metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Nitrato(5,10,15,20-tetra­phenyl­porphinato)manganese(III)–benzene–n-hexa­ne (2/1/1)

crossmark logo

aKey Laboratory of Magnetic Molecules, Magnetic Information Materials, Ministry of Education, School of Chemical and Material Science, Shanxi Normal University, Taiyu Road, Taiyuan 030032, People's Republic of China, and bCollege of Materials Science and Opto-electronic Technology, CAS Center for Excellence in Topological Quantum Computation & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, People's Republic of China
*Correspondence e-mail: wangjunwen2013@126.com, jfli@ucas.ac.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 March 2022; accepted 7 April 2022; online 22 April 2022)

The crystal structure of solvated [Mn(TPP)(NO3)] (TPP = 5,10,15,20-tetra­phenyl­porphyrinato, C44H28N4), [Mn(C44H28N4O3)(NO3)]·0.5C6H14·0.5C6H6, has been determined in the space group Pccn. The MnIII atom has a distorted square-pyramidal environment, being coordinated by four pyrrole N atoms of the porphyrin ligand in the basal plane and an O atom of the nitrato ligand in the apical site. The MnIII atom is displaced out of the porphyrin plane by 0.22 (4) Å with the average Mn—Np distance being 2.011 (6) Å (where Np is a porphyrin N atom). The Mn—O bond length is 2.1246 (18) Å. Two kinds of inter­molecular C—H⋯O hydrogen bonds exist in the crystal structure, with the apical nitrato ligands inter­acting with solvent mol­ecules and adjacent mol­ecules, respectively.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Inter­actions between metalloporphyrins and nitrate ligands occur in many areas of bioinorganic chemistry. Nitrates play a key role in fixing atmospheric nitro­gen into a more bioavailable form, as detailed in the nitro­gen cycle (Averill, 1996[Averill, B. A. (1996). Chem. Rev. 96, 2951-2964.]). A series of nitrate-coordinating FeIII derivatives have been reported, whereby the denticity of the nitrate ligands shows differences for complexes of the general type [Fe(Por)(NO3)] (where Por is porphyrin). Among them, [Fe(OEP)(NO3)] (OEP = 2,3,7,8,12,13,17,18-octa­ethyl­porphyrinato, space group P[\overline{1}]; Ellison et al., 1996[Ellison, M. K., Shang, M., Kim, J. & Scheidt, W. R. (1996). Acta Cryst. C52, 3040-3043.]), [Fe(OEP)(NO3)] (space group P21/c, Wyllie et al., 2007[Wyllie, G. R., Munro, O. Q., Schulz, C. E. & Scheidt, W. R. (2007). Polyhedron, 26, 4664-4672.]) and [Fe(4-Me-TTP)(NO3)] (TTP = 5,10,15,20-tetra­kis­(4-methyl­phen­yl)porphyrinato; Bhuyan & Sarkar, 2013[Bhuyan, J. & Sarkar, S. (2013). J. Chem. Sci. 125, 707-714.]) have a nitrate group monodentately binding to the central metal cation, while [Fe(TPP)(NO3)] (Wyllie et al., 2007[Wyllie, G. R., Munro, O. Q., Schulz, C. E. & Scheidt, W. R. (2007). Polyhedron, 26, 4664-4672.]), [Fe(4-OMe-TPP)(NO3) (4-OMe-TPP = 5,10,15,20-tetra­kis­(4-meth­oxy­phen­yl)-porphyrinato; Bhuyan & Sarkar, 2013[Bhuyan, J. & Sarkar, S. (2013). J. Chem. Sci. 125, 707-714.]) and [Fe(TpivPP)(NO3)] (TpivPP = α,α,α,α-tetra­kis­(o-pival­amido­phen­yl)porphyrinato; Munro & Scheidt, 1998[Munro, O. Q. & Scheidt, W. R. (1998). Inorg. Chem. 37, 2308-2316.]) have a nitrate group bidentately binding to the central cation. Herein, we report the structural properties of a related manganese(III) compound, viz. [Mn(TPP)(NO3)], crystallizing as a hemisolvate of benzene and n-hexane. In accordance with the benzene disolvate of [Mn(TPP)(NO3)] (Suslick & Watson, 1991[Suslick, K. S. & Watson, R. A. (1991). Inorg. Chem. 30, 912-919.]), the nitrato ligand binds monodentately. The key crystal structural parameters of all the above-mentioned metalloporphyrin nitrate complexes are given in Table 1[link]. It is seen that the average Mn—Np bond length and the Mn—O1 bond length of the title complex are 2.011 (6) and 2.1246 (18) Å, respectively, both of which are slightly longer than the values of 2.007 (9) and 2.101 (3) Å found in the structure of the triclinic benzene disolvate [Mn(TPP)(NO3)]·2C6H6 (Suslick & Watson, 1991[Suslick, K. S. & Watson, R. A. (1991). Inorg. Chem. 30, 912-919.]).

Table 1
Selected structural parameters (Å) for related metalloporphyrin nitrato complexes

Δ4 is the displacement of the metal atom from the mean plane of the four pyrrole nitro­gen atoms and Δ24 is the displacement of the metal atom from the 24-atom mean plane.

Complex Δ4 Δ24 M—O N—O1 M—Np Ref.
[Mn(TPP)(NO3)] (Pccn) benzene and n-hexane hemisolvate 0.23 0.22 2.1246 (18) 1.260 (3) 1.236 (3) 1.230 (3) 2.011 (6) This work
[Mn(TPP)(NO3)] (P[\overline{1}]) benzene disolvate 0.21 0.20 2.101 (3) 1.298 (4) 1.226 (5) 1.226 (5) 2.007 (9) (Suslick & Watson, 1991[Suslick, K. S. & Watson, R. A. (1991). Inorg. Chem. 30, 912-919.])
[Fe(OEP)(NO3)] (P21/c) 0.40 0.45 1.966 (2) 1.301 (3) 1.199 (3) 1.212 (3) 2.047 (6) (Wyllie et al., 2007[Wyllie, G. R., Munro, O. Q., Schulz, C. E. & Scheidt, W. R. (2007). Polyhedron, 26, 4664-4672.])
[Fe(OEP)(NO3)] (P[\overline{1}]) 0.46 0.50 2.016 (3) 1.206 (5) 1.198 (4) 1.208 (6) 2.056 (1) (Ellison et al., 1996[Ellison, M. K., Shang, M., Kim, J. & Scheidt, W. R. (1996). Acta Cryst. C52, 3040-3043.])
[Fe(4—Me-TTP)(NO3)] 0.47 0.53 1.971 (3) 1.262 (5) 1.252 (5) 1.221 (4) 2.063 (13) (Bhuyan & Sarkar, 2013[Bhuyan, J. & Sarkar, S. (2013). J. Chem. Sci. 125, 707-714.])
[Fe(TPP)(NO3)] 0.54 0.63 2.121 (6) 2.19 (10) 1.27 (10) 1.285 (21) 1.217 (3) 2.085 (10) (Wyllie et al., 2007[Wyllie, G. R., Munro, O. Q., Schulz, C. E. & Scheidt, W. R. (2007). Polyhedron, 26, 4664-4672.])
[Fe(TpivPP)(NO3)] 0.42 0.49 2.123 (3) 2.226 (3) 1.271 (4) 1.252 (4) 1.214 (3) 2.070 (16) (Munro & Scheidt, 1998[Munro, O. Q. & Scheidt, W. R. (1998). Inorg. Chem. 37, 2308-2316.])
[Fe(4-OMe-TPP)(NO3)] 0.55 0.62 2.169 (5) 2.169 (5) 1.216 (5) 1.276 (8) 1.216 (5) 2.05 (3) (Bhuyan & Sarkar, 2013[Bhuyan, J. & Sarkar, S. (2013). J. Chem. Sci. 125, 707-714.])

In the crystal structure of the title five-coordinate manganese(III) nitrate complex (Fig. 1[link]), the asymmetric unit contains one porphyrin mol­ecule, half of a benzene solvate mol­ecule, and half of an n-hexane solvate mol­ecule. The Mn1III atom has a distorted square-pyramidal environment, defined by the four pyrrole N atoms of the porphyrin ligand in the basal plane and an O atom of the nitrato ligand in the apical site. Additional qu­anti­tative information about the structure is given in Fig. 2[link], which includes the displacement of each porphyrin core atom (in units of 0.01 Å) from the 24-atom mean plane. Averaged values of the chemically unique bond lengths (in Å) and angles (in °) are also shown. The mean absolute core-atom displacements of Ca, Cb, Cm and Cav are 0.11 (2), 0.28 (3), 0.04 (2) and 0.16 (10) Å, respectively, and the monodentate nitrato ligand forms a dihedral angle of 43.69 (13)° with the plane defined by the Mn1, N3 and O1 atoms.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, drawn with displacement ellipsoids at the 50% probability level. Only one of the two orientations of the disordered benzene solvate mol­ecules is shown. [Symmetry code: (i) −x + [{1\over 2}], −y + [{1\over 2}], z.]
[Figure 2]
Figure 2
A formal diagram of the porphyrin core of the title compound. Averaged values of the chemically unique bond lengths (Å) and angles (°) are shown. The perpendicular displacements (in units of 0.01 Å) of the porphyrin core atoms from the 24-atom mean plane are also displayed. The positive numbers indicate a displacement towards the nitrate ligand, the dashed line indicates the plane of the nitrate ligand on the unhindered porphyrin side.

The porphyrin core shows a characteristic saddle-shaped distortion and the Mn1III atom is displaced by 0.22 (4) Å from the 24-atom porphyrin plane in the direction of the nitrato ligand. This value is smaller than the displacement of the iron atom (0.63 Å) in [Fe(TPP)(NO)3] reported by Wyllie et al. (2007[Wyllie, G. R., Munro, O. Q., Schulz, C. E. & Scheidt, W. R. (2007). Polyhedron, 26, 4664-4672.]). This difference is explained by the high-spin configuration of 3d5 FeIII where the occupied d(x2–y2) orbital `pushes' the metal out of the porphyrin plane, and the empty d(x2–y2) orbital of 3d4 MnIII allows a more in-plane conformation (Suslick & Watson, 1991[Suslick, K. S. & Watson, R. A. (1991). Inorg. Chem. 30, 912-919.]).

In the title compound, C—H⋯O hydrogen-bonding inter­actions are found between the disordered benzene solvent mol­ecule (C4S) and the apical nitrato ligand (O3), as illus­trated in Fig. 3[link] and detailed in Table 2[link]. Similar hydrogen bonds are also found between the apical ligand and phenyl rings of adjacent porphyrin mol­ecules (Fig. 4[link], Table 2[link]). All these structural parameters are consistent with literature data where C—H⋯O bonds range from 3.00–4.00 Å (Desiraju, 1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.]), with angles of 120–180° (Steiner & Desiraju, 1998[Steiner, T. & Desiraju, G. R. (1998). Chem. Commun. pp. 891-892.]). The mol­ecular packing of the title compound is shown in Fig. 5[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4S—H4S⋯O3 0.95 2.38 3.177 (8) 141
C10—H10⋯O2i 0.95 2.50 3.182 (3) 129
C17—H17⋯O2ii 0.95 2.53 3.350 (4) 145
C22—H22⋯O2iii 0.95 2.49 3.085 (3) 120
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+1, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
The C—H⋯O inter­actions between the apical nitrato ligand and the benzene solvent mol­ecule.
[Figure 4]
Figure 4
C—H⋯O hydrogen-bonding inter­actions between adjacent porphyrin mol­ecules (dashed lines).
[Figure 5]
Figure 5
A view of the mol­ecular packing of the title compound in the crystal structure, as seen in a projection along [100]. H atoms have been omitted for clarity.

Synthesis and crystallization

General information. All experimental manipulations were performed under a purified nitro­gen atmosphere using Schlenk techniques. Except for the solvent used in column chromatography, all solvents used in the experimental process were treated under dry conditions and exclusion of oxygen. Benzene and n-hexane were distilled under argon protection, and then refluxed over sodium/benzo­phenone and potassium–sodium alloy, respectively. All solvents used in the anhydrous and anaerobic operation (Schlenk system) were treated with the pump–freeze–thaw method three times before use.

The title compound was obtained serendipitously in an unsuccessful attempt to isolate the five-coordinate manganese(II) nitrosyl species [Mn(TPP)(NO)]. [Mn(TPP)OH] was prepared according to a reported method (He et al., 2016[He, M., Li, X., Liu, Y. & Li, J. (2016). Inorg. Chem. 55, 5871-5879.]). The purple [Mn(TPP)OH] powder (10 mg, 0.0015 mmol) was reduced by ethyl mercaptan for 48 h with benzene as solvent, then the solution was evaporated to dryness. NO gas was then bubbled slowly in a solution of the residue in degassed benzene for 5 minutes under an argon atmosphere. There was a dramatic color change from greenish yellow to red. The red solution was finally layered with hexa­nes. Black, block-shaped crystals were obtained several weeks later.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The benzene mol­ecule is disordered around a twofold rotation axis. Thus, the occupancy of all atoms was constrained to 1/2, and the C4S—C9S distance constrained to 1.45 Å. One outlier reflection, 332, was omitted from the refinement.

Table 3
Experimental details

Crystal data
Chemical formula [Mn(C44H28N4O3)(NO3)]·0.5C6H14·0.5C6H6
Mr 811.79
Crystal system, space group Orthorhombic, Pccn
Temperature (K) 100
a, b, c (Å) 20.1021 (10), 21.5505 (9), 17.9807 (9)
V3) 7789.4 (6)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.39
Crystal size (mm) 0.33 × 0.29 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.763, 0.865
No. of measured, independent and observed [I > 2σ(I)] reflections 58775, 8270, 6163
Rint 0.058
(sin θ/λ)max−1) 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.148, 1.07
No. of reflections 8270
No. of parameters 560
No. of restraints 37
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.80, −0.48
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Nitrato(5,10,15,20-tetraphenylporphinato)manganese(III)–benzene–n-hexane (2/1/1) top
Crystal data top
[Mn(C44H28N4O3)(NO3)]·0.5C6H14·0.5C6H6Dx = 1.384 Mg m3
Mr = 811.79Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccnCell parameters from 9845 reflections
a = 20.1021 (10) Åθ = 2.5–26.7°
b = 21.5505 (9) ŵ = 0.39 mm1
c = 17.9807 (9) ÅT = 100 K
V = 7789.4 (6) Å3Block, black
Z = 80.33 × 0.29 × 0.12 mm
F(000) = 3376
Data collection top
Bruker APEXII CCD
diffractometer
6163 reflections with I > 2σ(I)
φ and ω scansRint = 0.058
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.7°, θmin = 2.3°
Tmin = 0.763, Tmax = 0.865h = 2523
58775 measured reflectionsk = 2724
8270 independent reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0686P)2 + 10.1161P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.097
8270 reflectionsΔρmax = 0.80 e Å3
560 parametersΔρmin = 0.48 e Å3
37 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.42182 (2)0.50321 (2)0.38016 (2)0.01235 (11)
O10.42711 (8)0.52498 (8)0.26507 (10)0.0206 (4)
O20.41592 (10)0.58633 (9)0.17166 (11)0.0311 (5)
O30.42351 (12)0.62345 (10)0.28275 (12)0.0416 (6)
N10.49166 (9)0.43691 (8)0.36975 (11)0.0144 (4)
N20.35071 (9)0.43777 (8)0.36889 (11)0.0148 (4)
N30.35138 (9)0.56361 (9)0.41173 (11)0.0151 (4)
N40.49211 (9)0.56102 (8)0.41874 (11)0.0147 (4)
N50.42152 (11)0.57920 (11)0.23960 (13)0.0259 (5)
C10.42051 (11)0.28091 (11)0.31319 (15)0.0183 (5)
C20.44918 (13)0.23571 (11)0.35761 (16)0.0259 (6)
H20.4679630.2470130.4041590.031*
C30.45086 (14)0.17416 (12)0.33504 (18)0.0304 (6)
H30.4705780.1436100.3661080.036*
C40.42397 (14)0.15745 (12)0.26773 (19)0.0341 (7)
H40.4256150.1153940.2519820.041*
C50.39436 (16)0.20192 (13)0.22261 (18)0.0369 (7)
H50.3755090.1902710.1762180.044*
C60.39240 (14)0.26347 (12)0.24550 (16)0.0298 (6)
H60.3717940.2938050.2148580.036*
C70.17559 (12)0.50079 (10)0.38931 (13)0.0158 (5)
C80.14138 (12)0.47327 (11)0.44853 (15)0.0198 (5)
H80.1655230.4565730.4893060.024*
C90.07229 (12)0.47019 (12)0.44807 (16)0.0243 (6)
H90.0493400.4513400.4883580.029*
C100.03678 (13)0.49480 (12)0.38843 (15)0.0244 (6)
H100.0104190.4927040.3878560.029*
C110.07056 (13)0.52232 (13)0.33002 (16)0.0256 (6)
H110.0463530.5392090.2894020.031*
C120.13958 (12)0.52542 (11)0.33034 (15)0.0217 (5)
H120.1622740.5444800.2900160.026*
C130.42453 (11)0.72160 (11)0.45726 (15)0.0189 (5)
C140.45003 (16)0.75859 (13)0.4016 (2)0.0404 (8)
H140.4665600.7402720.3572130.048*
C150.45157 (18)0.82290 (14)0.4103 (2)0.0527 (10)
H150.4689770.8480520.3715150.063*
C160.42877 (14)0.84987 (13)0.4729 (2)0.0398 (8)
H160.4294180.8937610.4778000.048*
C170.40443 (17)0.81338 (14)0.5299 (2)0.0430 (9)
H170.3896090.8321240.5747260.052*
C180.40157 (16)0.74907 (13)0.52169 (17)0.0338 (7)
H180.3838010.7241570.5604870.041*
C190.66708 (12)0.50305 (10)0.38165 (13)0.0154 (5)
C200.70957 (12)0.45885 (11)0.41236 (14)0.0198 (5)
H200.6919670.4265730.4424830.024*
C210.77752 (13)0.46181 (13)0.39912 (15)0.0256 (6)
H210.8060870.4312610.4198720.031*
C220.80410 (13)0.50902 (13)0.35582 (16)0.0271 (6)
H220.8506470.5108650.3469560.032*
C230.76238 (13)0.55324 (13)0.32574 (15)0.0277 (6)
H230.7803810.5858430.2964270.033*
C240.69414 (13)0.55040 (12)0.33805 (15)0.0226 (5)
H240.6657770.5808210.3166930.027*
C(A10.55989 (11)0.44641 (10)0.36743 (13)0.0146 (5)
C(A20.48166 (12)0.37726 (10)0.34335 (13)0.0157 (5)
C(A30.35993 (12)0.37606 (10)0.35121 (14)0.0169 (5)
C(A40.28251 (12)0.44579 (10)0.37543 (13)0.0159 (5)
C(A50.28327 (12)0.55656 (11)0.40428 (14)0.0174 (5)
C(A60.36142 (12)0.62527 (10)0.43015 (14)0.0173 (5)
C(A70.48260 (12)0.62090 (10)0.44399 (13)0.0162 (5)
C(A80.56024 (11)0.55124 (10)0.42006 (13)0.0150 (5)
C(B10.59185 (12)0.39247 (11)0.33697 (14)0.0194 (5)
H(B10.6381680.3875140.3283210.023*
C(B20.54403 (12)0.35015 (11)0.32289 (14)0.0191 (5)
H(B20.5505610.3097480.3030400.023*
C(B30.29657 (12)0.34533 (11)0.34796 (15)0.0216 (5)
H(B30.2893100.3026520.3375010.026*
C(B40.24941 (12)0.38788 (11)0.36239 (15)0.0213 (5)
H(B40.2027620.3808780.3637120.026*
C(B50.25083 (13)0.61474 (11)0.41847 (15)0.0230 (6)
H(B50.2042570.6222000.4177280.028*
C(B60.29864 (12)0.65671 (11)0.43303 (16)0.0230 (6)
H(B60.2919820.6994960.4433610.028*
C(B70.54509 (12)0.64704 (11)0.46568 (14)0.0182 (5)
H(B70.5519680.6872120.4860430.022*
C(B80.59258 (12)0.60410 (11)0.45188 (14)0.0176 (5)
H(B80.6388330.6082550.4615250.021*
C(M10.42063 (12)0.34755 (10)0.33679 (13)0.0162 (5)
C(M20.25010 (12)0.50150 (10)0.38919 (13)0.0153 (5)
C(M30.42232 (11)0.65274 (10)0.44520 (14)0.0168 (5)
C(M40.59319 (12)0.49958 (10)0.39124 (13)0.0145 (5)
C1S0.28678 (18)0.23978 (17)0.4985 (2)0.0488 (9)
H1SA0.3152640.2763550.5082790.059*
H1SB0.2983930.2235350.4486470.059*
C2S0.30152 (18)0.18932 (17)0.5575 (2)0.0509 (9)
H2SA0.2890870.2049760.6073360.061*
H2SB0.2742820.1520720.5469550.061*
C3S0.37423 (19)0.17186 (17)0.5572 (2)0.0571 (10)
H3SA0.3875120.1597870.5067610.086*
H3SB0.3815070.1369960.5912020.086*
H3SC0.4008950.2074610.5733410.086*
C4S0.3238 (4)0.7350 (3)0.2525 (4)0.0454 (15)0.5
H4S0.3635430.7183010.2729520.054*0.5
C5S0.2861 (11)0.7015 (10)0.2020 (13)0.069 (6)0.5
H5S0.2993100.6603020.1905090.083*0.5
C6S0.2325 (5)0.7245 (4)0.1690 (6)0.077 (3)0.5
H6S0.2102170.7019100.1311130.093*0.5
C7S0.2079 (11)0.7868 (11)0.1930 (17)0.075 (6)0.5
H7S0.1678380.8039040.1739350.090*0.5
C8S0.2462 (4)0.8181 (4)0.2438 (5)0.0518 (19)0.5
H8S0.2330130.8583910.2592700.062*0.5
C9S0.3018 (3)0.7930 (3)0.2721 (4)0.0414 (15)0.5
H9S0.3268620.8162920.3070850.050*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01075 (19)0.00928 (18)0.0170 (2)0.00011 (12)0.00051 (13)0.00002 (13)
O10.0168 (9)0.0267 (9)0.0183 (9)0.0015 (7)0.0016 (7)0.0008 (7)
O20.0329 (11)0.0353 (11)0.0252 (11)0.0007 (8)0.0020 (8)0.0095 (9)
O30.0610 (15)0.0309 (11)0.0328 (12)0.0039 (10)0.0025 (10)0.0002 (9)
N10.0149 (10)0.0101 (9)0.0181 (10)0.0004 (7)0.0014 (8)0.0002 (8)
N20.0134 (10)0.0104 (9)0.0206 (11)0.0001 (7)0.0007 (8)0.0002 (8)
N30.0117 (9)0.0115 (9)0.0220 (11)0.0004 (7)0.0000 (8)0.0009 (8)
N40.0149 (10)0.0100 (9)0.0191 (11)0.0013 (7)0.0001 (8)0.0005 (8)
N50.0201 (11)0.0309 (12)0.0268 (13)0.0047 (9)0.0010 (9)0.0002 (10)
C10.0126 (11)0.0137 (11)0.0286 (14)0.0017 (9)0.0024 (10)0.0036 (10)
C20.0255 (14)0.0180 (12)0.0342 (15)0.0028 (10)0.0041 (12)0.0024 (11)
C30.0262 (14)0.0138 (12)0.0511 (19)0.0033 (10)0.0036 (13)0.0017 (12)
C40.0252 (14)0.0164 (13)0.061 (2)0.0002 (11)0.0031 (14)0.0159 (13)
C50.0428 (18)0.0290 (15)0.0390 (18)0.0024 (13)0.0086 (14)0.0149 (13)
C60.0345 (15)0.0233 (14)0.0317 (16)0.0017 (11)0.0060 (13)0.0038 (11)
C70.0138 (11)0.0128 (11)0.0209 (12)0.0001 (8)0.0010 (9)0.0044 (9)
C80.0176 (12)0.0173 (12)0.0247 (13)0.0006 (9)0.0012 (10)0.0000 (10)
C90.0196 (13)0.0219 (13)0.0313 (15)0.0043 (10)0.0077 (11)0.0043 (11)
C100.0120 (12)0.0269 (14)0.0343 (16)0.0011 (10)0.0009 (10)0.0107 (11)
C110.0172 (13)0.0303 (14)0.0293 (15)0.0033 (10)0.0036 (11)0.0083 (12)
C120.0183 (13)0.0225 (12)0.0243 (14)0.0032 (10)0.0001 (10)0.0005 (10)
C130.0128 (11)0.0130 (11)0.0309 (14)0.0013 (9)0.0068 (10)0.0024 (10)
C140.0412 (18)0.0175 (14)0.062 (2)0.0008 (12)0.0178 (16)0.0018 (14)
C150.044 (2)0.0170 (14)0.097 (3)0.0012 (13)0.024 (2)0.0097 (17)
C160.0225 (14)0.0127 (12)0.084 (3)0.0005 (11)0.0136 (15)0.0049 (15)
C170.052 (2)0.0296 (16)0.048 (2)0.0194 (14)0.0259 (16)0.0189 (15)
C180.0496 (18)0.0196 (13)0.0321 (16)0.0122 (12)0.0080 (14)0.0017 (12)
C190.0130 (11)0.0159 (11)0.0173 (12)0.0024 (9)0.0003 (9)0.0027 (9)
C200.0194 (13)0.0184 (12)0.0216 (13)0.0013 (9)0.0010 (10)0.0002 (10)
C210.0183 (13)0.0278 (14)0.0308 (15)0.0066 (10)0.0019 (11)0.0055 (11)
C220.0155 (13)0.0340 (15)0.0317 (15)0.0039 (10)0.0045 (11)0.0089 (12)
C230.0241 (14)0.0313 (14)0.0276 (14)0.0080 (11)0.0063 (11)0.0013 (12)
C240.0212 (13)0.0217 (13)0.0249 (14)0.0017 (10)0.0010 (10)0.0026 (10)
C(A10.0141 (11)0.0130 (11)0.0167 (12)0.0011 (8)0.0011 (9)0.0022 (9)
C(A20.0184 (12)0.0117 (10)0.0171 (12)0.0026 (9)0.0004 (9)0.0006 (9)
C(A30.0170 (12)0.0122 (11)0.0214 (13)0.0010 (9)0.0021 (10)0.0002 (9)
C(A40.0148 (11)0.0143 (11)0.0185 (12)0.0012 (9)0.0007 (9)0.0010 (9)
C(A50.0150 (12)0.0139 (11)0.0232 (13)0.0020 (9)0.0011 (10)0.0011 (9)
C(A60.0165 (12)0.0126 (11)0.0227 (13)0.0011 (9)0.0008 (10)0.0011 (9)
C(A70.0167 (12)0.0127 (11)0.0191 (12)0.0001 (9)0.0012 (9)0.0002 (9)
C(A80.0132 (11)0.0139 (11)0.0180 (12)0.0005 (8)0.0014 (9)0.0016 (9)
C(B10.0176 (12)0.0161 (11)0.0245 (14)0.0023 (9)0.0023 (10)0.0003 (10)
C(B20.0182 (12)0.0133 (11)0.0258 (13)0.0031 (9)0.0009 (10)0.0029 (10)
C(B30.0175 (12)0.0138 (11)0.0336 (15)0.0041 (9)0.0002 (11)0.0024 (10)
C(B40.0149 (12)0.0170 (11)0.0320 (15)0.0030 (9)0.0005 (10)0.0003 (10)
C(B50.0147 (12)0.0158 (11)0.0386 (16)0.0022 (9)0.0011 (11)0.0022 (11)
C(B60.0162 (12)0.0141 (11)0.0386 (16)0.0024 (9)0.0017 (11)0.0025 (11)
C(B70.0192 (12)0.0131 (11)0.0224 (13)0.0021 (9)0.0011 (10)0.0018 (9)
C(B80.0156 (12)0.0170 (11)0.0202 (13)0.0011 (9)0.0021 (9)0.0007 (9)
C(M10.0179 (12)0.0112 (10)0.0196 (13)0.0007 (9)0.0016 (9)0.0001 (9)
C(M20.0135 (11)0.0149 (11)0.0175 (12)0.0002 (9)0.0002 (9)0.0025 (9)
C(M30.0173 (12)0.0114 (10)0.0215 (13)0.0006 (9)0.0012 (10)0.0003 (9)
C(M40.0119 (11)0.0145 (11)0.0170 (12)0.0007 (8)0.0007 (8)0.0019 (9)
C1S0.059 (2)0.0438 (19)0.043 (2)0.0006 (17)0.0063 (17)0.0030 (16)
C2S0.049 (2)0.046 (2)0.057 (2)0.0065 (16)0.0016 (18)0.0077 (17)
C3S0.060 (2)0.045 (2)0.067 (3)0.0008 (18)0.001 (2)0.0046 (18)
C4S0.050 (4)0.048 (4)0.038 (4)0.001 (3)0.003 (3)0.004 (3)
C5S0.074 (10)0.046 (7)0.087 (12)0.001 (6)0.014 (9)0.015 (8)
C6S0.068 (6)0.060 (5)0.104 (8)0.016 (4)0.024 (5)0.012 (5)
C7S0.046 (7)0.077 (9)0.103 (11)0.010 (6)0.043 (7)0.015 (8)
C8S0.044 (4)0.053 (4)0.059 (5)0.001 (3)0.006 (4)0.011 (4)
C9S0.042 (3)0.044 (3)0.038 (4)0.004 (3)0.006 (3)0.001 (3)
Geometric parameters (Å, º) top
Mn1—O12.1246 (18)C21—H210.9500
Mn1—N12.0119 (19)C21—C221.388 (4)
Mn1—N22.0184 (19)C22—H220.9500
Mn1—N32.0052 (19)C22—C231.380 (4)
Mn1—N42.0074 (19)C23—H230.9500
O1—N51.260 (3)C23—C241.391 (4)
O2—N51.236 (3)C24—H240.9500
O3—N51.230 (3)C(A1—C(B11.437 (3)
N1—C(A11.387 (3)C(A1—C(M41.394 (3)
N1—C(A21.385 (3)C(A2—C(B21.431 (3)
N2—C(A31.380 (3)C(A2—C(M11.389 (3)
N2—C(A41.387 (3)C(A3—C(B31.437 (3)
N3—C(A51.384 (3)C(A3—C(M11.391 (3)
N3—C(A61.384 (3)C(A4—C(B41.434 (3)
N4—C(A71.381 (3)C(A4—C(M21.388 (3)
N4—C(A81.386 (3)C(A5—C(B51.436 (3)
C1—C21.385 (4)C(A5—C(M21.388 (3)
C1—C61.394 (4)C(A6—C(B61.433 (3)
C1—C(M11.497 (3)C(A6—C(M31.386 (3)
C2—H20.9500C(A7—C(B71.431 (3)
C2—C31.388 (3)C(A7—C(M31.393 (3)
C3—H30.9500C(A8—C(B81.431 (3)
C3—C41.374 (4)C(A8—C(M41.395 (3)
C4—H40.9500C(B1—H(B10.9500
C4—C51.390 (4)C(B1—C(B21.349 (3)
C5—H50.9500C(B2—H(B20.9500
C5—C61.389 (4)C(B3—H(B30.9500
C6—H60.9500C(B3—C(B41.344 (3)
C7—C81.399 (3)C(B4—H(B40.9500
C7—C121.389 (3)C(B5—H(B50.9500
C7—C(M21.498 (3)C(B5—C(B61.346 (3)
C8—H80.9500C(B6—H(B60.9500
C8—C91.391 (3)C(B7—H(B70.9500
C9—H90.9500C(B7—C(B81.353 (3)
C9—C101.393 (4)C(B8—H(B80.9500
C10—H100.9500C1S—C1Si1.543 (7)
C10—C111.384 (4)C1S—H1SA0.9900
C11—H110.9500C1S—H1SB0.9900
C11—C121.389 (4)C1S—C2S1.548 (5)
C12—H120.9500C2S—H2SA0.9900
C13—C141.379 (4)C2S—H2SB0.9900
C13—C181.380 (4)C2S—C3S1.509 (5)
C13—C(M31.500 (3)C3S—H3SA0.9800
C14—H140.9500C3S—H3SB0.9800
C14—C151.395 (4)C3S—H3SC0.9800
C15—H150.9500C4S—H4S0.9500
C15—C161.347 (5)C4S—C5S1.38 (2)
C16—H160.9500C4S—C9S1.372 (9)
C16—C171.381 (5)C5S—H5S0.9500
C17—H170.9500C5S—C6S1.33 (2)
C17—C181.395 (4)C6S—H6S0.9500
C18—H180.9500C6S—C7S1.49 (3)
C19—C201.393 (3)C7S—H7S0.9500
C19—C241.397 (3)C7S—C8S1.37 (2)
C19—C(M41.497 (3)C8S—H8S0.9500
C20—H200.9500C8S—C9S1.342 (10)
C20—C211.388 (4)C9S—H9S0.9500
N1—Mn1—O191.79 (7)C23—C24—H24119.8
N1—Mn1—N289.34 (8)N1—C(A1—C(B1109.5 (2)
N2—Mn1—O195.27 (7)N1—C(A1—C(M4125.9 (2)
N3—Mn1—O199.66 (7)C(M4—C(A1—C(B1124.6 (2)
N3—Mn1—N1168.53 (8)N1—C(A2—C(B2109.9 (2)
N3—Mn1—N288.96 (8)N1—C(A2—C(M1125.8 (2)
N3—Mn1—N489.79 (8)C(M1—C(A2—C(B2124.3 (2)
N4—Mn1—O199.46 (7)N2—C(A3—C(B3109.5 (2)
N4—Mn1—N188.95 (8)N2—C(A3—C(M1125.9 (2)
N4—Mn1—N2165.21 (8)C(M1—C(A3—C(B3124.5 (2)
N5—O1—Mn1123.66 (15)N2—C(A4—C(B4109.7 (2)
C(A1—N1—Mn1126.01 (15)N2—C(A4—C(M2125.9 (2)
C(A2—N1—Mn1126.15 (15)C(M2—C(A4—C(B4124.3 (2)
C(A2—N1—C(A1105.67 (18)N3—C(A5—C(B5109.7 (2)
C(A3—N2—Mn1126.98 (16)N3—C(A5—C(M2126.0 (2)
C(A3—N2—C(A4105.81 (19)C(M2—C(A5—C(B5124.3 (2)
C(A4—N2—Mn1127.19 (15)N3—C(A6—C(B6109.5 (2)
C(A5—N3—Mn1126.86 (16)N3—C(A6—C(M3125.8 (2)
C(A6—N3—Mn1126.00 (15)C(M3—C(A6—C(B6124.6 (2)
C(A6—N3—C(A5105.82 (18)N4—C(A7—C(B7109.6 (2)
C(A7—N4—Mn1126.58 (15)N4—C(A7—C(M3125.9 (2)
C(A7—N4—C(A8105.85 (18)C(M3—C(A7—C(B7124.4 (2)
C(A8—N4—Mn1127.38 (15)N4—C(A8—C(B8109.6 (2)
O2—N5—O1118.8 (2)N4—C(A8—C(M4125.7 (2)
O3—N5—O1119.1 (2)C(M4—C(A8—C(B8124.6 (2)
O3—N5—O2122.0 (2)C(A1—C(B1—H(B1126.3
C2—C1—C6118.9 (2)C(B2—C(B1—C(A1107.5 (2)
C2—C1—C(M1120.7 (2)C(B2—C(B1—H(B1126.3
C6—C1—C(M1120.5 (2)C(A2—C(B2—H(B2126.3
C1—C2—H2119.5C(B1—C(B2—C(A2107.4 (2)
C1—C2—C3120.9 (3)C(B1—C(B2—H(B2126.3
C3—C2—H2119.5C(A3—C(B3—H(B3126.2
C2—C3—H3120.0C(B4—C(B3—C(A3107.6 (2)
C4—C3—C2119.9 (3)C(B4—C(B3—H(B3126.2
C4—C3—H3120.0C(A4—C(B4—H(B4126.3
C3—C4—H4119.9C(B3—C(B4—C(A4107.3 (2)
C3—C4—C5120.1 (2)C(B3—C(B4—H(B4126.3
C5—C4—H4119.9C(A5—C(B5—H(B5126.4
C4—C5—H5120.1C(B6—C(B5—C(A5107.3 (2)
C6—C5—C4119.9 (3)C(B6—C(B5—H(B5126.4
C6—C5—H5120.1C(A6—C(B6—H(B6126.1
C1—C6—H6119.8C(B5—C(B6—C(A6107.7 (2)
C5—C6—C1120.3 (3)C(B5—C(B6—H(B6126.2
C5—C6—H6119.8C(A7—C(B7—H(B7126.3
C8—C7—C(M2119.8 (2)C(B8—C(B7—C(A7107.5 (2)
C12—C7—C8119.1 (2)C(B8—C(B7—H(B7126.3
C12—C7—C(M2121.1 (2)C(A8—C(B8—H(B8126.3
C7—C8—H8119.8C(B7—C(B8—C(A8107.3 (2)
C9—C8—C7120.4 (2)C(B7—C(B8—H(B8126.3
C9—C8—H8119.8C(A2—C(M1—C1117.9 (2)
C8—C9—H9120.1C(A2—C(M1—C(A3123.7 (2)
C8—C9—C10119.9 (2)C(A3—C(M1—C1118.4 (2)
C10—C9—H9120.1C(A4—C(M2—C7117.4 (2)
C9—C10—H10120.1C(A5—C(M2—C7119.3 (2)
C11—C10—C9119.7 (2)C(A5—C(M2—C(A4123.3 (2)
C11—C10—H10120.1C(A6—C(M3—C13118.5 (2)
C10—C11—H11119.8C(A6—C(M3—C(A7123.7 (2)
C10—C11—C12120.5 (3)C(A7—C(M3—C13117.6 (2)
C12—C11—H11119.8C(A1—C(M4—C19118.8 (2)
C7—C12—H12119.8C(A1—C(M4—C(A8122.8 (2)
C11—C12—C7120.3 (2)C(A8—C(M4—C19118.3 (2)
C11—C12—H12119.8C1Si—C1S—H1SA109.1
C14—C13—C18119.1 (2)C1Si—C1S—H1SB109.1
C14—C13—C(M3118.5 (2)C1Si—C1S—C2S112.6 (3)
C18—C13—C(M3122.4 (2)H1SA—C1S—H1SB107.8
C13—C14—H14120.0C2S—C1S—H1SA109.1
C13—C14—C15120.1 (3)C2S—C1S—H1SB109.1
C15—C14—H14120.0C1S—C2S—H2SA109.4
C14—C15—H15119.5C1S—C2S—H2SB109.4
C16—C15—C14121.0 (3)H2SA—C2S—H2SB108.0
C16—C15—H15119.5C3S—C2S—C1S111.0 (3)
C15—C16—H16120.2C3S—C2S—H2SA109.4
C15—C16—C17119.6 (3)C3S—C2S—H2SB109.4
C17—C16—H16120.2C2S—C3S—H3SA109.5
C16—C17—H17119.9C2S—C3S—H3SB109.5
C16—C17—C18120.1 (3)C2S—C3S—H3SC109.5
C18—C17—H17119.9H3SA—C3S—H3SB109.5
C13—C18—C17120.1 (3)H3SA—C3S—H3SC109.5
C13—C18—H18120.0H3SB—C3S—H3SC109.5
C17—C18—H18120.0C5S—C4S—H4S121.1
C20—C19—C24118.9 (2)C5S—C4S—C9S117.8 (11)
C20—C19—C(M4121.9 (2)C9S—C4S—H4S121.1
C24—C19—C(M4119.2 (2)C4S—C5S—H5S118.5
C19—C20—H20119.9C6S—C5S—C4S122.9 (16)
C21—C20—C19120.3 (2)C6S—C5S—H5S118.6
C21—C20—H20119.9C5S—C6S—H6S120.8
C20—C21—H21119.7C5S—C6S—C7S118.4 (12)
C22—C21—C20120.6 (2)C7S—C6S—H6S120.8
C22—C21—H21119.7C6S—C7S—H7S121.6
C21—C22—H22120.3C8S—C7S—C6S116.7 (14)
C23—C22—C21119.5 (2)C8S—C7S—H7S121.7
C23—C22—H22120.3C7S—C8S—H8S119.3
C22—C23—H23119.8C9S—C8S—C7S121.5 (11)
C22—C23—C24120.4 (2)C9S—C8S—H8S119.3
C24—C23—H23119.8C4S—C9S—H9S118.7
C19—C24—H24119.8C8S—C9S—C4S122.6 (7)
C23—C24—C19120.4 (2)C8S—C9S—H9S118.7
Mn1—O1—N5—O2169.95 (16)C18—C13—C(M3—C(A7110.9 (3)
Mn1—O1—N5—O311.9 (3)C19—C20—C21—C220.6 (4)
Mn1—N1—C(A1—C(B1162.14 (16)C20—C19—C24—C230.1 (4)
Mn1—N1—C(A1—C(M418.3 (3)C20—C19—C(M4—C(A157.4 (3)
Mn1—N1—C(A2—C(B2162.58 (16)C20—C19—C(M4—C(A8125.9 (2)
Mn1—N1—C(A2—C(M117.0 (3)C20—C21—C22—C230.1 (4)
Mn1—N2—C(A3—C(B3179.46 (17)C21—C22—C23—C240.6 (4)
Mn1—N2—C(A3—C(M10.9 (4)C22—C23—C24—C190.6 (4)
Mn1—N2—C(A4—C(B4179.21 (16)C24—C19—C20—C210.5 (4)
Mn1—N2—C(A4—C(M21.9 (4)C24—C19—C(M4—C(A1119.8 (2)
Mn1—N3—C(A5—C(B5167.60 (17)C24—C19—C(M4—C(A856.8 (3)
Mn1—N3—C(A5—C(M215.5 (4)C(A1—N1—C(A2—C(B21.3 (3)
Mn1—N3—C(A6—C(B6166.81 (17)C(A1—N1—C(A2—C(M1179.1 (2)
Mn1—N3—C(A6—C(M314.5 (4)C(A1—C(B1—C(B2—C(A20.8 (3)
Mn1—N4—C(A7—C(B7179.11 (16)C(A2—N1—C(A1—C(B11.8 (3)
Mn1—N4—C(A7—C(M32.0 (4)C(A2—N1—C(A1—C(M4177.7 (2)
Mn1—N4—C(A8—C(B8179.77 (16)C(A3—N2—C(A4—C(B40.7 (3)
Mn1—N4—C(A8—C(M43.1 (3)C(A3—N2—C(A4—C(M2176.7 (2)
N1—C(A1—C(B1—C(B21.6 (3)C(A3—C(B3—C(B4—C(A40.4 (3)
N1—C(A1—C(M4—C19177.4 (2)C(A4—N2—C(A3—C(B30.9 (3)
N1—C(A1—C(M4—C(A81.0 (4)C(A4—N2—C(A3—C(M1177.6 (2)
N1—C(A2—C(B2—C(B10.4 (3)C(A5—N3—C(A6—C(B60.8 (3)
N1—C(A2—C(M1—C1174.8 (2)C(A5—N3—C(A6—C(M3177.9 (2)
N1—C(A2—C(M1—C(A34.9 (4)C(A5—C(B5—C(B6—C(A61.5 (3)
N2—C(A3—C(B3—C(B40.9 (3)C(A6—N3—C(A5—C(B50.1 (3)
N2—C(A3—C(M1—C1175.7 (2)C(A6—N3—C(A5—C(M2177.1 (2)
N2—C(A3—C(M1—C(A24.6 (4)C(A7—N4—C(A8—C(B84.5 (3)
N2—C(A4—C(B4—C(B30.2 (3)C(A7—N4—C(A8—C(M4172.3 (2)
N2—C(A4—C(M2—C7176.1 (2)C(A7—C(B7—C(B8—C(A81.1 (3)
N2—C(A4—C(M2—C(A55.4 (4)C(A8—N4—C(A7—C(B73.7 (3)
N3—C(A5—C(B5—C(B61.1 (3)C(A8—N4—C(A7—C(M3173.4 (2)
N3—C(A5—C(M2—C7174.8 (2)C(B1—C(A1—C(M4—C193.1 (3)
N3—C(A5—C(M2—C(A43.7 (4)C(B1—C(A1—C(M4—C(A8179.5 (2)
N3—C(A6—C(B6—C(B51.5 (3)C(B2—C(A2—C(M1—C15.7 (4)
N3—C(A6—C(M3—C13174.4 (2)C(B2—C(A2—C(M1—C(A3174.6 (2)
N3—C(A6—C(M3—C(A70.3 (4)C(B3—C(A3—C(M1—C12.6 (4)
N4—C(A7—C(B7—C(B81.6 (3)C(B3—C(A3—C(M1—C(A2177.1 (2)
N4—C(A7—C(M3—C13165.7 (2)C(B4—C(A4—C(M2—C70.9 (4)
N4—C(A7—C(M3—C(A69.0 (4)C(B4—C(A4—C(M2—C(A5177.6 (2)
N4—C(A8—C(B8—C(B73.5 (3)C(B5—C(A5—C(M2—C71.7 (4)
N4—C(A8—C(M4—C19166.2 (2)C(B5—C(A5—C(M2—C(A4179.8 (2)
N4—C(A8—C(M4—C(A110.3 (4)C(B6—C(A6—C(M3—C137.1 (4)
C1—C2—C3—C40.2 (4)C(B6—C(A6—C(M3—C(A7178.2 (2)
C2—C1—C6—C51.2 (4)C(B7—C(A7—C(M3—C1311.0 (4)
C2—C1—C(M1—C(A264.2 (3)C(B7—C(A7—C(M3—C(A6174.2 (2)
C2—C1—C(M1—C(A3115.5 (3)C(B8—C(A8—C(M4—C1910.0 (4)
C2—C3—C4—C50.8 (5)C(B8—C(A8—C(M4—C(A1173.5 (2)
C3—C4—C5—C60.4 (5)C(M1—C1—C2—C3178.2 (2)
C4—C5—C6—C10.6 (5)C(M1—C1—C6—C5177.8 (3)
C6—C1—C2—C30.8 (4)C(M1—C(A2—C(B2—C(B1180.0 (2)
C6—C1—C(M1—C(A2114.8 (3)C(M1—C(A3—C(B3—C(B4177.7 (2)
C6—C1—C(M1—C(A365.5 (3)C(M2—C7—C8—C9177.6 (2)
C7—C8—C9—C100.2 (4)C(M2—C7—C12—C11177.6 (2)
C8—C7—C12—C110.5 (4)C(M2—C(A4—C(B4—C(B3177.2 (2)
C8—C7—C(M2—C(A472.7 (3)C(M2—C(A5—C(B5—C(B6178.1 (2)
C8—C7—C(M2—C(A5105.9 (3)C(M3—C13—C14—C15178.7 (3)
C8—C9—C10—C110.1 (4)C(M3—C13—C18—C17179.6 (3)
C9—C10—C11—C120.2 (4)C(M3—C(A6—C(B6—C(B5177.3 (3)
C10—C11—C12—C70.1 (4)C(M3—C(A7—C(B7—C(B8175.6 (2)
C12—C7—C8—C90.5 (3)C(M4—C19—C20—C21176.7 (2)
C12—C7—C(M2—C(A4105.3 (3)C(M4—C19—C24—C23177.4 (2)
C12—C7—C(M2—C(A576.1 (3)C(M4—C(A1—C(B1—C(B2177.9 (2)
C13—C14—C15—C160.4 (6)C(M4—C(A8—C(B8—C(B7173.2 (2)
C14—C13—C18—C170.1 (4)C1Si—C1S—C2S—C3S178.4 (3)
C14—C13—C(M3—C(A6105.4 (3)C4S—C5S—C6S—C7S6 (3)
C14—C13—C(M3—C(A769.6 (3)C5S—C4S—C9S—C8S0.6 (15)
C14—C15—C16—C171.0 (5)C5S—C6S—C7S—C8S5 (3)
C15—C16—C17—C182.0 (5)C6S—C7S—C8S—C9S2 (3)
C16—C17—C18—C131.5 (5)C7S—C8S—C9S—C4S0.2 (19)
C18—C13—C14—C150.8 (5)C9S—C4S—C5S—C6S4 (3)
C18—C13—C(M3—C(A674.1 (3)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4S—H4S···O30.952.383.177 (8)141
C10—H10···O2ii0.952.503.182 (3)129
C17—H17···O2iii0.952.533.350 (4)145
C22—H22···O2iv0.952.493.085 (3)120
Symmetry codes: (ii) x1/2, y+1, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x+1/2, y+1, z+1/2.
Selected structural parameters (Å) for related metalloporphyrin nitrato complexes top
Δ4 is the displacement of the metal atom from the mean plane of the four pyrrole nitrogen atoms and Δ24 is the displacement of the metal atom from the 24-atom mean plane.
ComplexΔ4Δ24M—ON—O1M—NpRef.
[Mn(TPP)(NO3)] (Pccn) benzene and n-hexane hemisolvate0.230.222.1246 (18)1.260 (3) 1.236 (3) 1.230 (3)2.011 (6)This work
[Mn(TPP)(NO3)] (P1) benzene disolvate0.210.202.101 (3)1.298 (4) 1.226 (5) 1.226 (5)2.007 (9)(Suslick & Watson, 1991)
[Fe(OEP)(NO3)] (P21/c)0.400.451.966 (2)1.301 (3) 1.199 (3) 1.212 (3)2.047 (6)(Wyllie et al., 2007)
[Fe(OEP)(NO3)] (P1)0.460.502.016 (3)1.206 (5) 1.198 (4) 1.208 (6)2.056 (1)(Ellison et al., 1996)
[Fe(4-Me-TTP)(NO3)]0.470.531.971 (3)1.262 (5) 1.252 (5) 1.221 (4)2.063 (13)(Bhuyan & Sarkar, 2013)
[Fe(TPP)(NO3)]0.540.632.121 (6) 2.19 (10)1.27 (10) 1.285 (21) 1.217 (3)2.085 (10)(Wyllie et al., 2007)
[Fe(TpivPP)(NO3)]0.420.492.123 (3) 2.226 (3)1.271 (4) 1.252 (4) 1.214 (3)2.070 (16)(Munro & Scheidt, 1998)
[Fe(4-OMe-TPP)(NO3)]0.550.622.169 (5) 2.169 (5)1.216 (5) 1.276 (8) 1.216 (5)2.05 (3)(Bhuyan & Sarkar, 2013)
 

Funding information

The authors thank the National Natural Science Foundation of China (grant No. 21977093 to JL) for support. This work was supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences, grant No. XDB28000000.

References

First citationAverill, B. A. (1996). Chem. Rev. 96, 2951–2964.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBhuyan, J. & Sarkar, S. (2013). J. Chem. Sci. 125, 707–714.  CSD CrossRef CAS Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEllison, M. K., Shang, M., Kim, J. & Scheidt, W. R. (1996). Acta Cryst. C52, 3040–3043.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHe, M., Li, X., Liu, Y. & Li, J. (2016). Inorg. Chem. 55, 5871–5879.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMunro, O. Q. & Scheidt, W. R. (1998). Inorg. Chem. 37, 2308–2316.  CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. & Desiraju, G. R. (1998). Chem. Commun. pp. 891–892.  Web of Science CrossRef Google Scholar
First citationSuslick, K. S. & Watson, R. A. (1991). Inorg. Chem. 30, 912–919.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWyllie, G. R., Munro, O. Q., Schulz, C. E. & Scheidt, W. R. (2007). Polyhedron, 26, 4664–4672.  CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds