10A | 0.867468 | −0.304045 | 0.841843 | 0.083* | |
H10B | 0.964896 | −0.175271 | 0.903809 | 0.083* | |
C11 | 0.6245 (3) | −0.2359 (3) | 0.90830 (12) | 0.0729 (6) | |
H11A | 0.548597 | −0.343053 | 0.896019 | 0.087* | |
H11B | 0.649915 | −0.220532 | 0.959802 | 0.087* | |
C12 | 0.4880 (3) | −0.1170 (2) | 0.88405 (9) | 0.0561 (4) | |
H12A | 0.383755 | −0.164457 | 0.845940 | 0.067* | |
H12B | 0.406420 | −0.074741 | 0.923545 | 0.067* | |
H4 | 0.773 (3) | 0.632 (3) | 0.1495 (10) | 0.089 (7)* | |
H3 | 0.440 (4) | 0.291 (3) | 0.4458 (11) | 0.098 (8)* | |
H2 | 0.724 (3) | 0.068 (2) | 0.8967 (10) | 0.053 (5)* | |
O6 | 0.8934 (4) | 0.7598 (3) | 0.10050 (12) | 0.0504 (5) | 0.855 (4) |
O7 | 1.1822 (4) | 0.7858 (2) | 0.02939 (11) | 0.0519 (4) | 0.855 (4) |
C17 | 1.0122 (5) | 0.7065 (2) | 0.05155 (12) | 0.0381 (5) | 0.855 (4) |
C18 | 0.9417 (3) | 0.5389 (2) | 0.02174 (10) | 0.0442 (5) | 0.855 (4) |
H18 | 0.804798 | 0.487027 | 0.035288 | 0.053* | 0.855 (4) |
O6A | 0.939 (3) | 0.737 (2) | 0.0861 (11) | 0.0504 (5) | 0.145 (4) |
O7A | 1.239 (2) | 0.8253 (18) | 0.0278 (9) | 0.0519 (4) | 0.145 (4) |
C17A | 1.096 (3) | 0.7175 (18) | 0.0433 (9) | 0.0381 (5) | 0.145 (4) |
C18A | 1.074 (2) | 0.5595 (14) | 0.0004 (6) | 0.0442 (5) | 0.145 (4) |
H18A | 1.189497 | 0.548224 | −0.030918 | 0.053* | 0.145 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0462 (7) | 0.1052 (12) | 0.0848 (10) | −0.0063 (7) | −0.0006 (6) | 0.0461 (9) |
O3 | 0.0503 (7) | 0.0919 (10) | 0.0556 (7) | 0.0070 (6) | 0.0046 (6) | 0.0340 (7) |
O4 | 0.0508 (7) | 0.0692 (8) | 0.0536 (7) | 0.0034 (6) | 0.0024 (5) | 0.0224 (6) |
O5 | 0.0460 (7) | 0.0988 (11) | 0.0808 (9) | 0.0140 (7) | 0.0119 (6) | 0.0357 (8) |
C15 | 0.0460 (8) | 0.0463 (9) | 0.0464 (9) | 0.0088 (7) | 0.0000 (7) | 0.0097 (7) |
C13 | 0.0450 (9) | 0.0450 (9) | 0.0518 (9) | 0.0094 (7) | 0.0042 (7) | 0.0119 (7) |
C14 | 0.0485 (9) | 0.0434 (8) | 0.0455 (8) | 0.0073 (7) | 0.0010 (7) | 0.0118 (7) |
C16 | 0.0447 (9) | 0.0417 (8) | 0.0481 (9) | 0.0090 (7) | 0.0054 (7) | 0.0043 (7) |
O1 | 0.0591 (7) | 0.0944 (10) | 0.0584 (8) | 0.0248 (7) | 0.0179 (6) | 0.0389 (7) |
N1 | 0.0367 (6) | 0.0536 (8) | 0.0374 (7) | 0.0076 (5) | 0.0000 (5) | 0.0113 (6) |
N2 | 0.0371 (6) | 0.0446 (7) | 0.0316 (6) | 0.0043 (5) | −0.0009 (5) | 0.0029 (5) |
C2 | 0.0654 (11) | 0.0583 (11) | 0.0530 (10) | 0.0192 (9) | −0.0103 (8) | 0.0070 (8) |
C1 | 0.0422 (8) | 0.0542 (9) | 0.0372 (8) | 0.0050 (7) | −0.0054 (6) | 0.0096 (7) |
C3 | 0.0560 (11) | 0.0972 (16) | 0.0831 (14) | 0.0325 (11) | 0.0053 (10) | 0.0203 (12) |
C4 | 0.0504 (9) | 0.0678 (11) | 0.0563 (10) | 0.0127 (8) | 0.0130 (8) | 0.0077 (8) |
C5 | 0.0472 (8) | 0.0510 (9) | 0.0409 (8) | 0.0088 (7) | −0.0014 (7) | 0.0115 (7) |
C6 | 0.0423 (8) | 0.0526 (9) | 0.0438 (9) | 0.0090 (7) | 0.0019 (7) | 0.0178 (7) |
C7 | 0.0446 (8) | 0.0573 (10) | 0.0439 (9) | 0.0126 (7) | −0.0001 (7) | 0.0138 (7) |
C8 | 0.0626 (10) | 0.0514 (10) | 0.0463 (9) | 0.0166 (8) | −0.0070 (8) | 0.0060 (7) |
C9 | 0.0411 (8) | 0.0559 (10) | 0.0412 (8) | 0.0090 (7) | 0.0030 (6) | −0.0020 (7) |
C10 | 0.0741 (13) | 0.0688 (13) | 0.0702 (12) | 0.0277 (10) | −0.0078 (10) | 0.0112 (10) |
C11 | 0.0741 (13) | 0.0640 (12) | 0.0794 (14) | −0.0056 (10) | −0.0103 (11) | 0.0305 (11) |
C12 | 0.0410 (8) | 0.0748 (12) | 0.0499 (9) | −0.0049 (8) | 0.0030 (7) | 0.0164 (8) |
O6 | 0.0583 (12) | 0.0436 (10) | 0.0486 (13) | 0.0053 (7) | 0.0167 (7) | 0.0044 (8) |
O7 | 0.0575 (14) | 0.0492 (13) | 0.0408 (7) | −0.0149 (9) | 0.0115 (9) | −0.0009 (9) |
C17 | 0.0421 (14) | 0.0411 (9) | 0.0297 (10) | 0.0013 (10) | −0.0020 (11) | 0.0048 (7) |
C18 | 0.0432 (10) | 0.0447 (11) | 0.0402 (10) | −0.0065 (8) | 0.0062 (8) | 0.0030 (8) |
O6A | 0.0583 (12) | 0.0436 (10) | 0.0486 (13) | 0.0053 (7) | 0.0167 (7) | 0.0044 (8) |
O7A | 0.0575 (14) | 0.0492 (13) | 0.0408 (7) | −0.0149 (9) | 0.0115 (9) | −0.0009 (9) |
C17A | 0.0421 (14) | 0.0411 (9) | 0.0297 (10) | 0.0013 (10) | −0.0020 (11) | 0.0048 (7) |
C18A | 0.0432 (10) | 0.0447 (11) | 0.0402 (10) | −0.0065 (8) | 0.0062 (8) | 0.0030 (8) |
O2—C13 | 1.2026 (19) | C5—H5A | 0.9700 |
O3—C13 | 1.310 (2) | C5—H5B | 0.9700 |
O3—H3 | 0.902 (10) | C5—C6 | 1.473 (2) |
O4—C16 | 1.3016 (19) | C6—C7 | 1.185 (2) |
O4—H4 | 0.914 (10) | C7—C8 | 1.467 (2) |
O5—C16 | 1.2092 (19) | C8—H8A | 0.9700 |
C15—H15 | 0.9300 | C8—H8B | 0.9700 |
C15—C14 | 1.316 (2) | C9—H9A | 0.9700 |
C15—C16 | 1.483 (2) | C9—H9B | 0.9700 |
C13—C14 | 1.480 (2) | C9—C10 | 1.515 (3) |
C14—H14 | 0.9300 | C10—H10A | 0.9700 |
O1—C1 | 1.2372 (19) | C10—H10B | 0.9700 |
N1—C1 | 1.3293 (19) | C10—C11 | 1.511 (3) |
N1—C4 | 1.451 (2) | C11—H11A | 0.9700 |
N1—C5 | 1.452 (2) | C11—H11B | 0.9700 |
N2—C8 | 1.486 (2) | C11—C12 | 1.509 (3) |
N2—C9 | 1.4833 (19) | C12—H12A | 0.9700 |
N2—C12 | 1.490 (2) | C12—H12B | 0.9700 |
N2—H2 | 0.908 (19) | O6—C17 | 1.270 (3) |
C2—H2A | 0.9700 | O7—C17 | 1.243 (2) |
C2—H2B | 0.9700 | C17—C18 | 1.492 (3) |
C2—C1 | 1.495 (2) | C18—C18i | 1.295 (4) |
C2—C3 | 1.510 (3) | C18—H18 | 0.9300 |
C3—H3A | 0.9700 | O6A—C17A | 1.273 (14) |
C3—H3B | 0.9700 | O7A—C17A | 1.222 (14) |
C3—C4 | 1.509 (3) | C17A—C18A | 1.502 (14) |
C4—H4A | 0.9700 | C18A—C18Ai | 1.25 (2) |
C4—H4B | 0.9700 | C18A—H18A | 0.9300 |
C13—O3—H3 | 108.7 (16) | H5A—C5—H5B | 107.9 |
C16—O4—H4 | 110.0 (15) | C6—C5—H5A | 109.3 |
C14—C15—H15 | 117.9 | C6—C5—H5B | 109.3 |
C14—C15—C16 | 124.13 (15) | C7—C6—C5 | 178.83 (17) |
C16—C15—H15 | 117.9 | C6—C7—C8 | 174.81 (17) |
O2—C13—O3 | 123.57 (15) | N2—C8—H8A | 108.7 |
O2—C13—C14 | 122.35 (15) | N2—C8—H8B | 108.7 |
O3—C13—C14 | 114.08 (14) | C7—C8—N2 | 114.07 (14) |
C15—C14—C13 | 123.90 (15) | C7—C8—H8A | 108.7 |
C15—C14—H14 | 118.1 | C7—C8—H8B | 108.7 |
C13—C14—H14 | 118.1 | H8A—C8—H8B | 107.6 |
O4—C16—C15 | 114.39 (13) | N2—C9—H9A | 111.2 |
O5—C16—O4 | 123.90 (15) | N2—C9—H9B | 111.2 |
O5—C16—C15 | 121.70 (15) | N2—C9—C10 | 102.94 (13) |
C1—N1—C4 | 114.58 (13) | H9A—C9—H9B | 109.1 |
C1—N1—C5 | 123.48 (13) | C10—C9—H9A | 111.2 |
C4—N1—C5 | 121.90 (13) | C10—C9—H9B | 111.2 |
C8—N2—C12 | 116.01 (13) | C9—C10—H10A | 110.5 |
C8—N2—H2 | 103.0 (11) | C9—C10—H10B | 110.5 |
C9—N2—C8 | 116.32 (12) | H10A—C10—H10B | 108.7 |
C9—N2—C12 | 104.70 (13) | C11—C10—C9 | 106.06 (15) |
C9—N2—H2 | 108.6 (11) | C11—C10—H10A | 110.5 |
C12—N2—H2 | 107.8 (11) | C11—C10—H10B | 110.5 |
H2A—C2—H2B | 108.8 | C10—C11—H11A | 110.5 |
C1—C2—H2A | 110.7 | C10—C11—H11B | 110.5 |
C1—C2—H2B | 110.7 | H11A—C11—H11B | 108.7 |
C1—C2—C3 | 105.11 (15) | C12—C11—C10 | 106.27 (15) |
C3—C2—H2A | 110.7 | C12—C11—H11A | 110.5 |
C3—C2—H2B | 110.7 | C12—C11—H11B | 110.5 |
O1—C1—N1 | 123.90 (15) | N2—C12—C11 | 103.58 (13) |
O1—C1—C2 | 126.98 (15) | N2—C12—H12A | 111.0 |
N1—C1—C2 | 109.11 (14) | N2—C12—H12B | 111.0 |
C2—C3—H3A | 110.4 | C11—C12—H12A | 111.0 |
C2—C3—H3B | 110.4 | C11—C12—H12B | 111.0 |
H3A—C3—H3B | 108.6 | H12A—C12—H12B | 109.0 |
C4—C3—C2 | 106.81 (15) | O6—C17—C18 | 116.8 (2) |
C4—C3—H3A | 110.4 | O7—C17—O6 | 123.1 (2) |
C4—C3—H3B | 110.4 | O7—C17—C18 | 120.1 (2) |
N1—C4—C3 | 104.08 (14) | C17—C18—H18 | 117.8 |
N1—C4—H4A | 110.9 | C18i—C18—C17 | 124.4 (2) |
N1—C4—H4B | 110.9 | C18i—C18—H18 | 117.8 |
C3—C4—H4A | 110.9 | O6A—C17A—C18A | 116.1 (16) |
C3—C4—H4B | 110.9 | O7A—C17A—O6A | 123.5 (16) |
H4A—C4—H4B | 109.0 | O7A—C17A—C18A | 119.4 (16) |
N1—C5—H5A | 109.3 | C17A—C18A—H18A | 114.6 |
N1—C5—H5B | 109.3 | C18Ai—C18A—C17A | 130.7 (16) |
N1—C5—C6 | 111.67 (13) | C18Ai—C18A—H18A | 114.6 |
O2—C13—C14—C15 | −159.84 (18) | C5—N1—C1—O1 | 2.9 (2) |
O3—C13—C14—C15 | 19.3 (2) | C5—N1—C1—C2 | −176.77 (14) |
C14—C15—C16—O4 | −8.4 (2) | C5—N1—C4—C3 | −179.65 (16) |
C14—C15—C16—O5 | 170.45 (18) | C8—N2—C9—C10 | −169.44 (14) |
C16—C15—C14—C13 | 179.50 (15) | C8—N2—C12—C11 | 168.12 (15) |
N2—C9—C10—C11 | 25.88 (19) | C9—N2—C8—C7 | 59.62 (19) |
C2—C3—C4—N1 | −4.8 (2) | C9—N2—C12—C11 | 38.48 (17) |
C1—N1—C4—C3 | 2.4 (2) | C9—C10—C11—C12 | −2.6 (2) |
C1—N1—C5—C6 | 109.44 (16) | C10—C11—C12—N2 | −21.6 (2) |
C1—C2—C3—C4 | 5.5 (2) | C12—N2—C8—C7 | −64.18 (19) |
C3—C2—C1—O1 | 176.15 (18) | C12—N2—C9—C10 | −39.98 (16) |
C3—C2—C1—N1 | −4.2 (2) | O6—C17—C18—C18i | −171.2 (3) |
C4—N1—C1—O1 | −179.16 (16) | O7—C17—C18—C18i | 7.4 (4) |
C4—N1—C1—C2 | 1.17 (19) | O6A—C17A—C18A—C18Ai | −1 (3) |
C4—N1—C5—C6 | −68.36 (19) | O7A—C17A—C18A—C18Ai | −169 (2) |
Symmetry code: (i) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···O5ii | 0.93 | 2.65 | 3.498 (2) | 152 |
C3—H3B···O1ii | 0.97 | 2.43 | 3.381 (3) | 166 |
C5—H5B···O2iii | 0.97 | 2.51 | 3.434 (2) | 159 |
C8—H8A···O4iv | 0.97 | 2.54 | 3.191 (2) | 125 |
C8—H8A···O6iv | 0.97 | 2.53 | 3.456 (3) | 161 |
C8—H8B···O5v | 0.97 | 2.52 | 3.480 (2) | 173 |
C9—H9A···O6v | 0.97 | 2.56 | 3.228 (3) | 126 |
C10—H10A···O5vi | 0.97 | 2.66 | 3.624 (3) | 175 |
C11—H11A···O4vii | 0.97 | 2.64 | 3.553 (3) | 157 |
C12—H12B···O7viii | 0.97 | 2.68 | 3.399 (2) | 132 |
C12—H12B···O7Aviii | 0.97 | 2.37 | 3.139 (15) | 135 |
O4—H4···O6 | 0.91 (1) | 1.58 (1) | 2.483 (2) | 167 (2) |
O3—H3···O1 | 0.90 (1) | 1.69 (1) | 2.5739 (16) | 167 (2) |
N2—H2···O6v | 0.908 (19) | 2.554 (18) | 3.172 (3) | 125.8 (14) |
N2—H2···O7v | 0.908 (19) | 1.809 (19) | 2.705 (2) | 168.3 (17) |
N2—H2···O6Av | 0.908 (19) | 2.43 (3) | 3.131 (19) | 133.6 (15) |
N2—H2···O7Av | 0.908 (19) | 1.61 (2) | 2.489 (15) | 161.7 (17) |
Symmetry codes: (ii) x−1, y, z; (iii) −x, −y, −z+1; (iv) −x+1, −y+1, −z+1; (v) −x+2, −y+1, −z+1; (vi) −x+2, −y, −z+1; (vii) −x+1, −y, −z+1; (viii) x−1, y−1, z+1. |
Acknowledgements
Financial statements and conflict of interest: This study was funded by CaaMTech, Inc. ARC reports ownership interest in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.
Funding information
Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086); CaaMTech, Inc.
References
Baker, R. W. & Pauling, P. J. (1973). J. Chem. Soc. Perkin Trans. 2, pp. 1247–1249. CSD CrossRef Web of Science Google Scholar
Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clarke, P. J., Pauling, P. J. & Petcher, T. J. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 774–778. CSD CrossRef Web of Science Google Scholar
Collin, S., Norberg, B., Evrard, G. & Durant, F. (1987). Acta Cryst. C43, 572–577. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Fang, Z.-Y., Zhang, B.-X., Xing, W.-H., Jia, H.-L., Wang, X., Gong, N.-B., Lu, Y. & Du, G.-H. (2022). Chin. Lett. Chem. In the press. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Haynes, D. A., Jones, W. & Motherwell, W. D. S. (2006). CrystEngComm, 8, 830–840. Web of Science CSD CrossRef CAS Google Scholar
Jones, P. G., Schön, U. & Finner, E. (2004). Acta Cryst. E60, o1285–o1287. Web of Science CSD CrossRef IUCr Journals Google Scholar
Li, Z.-F. & Zheng, Y.-Q. (2005). J. Coord. Chem. 58, 883–890. Web of Science CSD CrossRef CAS Google Scholar
Liebig, T. J. & Ruschewitz, U. (2012). Cryst. Growth Des. 12, 5402–5410. Web of Science CSD CrossRef CAS Google Scholar
Lin, J.-L. & Zheng, Y.-Q. (2004). Z. Kristallogr. New Cryst. Struct. 219, 230–232. CAS Google Scholar
Mohamed, S., Tocher, D. A., Vickers, M., Karamertzanis, P. G. & Price, S. L. (2009). Cryst. Growth Des. 9, 2881–2889. Web of Science CSD CrossRef CAS Google Scholar
Moon, M. W., Chidester, C. G., Heier, R. F., Morris, J. K., Collins, R. J., Russell, R. R., Francis, J. W., Sage, G. P. & Sethy, V. H. (1991). J. Med. Chem. 34, 2314–2327. CSD CrossRef PubMed CAS Web of Science Google Scholar
Provins, L., Christophe, B., Danhaive, P., Dulieu, J., Durieu, V., Gillard, M., Lebon, F., Lengelé, S., Quéré, L. & van Keulen, B. (2006). Bioorg. Med. Chem. Lett. 16, 1834–1839. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ringdahl, B. & Jenden, D. J. (1983). Life Sci. 32, 2401–2413. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.