organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Amino-5-(4-bromo­benzo­yl)-3-(benzo[d]thia­zol-2-yl)-2-[(2′,3′,4′,6′-tetra-O-acetyl-β-D-galacto­pyran­osyl­)sulfanyl]­thio­phene

crossmark logo

aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de

Edited by J. T. Mague, Tulane University, USA (Received 14 March 2022; accepted 19 April 2022; online 28 April 2022)

In the title compound, C32H29BrN2O10S3, the benzo­thia­zole and thio­phene ring systems subtend an inter­planar angle of 7.43 (12)°. The NH2 group forms intra­molecular hydrogen bonds to Nthia­zole and Ocarbon­yl. The Sgalactose—Cthio­phene bond is short [1.759 (2) Å]. The mol­ecules are connected to form ribbons parallel to the b axis by two `weak' hydrogen bonds and a short Namino⋯Sgalactose contact.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzo­thia­zoles are the most widely applied class of heterocyclic compounds in medicinal chemistry, and benzo­thia­zole derivatives have been employed in many pharmaceutical preparations (Bonde et al., 2015[Bonde, C., Vedala, D. & Bonde, S. (2015). J. Pharm. Res. 9, 573-580.]), because they offer a variety of pharmacological properties useful in treating many diseases (Wang et al., 2009[Wang, X., Sarris, K., Kage, K., Zhang, D., Brown, S. P., Kolasa, T., Surowy, C., El Kouhen, O. F., Muchmore, S. W., Brioni, J. D. & Stewart, A. O. (2009). J. Med. Chem. 52, 170-180.]). As clinical drugs, they often act with high therapeutic efficacy (Huang et al., 2009[Huang, Q., Mao, J., Wan, B., Wang, Y., Brun, R., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 6757-6767.]). The broad pharmacological activities of benzo­thia­zoles suggest that they are also important for developing future drugs (Rana et al., 2008[Rana, A., Siddiqui, N., Khan, S. A., Haque, E. S. & Bhat, M. A. (2008). Eur. J. Med. Chem. 43, 1114-1122.]). Recently we have explored various novel synthetic methods to obtain benzo­thia­zole derivatives (Azzam et al. 2017a[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820-1822.],b[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041-1043.], 2020a[Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023-30036.],b[Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182-26194.],c[Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640-1655.], 2021[Azzam, R. A., Elgemeie, G. H., Seif, M. M. & Jones, P. G. (2021). Acta Cryst. E77, 891-894.]; Elgemeie et al., 2000a[Elgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). Phosphorus Sulfur Silicon, 165, 265-272.],b[Elgemeie, G. H., Shams, Z., Elkholy, M. & Abbas, N. S. (2000b). Heterocycl. Commun. 6, 363-268.]; 2020a[Elgemeie, G. H., Azzam, R. A. & Osman, R. R. (2020a). Inorg. Chim. Acta, 502, 119302.]).

As a part of our current plan directed toward discovering synthetic methodologies for the preparation of S-glycosyl­ated derivatives of heterocyclic nitro­gen bases (Elgemeie et al., 2017a[Elgemeie, G. H., Fathy, N. M., Zaghary, W. & Farag, A. (2017a). Nucleosides Nucleotides Nucleic Acids, 36, 198-212.],b[Elgemeie, G. H., Abu-Zaied, M. A. & Loutfy, S. A. (2017b). Tetrahedron, 73, 5853-5861.],c[Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017c). Nucleosides Nucleotides Nucleic Acids, 36, 139-150.]), we have lately described the synthesis and biological activity of a series of heterocyclic S-glycosides that have promising cytotoxic activity (Abu-Zaied et al., 2011[Abu-Zaied, M. A., El-Telbani, E. M., Elgemeie, G. H. & Nawwar, G. A. (2011). Eur. J. Med. Chem. 46, 229-235.], 2019a[Abu-Zaied, M. A., Elgemeie, G. H. & Jones, P. G. (2019a). Acta Cryst. E75, 1820-1823.],b[Abu-Zaied, M. A., Loutfy, S. A., Hassan, A. E. & Elgemeie, G. H. (2019b). Drug. Des. Dev. Ther. 13, 2437-2457.], 2020[Abu-Zaied, M. A., Mahmoud, N. M. & Elgemeie, G. H. (2020). Am. Chem. Soc. (Omega), 5, 20042-20050.], 2021[Abu-Zaied, M. A., Mahmoud, N. M. & Elgemeie, G. H. (2021). Am. Chem. Soc. (Omega), 6, 16890-16904.]; Elgemeie et al., 2009[Elgemeie, G. H., Eltamny, E. H., Elgawad, I. I. & Mahmoud, N. M. (2009). Synth. Commun. 39, 443-458.], 2018[Elgemeie, G. H., Abu-Zaied, M. A. & Nawwar, G. A. (2018). Nucleosides Nucleotides Nucleic Acids, 37, 112-123.]). We found that our reported di­hydro­pyridine S-glycosides have a strong anti-P-glycoprotein effect against human tumor cells (Scala et al., 1997[Scala, S., Akhmed, K., Rao, U. S., Paull, K., Lan, L., Dickstein, B., Lee, J., Elgemeie, G. H., Stein, W. D. & Bates, S. E. P. (1997). Mol. Pharmacol. 51, 1024-1033.]). Consistent with these outcomes and our past research (Elgemeie et al., 2015[Elgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 659-673.], 2016[Elgemeie, G. H., Abu-Zaied, M. & Azzam, R. (2016). Nucleosides Nucleotides Nucleic Acids, 35, 211-222.], 2019[Elgemeie, G. H., Alkhursani, S. A. & Mohamed, R. A. (2019). Nucleosides Nucleotides Nucleic Acids, 38, 12-87.], 2020b[Elgemeie, G. H., Fathy, N. M., Farag, A. B. & Yahab, A. M. B. (2020b). Nucleosides Nucleotides Nucleic Acids, 39, 1134-1149.]), the purpose of the current study was to design and synthesize benzo­thia­zole-based thio­phene thio­glycosides. The synthesis of our target benzo­thia­zole-2-thio­phene thio­glycoside was carried out by the reaction of benzo­thia­zole 2-thio­phene­thiol derivative 1 with 2,3,4,6-tetra-O-acetyl-β-D-galacto­pyranosyl bromide 2 in the presence of potassium hydroxide to give the corresponding benzo­thia­zole-2-thio­phene S-glycoside 3 in good yield (Fig. 1[link]). It has been suggested that the cis-(α) sugars react via a simple SN2 reaction to give the β-glycoside products such as 3 (Masoud et al., 2017[Masoud, D. M., Hammad, S. F., Elgemeie, G. H. & Jones, P. G. (2017). Acta Cryst. E73, 1751-1754.]; Hammad et al., 2018[Hammad, S. F., Masoud, D. M., Elgemeie, G. H. & Jones, P. G. (2018). Acta Cryst. E74, 853-856.]). The structure of 3 was confirmed based on the spectroscopic data (13C NMR, 1H NMR, and IR). The 1H NMR spectrum of compound 3 showed the anomeric proton as a doublet at δ = 5.39 p.p.m. with a spin–spin coupling constant (J1′,2′ = 8.8 Hz) confirming the β-configuration. The other six protons of galactose resonated at δ 4.00–5.30 p.p.m. In order to establish the structure of the product unambiguously, its crystal structure was determined and is reported here. To the best of our knowledge, this is the first reported X-ray structure of the new compound type benzo­thia­zole-2-thio­phene thio­glycoside.

[Figure 1]
Figure 1
Reaction scheme.

The structure of 3 is shown in Fig. 2[link]. The dimensions of the benzo­thia­zole moiety are as expected (a selection of mol­ecular dimensions is presented in Table 1[link]). The benzo­thia­zole and thio­phene ring systems are approximately coplanar [inter­planar angle 7.43 (12)°], a geometry that is reinforced by the two intra­molecular hydrogen bonds from the NH2 group to the thia­zole nitro­gen atom and the C=O group (Table 2[link]), whereas the bromo­phenyl and thio­phene rings subtend an angle of 58.23 (6)°. The intra­molecular S2⋯S3 contact is 3.1416 (8) Å.

Table 1
Selected geometric parameters (Å, °)

S1—C2 1.703 (2) S2—C12 1.733 (2)
S1—C5 1.731 (2) S3—C2 1.759 (2)
S2—C6 1.762 (2) S3—C31 1.819 (2)
       
C2—S1—C5 92.15 (12) N1—C6—S2 115.18 (17)
C12—S2—C6 88.99 (12) N1—C7—C12 114.8 (2)
C2—S3—C31 98.36 (11) C7—C12—S2 109.94 (17)
C6—N1—C7 111.1 (2)    
       
O1—C31—C32—C33 53.1 (2) C32—C33—C34—C35 48.1 (3)
C31—O1—C35—C34 69.4 (2) C33—C34—C35—O1 −57.9 (3)
C31—C32—C33—C34 −45.9 (3) C35—O1—C31—C32 −66.0 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H01⋯N1 0.86 (3) 2.12 (3) 2.746 (3) 129 (3)
N2—H02⋯O10 0.86 (3) 2.14 (3) 2.795 (3) 133 (3)
C31—H31⋯O6i 1.00 2.34 3.290 (3) 158
C36—H36B⋯O9ii 0.99 2.33 3.294 (4) 164
Symmetry codes: (i) x, y+1, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
The mol­ecule of 3 in the crystal. Ellipsoids represent 50% probability levels. The dashed lines indicate intra­molecular hydrogen bonds.

The β configuration (equatorial position of the sulfur atom) at the anomeric carbon of the sugar (here C31) is confirmed, as is the axial configuration of the substituent at C34, characteristic of galactose. The galactose ring displays a slightly flattened chair conformation, with absolute torsion angles < 50° about C32—C33 and C33—C34. The configurations at C31–C35 are S, R, S, R, R, respectively. The S3—C31 bond is as expected longer than S3—C2, with values of 1.819 (2) and 1.759 (2) Å, respectively; the latter is significantly shorter than the values found for similar compounds in search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; performed using CONQUEST Version 2021.3.0) for purely organic galactose derivatives substituted with a sulfur atom at the anomeric carbon. There were 22 hits, of which two were axially substituted (NODQEC, Khiar et al., 1997[Khiar, N., Alonso, I., Rodriguez, N., Fernandez-Mayoralas, A., Jimenez-Barbero, J., Nieto, O., Cano, F., Foces-Foces, C. & Martin-Lomas, M. (1997). Tetrahedron Lett. 38, 8267-8270.]; YINFUY, Smith et al., 2013[Smith, R., Zeng, X., Müller-Bunz, H. & Zhu, X. (2013). Tetrahedron Lett. 54, 5348-5350.]) and the remainder equatorially substituted. The 29 C—S bond lengths for the latter lay in the range 1.788–1.856, average 1.808 (13) Å. Restricting the analysis to the ten hits with an sp2 carbon atom altered these values only marginally.

The N—H donor groups do not participate in inter­molecular hydrogen bonding, but two short and acceptably linear C—H⋯O contacts between the galactose moieties may be classed as `weak' hydrogen bonds (Table 2[link]). Additionally, a short contact N2⋯S3 of 3.249 (2) Å is observed (operator x, 1 + y, z). The net effect is to form ribbons of mol­ecules parallel to the b axis (Fig. 3[link]).

[Figure 3]
Figure 3
Crystal packing of 3 viewed perpendicular to (10[\overline{1}]) in the region x ≃ 0.75, z ≃ 0.25. For clarity, the following atoms/groups have been omitted: Hydrogen atoms not involved in `weak' hydrogen bonding; two acetyl groups; the bromo­phenyl groups (except the ipso carbon atom). Dashed lines indicate hydrogen bonds or N⋯S contacts.

Synthesis and crystallization

Thio­phene thiol derivative 1 (2.23 g, 5 mmol) was dissolved in acetone (10 ml) containing 0.5 ml of aq. KOH (0.25 g, 5 mmol). The mixture was warmed to 50°C for 15 min. After cooling, a solution of 2,3,4,6-tetra-O-acetyl-β-D-galacto­pyranosyl bromide 2 (2.05 g, 5 mmol) in acetone (10 ml) was added dropwise over 30 min. The reaction mixture was stirred at room temperature and monitored by TLC until the reaction was complete (8 h). The residue was washed with distilled water to remove KBr, then dried and crystallized from ethanol to produce compound 3 (Fig. 1[link]).

Yellow solid, yield 65%, m.p. 403–405 K (EtOH); IR (KBr, cm−1): ν 3406–3281 (NH2), 2923 (ArCH), 1748 (4Ac-CO), 1720 (CO); 1H NMR (400 MHz, DMSO-d6): δ 1.89, 1.91, 1.94, 2.01 (4 s, 12H, 4 × OAc), 4.00–4.02 (m, 2H, H-6′), 4.32 (t, J = 6.0 Hz, 1H, H-5′), 5.15 (t, J = 8.0 Hz, 1H, H-4′), 5.25–5.30 (m, 2H, H-3′, H-2′), 5.39 (d, J = 8.8 Hz, 1H, H-1′), 7.52 (t, J = 7.4 Hz, 1H, benzo­thia­zole-H), 7.61 (t, J = 7.4 Hz, 1H, benzo­thia­zole-H), 7.77–7.79 (m, 4H, Ar—H), 8.14 (d, J = 7.6 Hz, 1H, benzo­thia­zole-H), 8.21 (d, J = 8.0 Hz, 1H, benzo­thia­zole-H), 8.93 (s, br, D2O exch., 2H, NH2); Analysis: calculated for C32H29 BrN2O10S3 (777.68): C, 49.42; H, 3.76; N, 3.60; S, 12.37%. Found: C, 49.39; H, 3.73; N, 3.67; S, 12.40%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula C32H29BrN2O10S3
Mr 777.66
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 16.99261 (18), 6.02635 (7), 17.4076 (2)
β (°) 107.8307 (12)
V3) 1696.97 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 3.89
Crystal size (mm) 0.15 × 0.06 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku D (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.781, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 107906, 7129, 7052
Rint 0.032
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.062, 1.04
No. of reflections 7129
No. of parameters 445
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.72
Absolute structure Flack x determined using 3095 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.019 (7)
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku D (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4-Amino-5-(4-bromobenzoyl)-3-(benzo[d]thiazol-2-yl)-2-[(2',3',4',6'-tetra-O-acetyl-β-D-galactopyranosyl)sulfanyl]thiophene top
Crystal data top
C32H29BrN2O10S3F(000) = 796
Mr = 777.66Dx = 1.522 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 16.99261 (18) ÅCell parameters from 91570 reflections
b = 6.02635 (7) Åθ = 2.7–77.5°
c = 17.4076 (2) ŵ = 3.89 mm1
β = 107.8307 (12)°T = 100 K
V = 1696.97 (3) Å3Lath, pale yellow
Z = 20.15 × 0.06 × 0.02 mm
Data collection top
XtaLAB Synergy
diffractometer
7129 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source7052 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.0000 pixels mm-1θmax = 77.8°, θmin = 2.7°
ω scansh = 2121
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 77
Tmin = 0.781, Tmax = 1.000l = 2222
107906 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.6757P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max = 0.003
S = 1.04Δρmax = 0.37 e Å3
7129 reflectionsΔρmin = 0.72 e Å3
445 parametersAbsolute structure: Flack x determined using 3095 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.019 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Short contacts:

3.1416 (0.0008) S2 - S3 3.2493 (0.0021) N2 - S3_$2

Operator $2 : x,1+y,z

==============================================================================

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 1.7949 (0.0074) x + 2.7373 (0.0043) y + 15.2223 (0.0070) z = 2.9267 (0.0054)

* 0.0402 (0.0013) C2 * -0.0135 (0.0017) N1 * -0.0086 (0.0019) C6 * -0.0308 (0.0020) C7 * -0.0016 (0.0018) C8 * 0.0379 (0.0020) C9 * 0.0338 (0.0019) C10 * -0.0142 (0.0018) C11 * -0.0432 (0.0020) C12

Rms deviation of fitted atoms = 0.0288

- 0.0073 (0.0162) x + 3.1508 (0.0048) y + 14.1284 (0.0110) z = 4.2446 (0.0123)

Angle to previous plane (with approximate esd) = 7.434 ( 0.118 )

* 0.0061 (0.0010) S1 * 0.0046 (0.0013) C2 * -0.0152 (0.0014) C3 * 0.0207 (0.0014) C4 * -0.0162 (0.0013) C5 0.0201 (0.0033) S3 0.0387 (0.0033) N2 -0.1146 (0.0038) C13 0.0343 (0.0044) O10

Rms deviation of fitted atoms = 0.0140

5.5692 (0.0163) x + 2.3719 (0.0054) y - 15.9799 (0.0068) z = 5.2155 (0.0164)

Angle to previous plane (with approximate esd) = 58.230 ( 0.061 )

* -0.0124 (0.0016) C21 * -0.0049 (0.0017) C22 * 0.0186 (0.0017) C23 * -0.0152 (0.0018) C24 * -0.0023 (0.0018) C25 * 0.0162 (0.0017) C26 -0.0309 (0.0037) C13 0.8520 (0.0040) O10 -0.1298 (0.0035) Br1

Rms deviation of fitted atoms = 0.0130

Refinement. The hydrogen atoms of the NH2 group were refined freely, but with N—H distances restrained to be approximately equal (SADI). The methyl groups were refined as idealized rigid groups allowed to rotate but not tip, with C—H 0.98 Å and H—C—H 109.5 °. Other hydrogens were included using a riding model starting from calculated positions (C—Haromatic 0.95, C—Hmethylene 0.99, C—Hmethine 1.00 Å). The U(H) values were fixed at 1.5 or 1.2 times the equivalent Uiso value of the parent carbon atoms for methyl and non-methyl hydrogens respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.17709 (2)0.30260 (5)0.13689 (2)0.03408 (9)
S10.81796 (3)0.50666 (10)0.18829 (3)0.01870 (11)
S20.51931 (3)0.50194 (10)0.15908 (3)0.01913 (11)
S30.69078 (3)0.27394 (9)0.24112 (3)0.01767 (11)
O10.76755 (10)0.4911 (3)0.37404 (9)0.0193 (3)
O20.56621 (10)0.2394 (3)0.34351 (10)0.0210 (3)
O30.64615 (12)0.2015 (3)0.51551 (11)0.0263 (4)
O40.80626 (10)0.3125 (3)0.53459 (9)0.0236 (3)
O50.85216 (11)0.8993 (3)0.41271 (12)0.0287 (4)
O60.57638 (13)0.1299 (4)0.33101 (15)0.0391 (5)
O70.55812 (15)0.4238 (4)0.55315 (13)0.0413 (5)
O80.86193 (15)0.5092 (5)0.64867 (13)0.0468 (6)
O90.98997 (13)0.9040 (4)0.46564 (14)0.0394 (5)
O100.85254 (11)1.0388 (3)0.07162 (11)0.0243 (4)
N10.54299 (12)0.8799 (3)0.09717 (11)0.0180 (4)
N20.69030 (12)1.0127 (4)0.07769 (12)0.0196 (4)
H010.6390 (17)1.048 (6)0.0665 (18)0.023 (8)*
H020.726 (2)1.093 (6)0.065 (2)0.039 (10)*
C20.71837 (13)0.4982 (4)0.19001 (13)0.0177 (4)
C30.67073 (14)0.6741 (4)0.14936 (13)0.0167 (4)
C40.71933 (13)0.8253 (4)0.11822 (12)0.0171 (4)
C50.80082 (14)0.7495 (4)0.13255 (13)0.0188 (5)
C60.58211 (14)0.7040 (4)0.13374 (13)0.0166 (4)
C70.45902 (14)0.8671 (4)0.08844 (13)0.0174 (4)
C80.40068 (14)1.0310 (4)0.05402 (13)0.0204 (5)
H80.4162011.1618190.0318630.025*
C90.31929 (14)0.9979 (5)0.05296 (14)0.0220 (5)
H90.2789811.1083470.0303200.026*
C100.29589 (13)0.8040 (5)0.08480 (13)0.0226 (5)
H100.2400080.7852870.0835860.027*
C110.35290 (15)0.6397 (4)0.11791 (14)0.0215 (5)
H110.3368760.5076380.1389250.026*
C120.43461 (14)0.6732 (4)0.11962 (13)0.0186 (4)
C130.86263 (14)0.8523 (4)0.10269 (14)0.0196 (5)
C210.93984 (14)0.7229 (4)0.10924 (14)0.0192 (5)
C220.93411 (14)0.5116 (4)0.07541 (14)0.0214 (5)
H220.8813000.4504000.0486100.026*
C231.00516 (15)0.3892 (4)0.08054 (15)0.0221 (5)
H231.0015650.2474320.0558550.026*
C241.08128 (14)0.4797 (5)0.12261 (15)0.0241 (5)
C251.08860 (15)0.6910 (5)0.15573 (16)0.0248 (5)
H251.1414750.7507160.1832500.030*
C261.01739 (14)0.8141 (5)0.14802 (14)0.0219 (5)
H261.0214910.9604440.1691620.026*
C310.68674 (14)0.4215 (4)0.33099 (14)0.0177 (4)
H310.6496500.5535400.3151480.021*
C320.65357 (13)0.2649 (4)0.38322 (13)0.0189 (5)
H320.6825660.1184290.3904550.023*
C330.66127 (15)0.3731 (4)0.46429 (14)0.0211 (5)
H330.6170970.4882340.4561460.025*
C340.74480 (15)0.4824 (4)0.50439 (14)0.0225 (5)
H340.7409690.5776560.5501430.027*
C350.76617 (15)0.6258 (4)0.44166 (14)0.0221 (5)
H350.7226980.7424860.4226730.026*
C360.84913 (16)0.7367 (5)0.47261 (16)0.0277 (5)
H36A0.8552760.8094020.5251270.033*
H36B0.8940730.6266810.4798260.033*
C370.53570 (15)0.0359 (4)0.31928 (14)0.0222 (5)
C380.44510 (15)0.0517 (5)0.27487 (15)0.0255 (5)
H38A0.4170970.1306290.3082820.038*
H38B0.4218970.0978560.2630790.038*
H38C0.4370850.1326740.2242230.038*
C390.59276 (16)0.2497 (5)0.55765 (15)0.0279 (6)
C400.5876 (2)0.0572 (6)0.61001 (17)0.0354 (7)
H40A0.5789820.0796200.5780790.053*
H40B0.5411620.0791410.6315490.053*
H40C0.6390930.0458370.6547410.053*
C410.86038 (18)0.3428 (5)0.60992 (15)0.0326 (6)
C420.9152 (2)0.1462 (6)0.63644 (17)0.0375 (7)
H42A0.8831680.0226970.6481770.056*
H42B0.9603620.1838590.6851450.056*
H42C0.9382040.1027460.5934380.056*
C430.92782 (16)0.9685 (5)0.41543 (17)0.0283 (5)
C440.92423 (18)1.1323 (5)0.3502 (2)0.0352 (6)
H44A0.8904261.0720870.2982450.053*
H44B0.9802711.1613300.3480460.053*
H44C0.8996391.2709090.3613380.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01892 (12)0.02848 (15)0.05928 (18)0.00424 (11)0.01851 (11)0.00576 (13)
S10.0151 (2)0.0187 (3)0.0240 (2)0.0015 (2)0.00866 (19)0.0033 (2)
S20.0149 (2)0.0184 (3)0.0248 (2)0.0013 (2)0.00720 (19)0.0027 (2)
S30.0188 (2)0.0162 (3)0.0201 (2)0.0004 (2)0.00916 (18)0.0012 (2)
O10.0162 (7)0.0215 (9)0.0208 (7)0.0012 (7)0.0064 (6)0.0001 (7)
O20.0178 (8)0.0197 (9)0.0268 (8)0.0013 (6)0.0088 (6)0.0008 (6)
O30.0289 (9)0.0290 (10)0.0255 (8)0.0005 (8)0.0151 (7)0.0046 (7)
O40.0246 (8)0.0248 (9)0.0191 (7)0.0013 (8)0.0035 (6)0.0013 (7)
O50.0223 (9)0.0254 (10)0.0370 (10)0.0040 (7)0.0071 (7)0.0052 (8)
O60.0286 (10)0.0248 (11)0.0613 (13)0.0015 (8)0.0100 (9)0.0130 (9)
O70.0529 (14)0.0450 (14)0.0372 (11)0.0105 (11)0.0305 (10)0.0039 (9)
O80.0534 (14)0.0464 (14)0.0312 (10)0.0093 (12)0.0011 (9)0.0112 (10)
O90.0244 (10)0.0413 (12)0.0470 (12)0.0057 (9)0.0030 (9)0.0085 (10)
O100.0228 (8)0.0182 (9)0.0351 (9)0.0009 (7)0.0136 (7)0.0034 (7)
N10.0163 (9)0.0204 (10)0.0189 (8)0.0004 (7)0.0079 (7)0.0008 (7)
N20.0170 (9)0.0187 (10)0.0245 (9)0.0019 (8)0.0088 (7)0.0051 (8)
C20.0165 (10)0.0193 (11)0.0194 (9)0.0007 (9)0.0086 (8)0.0017 (9)
C30.0164 (10)0.0167 (11)0.0181 (10)0.0011 (8)0.0071 (8)0.0014 (8)
C40.0177 (10)0.0183 (11)0.0166 (9)0.0018 (9)0.0071 (8)0.0014 (9)
C50.0172 (10)0.0188 (12)0.0209 (10)0.0000 (8)0.0068 (8)0.0005 (8)
C60.0179 (11)0.0180 (11)0.0157 (9)0.0009 (8)0.0079 (8)0.0008 (8)
C70.0157 (10)0.0207 (12)0.0167 (9)0.0014 (8)0.0061 (8)0.0022 (8)
C80.0187 (11)0.0239 (13)0.0195 (10)0.0021 (9)0.0071 (8)0.0024 (9)
C90.0180 (11)0.0281 (13)0.0201 (10)0.0054 (10)0.0063 (8)0.0005 (10)
C100.0158 (9)0.0303 (13)0.0226 (10)0.0015 (11)0.0073 (8)0.0014 (11)
C110.0173 (11)0.0246 (13)0.0240 (11)0.0039 (9)0.0083 (9)0.0001 (9)
C120.0160 (11)0.0207 (12)0.0191 (10)0.0002 (9)0.0053 (8)0.0010 (9)
C130.0187 (10)0.0193 (12)0.0219 (10)0.0029 (8)0.0076 (8)0.0023 (8)
C210.0190 (11)0.0195 (11)0.0227 (10)0.0026 (9)0.0116 (9)0.0016 (9)
C220.0182 (11)0.0215 (12)0.0267 (11)0.0021 (10)0.0099 (9)0.0004 (10)
C230.0211 (11)0.0192 (11)0.0299 (12)0.0015 (9)0.0136 (9)0.0003 (9)
C240.0159 (11)0.0260 (13)0.0346 (12)0.0032 (10)0.0138 (9)0.0053 (11)
C250.0172 (11)0.0260 (13)0.0326 (13)0.0031 (10)0.0097 (9)0.0001 (10)
C260.0210 (10)0.0201 (12)0.0266 (10)0.0026 (10)0.0102 (9)0.0007 (10)
C310.0165 (10)0.0179 (11)0.0200 (10)0.0003 (9)0.0077 (8)0.0010 (8)
C320.0162 (10)0.0197 (13)0.0223 (10)0.0010 (9)0.0079 (8)0.0010 (9)
C330.0224 (11)0.0221 (12)0.0215 (10)0.0003 (9)0.0104 (9)0.0028 (9)
C340.0242 (12)0.0227 (12)0.0210 (10)0.0008 (10)0.0075 (9)0.0019 (10)
C350.0222 (12)0.0207 (12)0.0228 (11)0.0014 (9)0.0061 (9)0.0022 (9)
C360.0234 (12)0.0269 (14)0.0296 (12)0.0057 (10)0.0035 (10)0.0014 (10)
C370.0235 (12)0.0234 (13)0.0235 (11)0.0033 (10)0.0128 (9)0.0038 (10)
C380.0216 (11)0.0326 (15)0.0242 (11)0.0063 (10)0.0096 (9)0.0028 (10)
C390.0280 (12)0.0387 (17)0.0202 (11)0.0052 (11)0.0122 (9)0.0025 (10)
C400.0403 (16)0.0407 (18)0.0300 (13)0.0078 (13)0.0180 (12)0.0024 (12)
C410.0381 (14)0.0354 (17)0.0215 (11)0.0039 (12)0.0050 (10)0.0017 (11)
C420.0414 (16)0.0391 (17)0.0253 (13)0.0087 (13)0.0002 (12)0.0012 (12)
C430.0227 (12)0.0249 (13)0.0361 (13)0.0042 (10)0.0072 (10)0.0019 (11)
C440.0258 (13)0.0321 (16)0.0474 (16)0.0016 (12)0.0109 (12)0.0085 (13)
Geometric parameters (Å, º) top
Br1—C241.898 (2)C24—C251.388 (4)
S1—C21.703 (2)C25—C261.390 (4)
S1—C51.731 (2)C31—C321.532 (3)
S2—C61.762 (2)C32—C331.523 (3)
S2—C121.733 (2)C33—C341.526 (3)
S3—C21.759 (2)C34—C351.521 (3)
S3—C311.819 (2)C35—C361.503 (3)
O1—C311.412 (3)C37—C381.499 (3)
O1—C351.436 (3)C39—C401.494 (4)
O2—C321.441 (3)C41—C421.490 (4)
O2—C371.348 (3)C43—C441.492 (4)
O3—C331.439 (3)N2—H010.86 (3)
O3—C391.361 (3)N2—H020.86 (3)
O4—C341.442 (3)C8—H80.9500
O4—C411.364 (3)C9—H90.9500
O5—C361.443 (3)C10—H100.9500
O5—C431.338 (3)C11—H110.9500
O6—C371.196 (3)C22—H220.9500
O7—C391.194 (4)C23—H230.9500
O8—C411.205 (4)C25—H250.9500
O9—C431.210 (3)C26—H260.9500
O10—C131.237 (3)C31—H311.0000
N1—C61.308 (3)C32—H321.0000
N1—C71.390 (3)C33—H331.0000
N2—C41.343 (3)C34—H341.0000
C2—C31.389 (3)C35—H351.0000
C3—C41.442 (3)C36—H36A0.9900
C3—C61.457 (3)C36—H36B0.9900
C4—C51.406 (3)C38—H38A0.9800
C5—C131.446 (3)C38—H38B0.9800
C7—C81.398 (3)C38—H38C0.9800
C7—C121.404 (3)C40—H40A0.9800
C8—C91.392 (3)C40—H40B0.9800
C9—C101.402 (4)C40—H40C0.9800
C10—C111.382 (4)C42—H42A0.9800
C11—C121.394 (3)C42—H42B0.9800
C13—C211.500 (3)C42—H42C0.9800
C21—C221.394 (4)C44—H44A0.9800
C21—C261.396 (3)C44—H44B0.9800
C22—C231.394 (3)C44—H44C0.9800
C23—C241.388 (3)
C2—S1—C592.15 (12)O4—C41—C42111.4 (2)
C12—S2—C688.99 (12)O8—C41—O4122.8 (3)
C2—S3—C3198.36 (11)O8—C41—C42125.7 (3)
C31—O1—C35110.22 (17)O5—C43—C44111.4 (2)
C37—O2—C32119.22 (19)O9—C43—O5122.8 (3)
C39—O3—C33117.1 (2)O9—C43—C44125.8 (3)
C41—O4—C34117.1 (2)C4—N2—H01121 (2)
C43—O5—C36115.6 (2)C4—N2—H02116 (3)
C6—N1—C7111.1 (2)H01—N2—H02123 (3)
S1—C2—S3116.88 (14)C9—C8—H8120.8
C3—C2—S1113.32 (18)C7—C8—H8120.8
C3—C2—S3129.80 (17)C8—C9—H9119.5
C2—C3—C4111.2 (2)C10—C9—H9119.5
C2—C3—C6126.7 (2)C11—C10—H10119.5
C4—C3—C6122.0 (2)C9—C10—H10119.5
N2—C4—C3124.6 (2)C10—C11—H11120.9
N2—C4—C5123.3 (2)C12—C11—H11120.9
C5—C4—C3112.0 (2)C21—C22—H22119.7
C4—C5—S1111.20 (17)C23—C22—H22119.7
C4—C5—C13125.6 (2)C24—C23—H23120.8
C13—C5—S1123.20 (18)C22—C23—H23120.8
N1—C6—S2115.18 (17)C24—C25—H25120.5
N1—C6—C3122.2 (2)C26—C25—H25120.5
C3—C6—S2122.57 (18)C25—C26—H26120.0
N1—C7—C8125.2 (2)C21—C26—H26120.0
N1—C7—C12114.8 (2)O1—C31—H31109.8
C8—C7—C12120.0 (2)C32—C31—H31109.8
C9—C8—C7118.4 (2)S3—C31—H31109.8
C8—C9—C10121.0 (2)O2—C32—H32111.2
C11—C10—C9121.0 (2)C33—C32—H32111.2
C10—C11—C12118.2 (2)C31—C32—H32111.2
C7—C12—S2109.94 (17)O3—C33—H33108.5
C11—C12—S2128.6 (2)C32—C33—H33108.5
C11—C12—C7121.5 (2)C34—C33—H33108.5
O10—C13—C5121.9 (2)O4—C34—H34109.5
O10—C13—C21120.4 (2)C35—C34—H34109.5
C5—C13—C21117.7 (2)C33—C34—H34109.5
C22—C21—C13119.8 (2)O1—C35—H35108.8
C22—C21—C26119.8 (2)C36—C35—H35108.8
C26—C21—C13120.4 (2)C34—C35—H35108.8
C21—C22—C23120.6 (2)O5—C36—H36A110.5
C24—C23—C22118.4 (2)C35—C36—H36A110.5
C23—C24—Br1118.1 (2)O5—C36—H36B110.5
C23—C24—C25122.0 (2)C35—C36—H36B110.5
C25—C24—Br1119.82 (19)H36A—C36—H36B108.7
C24—C25—C26119.0 (2)C37—C38—H38A109.5
C25—C26—C21120.1 (2)C37—C38—H38B109.5
O1—C31—S3108.36 (15)H38A—C38—H38B109.5
O1—C31—C32110.05 (18)C37—C38—H38C109.5
C32—C31—S3109.08 (16)H38A—C38—H38C109.5
O2—C32—C31107.04 (18)H38B—C38—H38C109.5
O2—C32—C33105.88 (18)C39—C40—H40A109.5
C33—C32—C31110.08 (19)C39—C40—H40B109.5
O3—C33—C32106.6 (2)H40A—C40—H40B109.5
O3—C33—C34110.14 (19)C39—C40—H40C109.5
C32—C33—C34114.36 (19)H40A—C40—H40C109.5
O4—C34—C33109.2 (2)H40B—C40—H40C109.5
O4—C34—C35111.1 (2)C41—C42—H42A109.5
C35—C34—C33108.05 (19)C41—C42—H42B109.5
O1—C35—C34109.6 (2)H42A—C42—H42B109.5
O1—C35—C36107.2 (2)C41—C42—H42C109.5
C36—C35—C34113.5 (2)H42A—C42—H42C109.5
O5—C36—C35106.3 (2)H42B—C42—H42C109.5
O2—C37—C38109.8 (2)C43—C44—H44A109.5
O6—C37—O2124.0 (2)C43—C44—H44B109.5
O6—C37—C38126.1 (2)H44A—C44—H44B109.5
O3—C39—C40109.7 (2)C43—C44—H44C109.5
O7—C39—O3123.3 (2)H44A—C44—H44C109.5
O7—C39—C40127.0 (3)H44B—C44—H44C109.5
Br1—C24—C25—C26176.89 (19)C7—N1—C6—S21.4 (2)
S1—C2—C3—C42.1 (2)C7—N1—C6—C3179.0 (2)
S1—C2—C3—C6174.13 (19)C7—C8—C9—C100.7 (3)
S1—C5—C13—O10171.04 (18)C8—C7—C12—S2179.43 (18)
S1—C5—C13—C2110.0 (3)C8—C7—C12—C110.6 (3)
S3—C2—C3—C4178.18 (17)C8—C9—C10—C110.2 (4)
S3—C2—C3—C65.6 (4)C9—C10—C11—C120.7 (4)
S3—C31—C32—O273.6 (2)C10—C11—C12—S2178.28 (19)
S3—C31—C32—C33171.81 (16)C10—C11—C12—C70.3 (4)
O1—C31—C32—O2167.69 (18)C12—S2—C6—N11.70 (18)
O1—C31—C32—C3353.1 (2)C12—S2—C6—C3179.36 (19)
O1—C35—C36—O570.6 (3)C12—C7—C8—C91.1 (3)
O2—C32—C33—O376.8 (2)C13—C21—C22—C23179.7 (2)
O2—C32—C33—C34161.3 (2)C13—C21—C26—C25178.3 (2)
O3—C33—C34—O447.2 (2)C21—C22—C23—C242.3 (4)
O3—C33—C34—C35168.1 (2)C22—C21—C26—C252.6 (4)
O4—C34—C35—O161.9 (2)C22—C23—C24—Br1174.97 (18)
O4—C34—C35—C3658.0 (3)C22—C23—C24—C253.3 (4)
O10—C13—C21—C22123.4 (3)C23—C24—C25—C261.4 (4)
O10—C13—C21—C2655.7 (3)C24—C25—C26—C211.6 (4)
N1—C7—C8—C9177.1 (2)C26—C21—C22—C230.6 (3)
N1—C7—C12—S21.1 (2)C31—S3—C2—S1105.40 (14)
N1—C7—C12—C11177.7 (2)C31—S3—C2—C374.9 (2)
N2—C4—C5—S1178.69 (18)C31—O1—C35—C3469.4 (2)
N2—C4—C5—C133.7 (4)C31—O1—C35—C36166.9 (2)
C2—S1—C5—C41.97 (18)C31—C32—C33—O3167.85 (18)
C2—S1—C5—C13175.7 (2)C31—C32—C33—C3445.9 (3)
C2—S3—C31—O166.64 (17)C32—O2—C37—O62.7 (3)
C2—S3—C31—C32173.56 (15)C32—O2—C37—C38176.21 (19)
C2—C3—C4—N2178.6 (2)C32—C33—C34—O472.8 (2)
C2—C3—C4—C53.6 (3)C32—C33—C34—C3548.1 (3)
C2—C3—C6—S24.9 (3)C33—O3—C39—O70.9 (4)
C2—C3—C6—N1177.6 (2)C33—O3—C39—C40177.5 (2)
C3—C4—C5—S13.5 (2)C33—C34—C35—O157.9 (3)
C3—C4—C5—C13174.1 (2)C33—C34—C35—C36177.7 (2)
C4—C3—C6—S2170.96 (17)C34—O4—C41—O85.0 (4)
C4—C3—C6—N16.5 (3)C34—O4—C41—C42174.8 (2)
C4—C5—C13—O1011.6 (4)C34—C35—C36—O5168.2 (2)
C4—C5—C13—C21167.4 (2)C35—O1—C31—S3174.79 (15)
C5—S1—C2—S3179.85 (14)C35—O1—C31—C3266.0 (2)
C5—S1—C2—C30.13 (18)C36—O5—C43—O91.6 (4)
C5—C13—C21—C2255.6 (3)C36—O5—C43—C44178.8 (2)
C5—C13—C21—C26125.3 (2)C37—O2—C32—C31119.2 (2)
C6—S2—C12—C71.47 (17)C37—O2—C32—C33123.3 (2)
C6—S2—C12—C11177.2 (2)C39—O3—C33—C32132.7 (2)
C6—N1—C7—C8178.1 (2)C39—O3—C33—C34102.8 (2)
C6—N1—C7—C120.2 (3)C41—O4—C34—C33136.2 (2)
C6—C3—C4—N24.9 (3)C41—O4—C34—C35104.8 (3)
C6—C3—C4—C5172.8 (2)C43—O5—C36—C35160.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H01···N10.86 (3)2.12 (3)2.746 (3)129 (3)
N2—H02···O100.86 (3)2.14 (3)2.795 (3)133 (3)
C11—H11···Br1i0.952.973.710 (2)135
C31—H31···O6ii1.002.343.290 (3)158
C35—H35···O6ii1.002.623.532 (3)151
C36—H36B···O9iii0.992.333.294 (4)164
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+2, y1/2, z+1.
 

Acknowledgements

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationAbu-Zaied, M. A., Elgemeie, G. H. & Jones, P. G. (2019a). Acta Cryst. E75, 1820–1823.  CSD CrossRef IUCr Journals Google Scholar
First citationAbu-Zaied, M. A., El-Telbani, E. M., Elgemeie, G. H. & Nawwar, G. A. (2011). Eur. J. Med. Chem. 46, 229–235.  CAS PubMed Google Scholar
First citationAbu-Zaied, M. A., Loutfy, S. A., Hassan, A. E. & Elgemeie, G. H. (2019b). Drug. Des. Dev. Ther. 13, 2437–2457.  CAS Google Scholar
First citationAbu-Zaied, M. A., Mahmoud, N. M. & Elgemeie, G. H. (2020). Am. Chem. Soc. (Omega), 5, 20042–20050.  CAS Google Scholar
First citationAbu-Zaied, M. A., Mahmoud, N. M. & Elgemeie, G. H. (2021). Am. Chem. Soc. (Omega), 6, 16890–16904.  CAS Google Scholar
First citationAzzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023–30036.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820–1822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041–1043.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Seif, M. M. & Jones, P. G. (2021). Acta Cryst. E77, 891–894.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182–26194.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAzzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640–1655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBonde, C., Vedala, D. & Bonde, S. (2015). J. Pharm. Res. 9, 573–580.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 659–673.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H., Abu-Zaied, M. A. & Loutfy, S. A. (2017b). Tetrahedron, 73, 5853–5861.  CrossRef CAS Google Scholar
First citationElgemeie, G. H., Abu-Zaied, M. A. & Nawwar, G. A. (2018). Nucleosides Nucleotides Nucleic Acids, 37, 112–123.  CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H., Abu-Zaied, M. & Azzam, R. (2016). Nucleosides Nucleotides Nucleic Acids, 35, 211–222.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H., Alkhursani, S. A. & Mohamed, R. A. (2019). Nucleosides Nucleotides Nucleic Acids, 38, 12–87.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H., Azzam, R. A. & Osman, R. R. (2020a). Inorg. Chim. Acta, 502, 119302.  CrossRef Google Scholar
First citationElgemeie, G. H., Eltamny, E. H., Elgawad, I. I. & Mahmoud, N. M. (2009). Synth. Commun. 39, 443–458.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Fathy, N. M., Farag, A. B. & Yahab, A. M. B. (2020b). Nucleosides Nucleotides Nucleic Acids, 39, 1134–1149.  CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H., Fathy, N. M., Zaghary, W. & Farag, A. (2017a). Nucleosides Nucleotides Nucleic Acids, 36, 198–212.  CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017c). Nucleosides Nucleotides Nucleic Acids, 36, 139–150.  CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). Phosphorus Sulfur Silicon, 165, 265–272.  Web of Science CrossRef CAS Google Scholar
First citationElgemeie, G. H., Shams, Z., Elkholy, M. & Abbas, N. S. (2000b). Heterocycl. Commun. 6, 363–268.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHammad, S. F., Masoud, D. M., Elgemeie, G. H. & Jones, P. G. (2018). Acta Cryst. E74, 853–856.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, Q., Mao, J., Wan, B., Wang, Y., Brun, R., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 6757–6767.  CrossRef PubMed CAS Google Scholar
First citationKhiar, N., Alonso, I., Rodriguez, N., Fernandez-Mayoralas, A., Jimenez-Barbero, J., Nieto, O., Cano, F., Foces-Foces, C. & Martin-Lomas, M. (1997). Tetrahedron Lett. 38, 8267–8270.  CSD CrossRef CAS Google Scholar
First citationMasoud, D. M., Hammad, S. F., Elgemeie, G. H. & Jones, P. G. (2017). Acta Cryst. E73, 1751–1754.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRana, A., Siddiqui, N., Khan, S. A., Haque, E. S. & Bhat, M. A. (2008). Eur. J. Med. Chem. 43, 1114–1122.  CrossRef PubMed CAS Google Scholar
First citationRigaku D (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationScala, S., Akhmed, K., Rao, U. S., Paull, K., Lan, L., Dickstein, B., Lee, J., Elgemeie, G. H., Stein, W. D. & Bates, S. E. P. (1997). Mol. Pharmacol. 51, 1024–1033.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationSmith, R., Zeng, X., Müller-Bunz, H. & Zhu, X. (2013). Tetrahedron Lett. 54, 5348–5350.  CSD CrossRef CAS Google Scholar
First citationWang, X., Sarris, K., Kage, K., Zhang, D., Brown, S. P., Kolasa, T., Surowy, C., El Kouhen, O. F., Muchmore, S. W., Brioni, J. D. & Stewart, A. O. (2009). J. Med. Chem. 52, 170–180.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds