organic compounds
4-Amino-5-(4-bromobenzoyl)-3-(benzo[d]thiazol-2-yl)-2-[(2′,3′,4′,6′-tetra-O-acetyl-β-D-galactopyranosyl)sulfanyl]thiophene
aChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-bs.de
In the title compound, C32H29BrN2O10S3, the benzothiazole and thiophene ring systems subtend an interplanar angle of 7.43 (12)°. The NH2 group forms intramolecular hydrogen bonds to Nthiazole and Ocarbonyl. The Sgalactose—Cthiophene bond is short [1.759 (2) Å]. The molecules are connected to form ribbons parallel to the b axis by two `weak' hydrogen bonds and a short Namino⋯Sgalactose contact.
Keywords: benzothiazole; thiophene; galactose; crystal structure.
CCDC reference: 2167334
Structure description
Benzothiazoles are the most widely applied class of et al., 2015), because they offer a variety of pharmacological properties useful in treating many diseases (Wang et al., 2009). As clinical drugs, they often act with high therapeutic efficacy (Huang et al., 2009). The broad pharmacological activities of benzothiazoles suggest that they are also important for developing future drugs (Rana et al., 2008). Recently we have explored various novel synthetic methods to obtain benzothiazole derivatives (Azzam et al. 2017a,b, 2020a,b,c, 2021; Elgemeie et al., 2000a,b; 2020a).
in medicinal chemistry, and benzothiazole derivatives have been employed in many pharmaceutical preparations (BondeAs a part of our current plan directed toward discovering synthetic methodologies for the preparation of S-glycosylated derivatives of heterocyclic nitrogen bases (Elgemeie et al., 2017a,b,c), we have lately described the synthesis and biological activity of a series of heterocyclic S-glycosides that have promising cytotoxic activity (Abu-Zaied et al., 2011, 2019a,b, 2020, 2021; Elgemeie et al., 2009, 2018). We found that our reported dihydropyridine S-glycosides have a strong anti-P-glycoprotein effect against human tumor cells (Scala et al., 1997). Consistent with these outcomes and our past research (Elgemeie et al., 2015, 2016, 2019, 2020b), the purpose of the current study was to design and synthesize benzothiazole-based thiophene thioglycosides. The synthesis of our target benzothiazole-2-thiophene thioglycoside was carried out by the reaction of benzothiazole 2-thiophenethiol derivative 1 with 2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl bromide 2 in the presence of potassium hydroxide to give the corresponding benzothiazole-2-thiophene S-glycoside 3 in good yield (Fig. 1). It has been suggested that the cis-(α) sugars react via a simple SN2 reaction to give the β-glycoside products such as 3 (Masoud et al., 2017; Hammad et al., 2018). The structure of 3 was confirmed based on the spectroscopic data (13C NMR, 1H NMR, and IR). The 1H NMR spectrum of compound 3 showed the anomeric proton as a doublet at δ = 5.39 p.p.m. with a spin–spin coupling constant (J1′,2′ = 8.8 Hz) confirming the β-configuration. The other six protons of galactose resonated at δ 4.00–5.30 p.p.m. In order to establish the structure of the product unambiguously, its was determined and is reported here. To the best of our knowledge, this is the first reported X-ray structure of the new compound type benzothiazole-2-thiophene thioglycoside.
The structure of 3 is shown in Fig. 2. The dimensions of the benzothiazole moiety are as expected (a selection of molecular dimensions is presented in Table 1). The benzothiazole and thiophene ring systems are approximately coplanar [interplanar angle 7.43 (12)°], a geometry that is reinforced by the two intramolecular hydrogen bonds from the NH2 group to the thiazole nitrogen atom and the C=O group (Table 2), whereas the bromophenyl and thiophene rings subtend an angle of 58.23 (6)°. The intramolecular S2⋯S3 contact is 3.1416 (8) Å.
|
The β configuration (equatorial position of the sulfur atom) at the anomeric carbon of the sugar (here C31) is confirmed, as is the axial configuration of the substituent at C34, characteristic of galactose. The galactose ring displays a slightly flattened chair conformation, with absolute torsion angles < 50° about C32—C33 and C33—C34. The configurations at C31–C35 are S, R, S, R, R, respectively. The S3—C31 bond is as expected longer than S3—C2, with values of 1.819 (2) and 1.759 (2) Å, respectively; the latter is significantly shorter than the values found for similar compounds in search of the Cambridge Structural Database (Groom et al., 2016; performed using CONQUEST Version 2021.3.0) for purely organic galactose derivatives substituted with a sulfur atom at the anomeric carbon. There were 22 hits, of which two were axially substituted (NODQEC, Khiar et al., 1997; YINFUY, Smith et al., 2013) and the remainder equatorially substituted. The 29 C—S bond lengths for the latter lay in the range 1.788–1.856, average 1.808 (13) Å. Restricting the analysis to the ten hits with an sp2 carbon atom altered these values only marginally.
The N—H donor groups do not participate in intermolecular hydrogen bonding, but two short and acceptably linear C—H⋯O contacts between the galactose moieties may be classed as `weak' hydrogen bonds (Table 2). Additionally, a short contact N2⋯S3 of 3.249 (2) Å is observed (operator x, 1 + y, z). The net effect is to form ribbons of molecules parallel to the b axis (Fig. 3).
Synthesis and crystallization
Thiophene thiol derivative 1 (2.23 g, 5 mmol) was dissolved in acetone (10 ml) containing 0.5 ml of aq. KOH (0.25 g, 5 mmol). The mixture was warmed to 50°C for 15 min. After cooling, a solution of 2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl bromide 2 (2.05 g, 5 mmol) in acetone (10 ml) was added dropwise over 30 min. The reaction mixture was stirred at room temperature and monitored by TLC until the reaction was complete (8 h). The residue was washed with distilled water to remove KBr, then dried and crystallized from ethanol to produce compound 3 (Fig. 1).
Yellow solid, yield 65%, m.p. 403–405 K (EtOH); IR (KBr, cm−1): ν 3406–3281 (NH2), 2923 (ArCH), 1748 (4Ac-CO), 1720 (CO); 1H NMR (400 MHz, DMSO-d6): δ 1.89, 1.91, 1.94, 2.01 (4 s, 12H, 4 × OAc), 4.00–4.02 (m, 2H, H-6′), 4.32 (t, J = 6.0 Hz, 1H, H-5′), 5.15 (t, J = 8.0 Hz, 1H, H-4′), 5.25–5.30 (m, 2H, H-3′, H-2′), 5.39 (d, J = 8.8 Hz, 1H, H-1′), 7.52 (t, J = 7.4 Hz, 1H, benzothiazole-H), 7.61 (t, J = 7.4 Hz, 1H, benzothiazole-H), 7.77–7.79 (m, 4H, Ar—H), 8.14 (d, J = 7.6 Hz, 1H, benzothiazole-H), 8.21 (d, J = 8.0 Hz, 1H, benzothiazole-H), 8.93 (s, br, D2O exch., 2H, NH2); Analysis: calculated for C32H29 BrN2O10S3 (777.68): C, 49.42; H, 3.76; N, 3.60; S, 12.37%. Found: C, 49.39; H, 3.73; N, 3.67; S, 12.40%.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
Structural data
CCDC reference: 2167334
https://doi.org/10.1107/S2414314622004126/mw2186sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622004126/mw2186Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2021); cell
CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C32H29BrN2O10S3 | F(000) = 796 |
Mr = 777.66 | Dx = 1.522 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54184 Å |
a = 16.99261 (18) Å | Cell parameters from 91570 reflections |
b = 6.02635 (7) Å | θ = 2.7–77.5° |
c = 17.4076 (2) Å | µ = 3.89 mm−1 |
β = 107.8307 (12)° | T = 100 K |
V = 1696.97 (3) Å3 | Lath, pale yellow |
Z = 2 | 0.15 × 0.06 × 0.02 mm |
XtaLAB Synergy diffractometer | 7129 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 7052 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.032 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 77.8°, θmin = 2.7° |
ω scans | h = −21→21 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | k = −7→7 |
Tmin = 0.781, Tmax = 1.000 | l = −22→22 |
107906 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.023 | w = 1/[σ2(Fo2) + (0.0397P)2 + 0.6757P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.062 | (Δ/σ)max = 0.003 |
S = 1.04 | Δρmax = 0.37 e Å−3 |
7129 reflections | Δρmin = −0.72 e Å−3 |
445 parameters | Absolute structure: Flack x determined using 3095 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
2 restraints | Absolute structure parameter: −0.019 (7) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Short contacts: 3.1416 (0.0008) S2 - S3 3.2493 (0.0021) N2 - S3_$2 Operator $2 : x,1+y,z ============================================================================== Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) - 1.7949 (0.0074) x + 2.7373 (0.0043) y + 15.2223 (0.0070) z = 2.9267 (0.0054) * 0.0402 (0.0013) C2 * -0.0135 (0.0017) N1 * -0.0086 (0.0019) C6 * -0.0308 (0.0020) C7 * -0.0016 (0.0018) C8 * 0.0379 (0.0020) C9 * 0.0338 (0.0019) C10 * -0.0142 (0.0018) C11 * -0.0432 (0.0020) C12 Rms deviation of fitted atoms = 0.0288 - 0.0073 (0.0162) x + 3.1508 (0.0048) y + 14.1284 (0.0110) z = 4.2446 (0.0123) Angle to previous plane (with approximate esd) = 7.434 ( 0.118 ) * 0.0061 (0.0010) S1 * 0.0046 (0.0013) C2 * -0.0152 (0.0014) C3 * 0.0207 (0.0014) C4 * -0.0162 (0.0013) C5 0.0201 (0.0033) S3 0.0387 (0.0033) N2 -0.1146 (0.0038) C13 0.0343 (0.0044) O10 Rms deviation of fitted atoms = 0.0140 5.5692 (0.0163) x + 2.3719 (0.0054) y - 15.9799 (0.0068) z = 5.2155 (0.0164) Angle to previous plane (with approximate esd) = 58.230 ( 0.061 ) * -0.0124 (0.0016) C21 * -0.0049 (0.0017) C22 * 0.0186 (0.0017) C23 * -0.0152 (0.0018) C24 * -0.0023 (0.0018) C25 * 0.0162 (0.0017) C26 -0.0309 (0.0037) C13 0.8520 (0.0040) O10 -0.1298 (0.0035) Br1 Rms deviation of fitted atoms = 0.0130 |
Refinement. The hydrogen atoms of the NH2 group were refined freely, but with N—H distances restrained to be approximately equal (SADI). The methyl groups were refined as idealized rigid groups allowed to rotate but not tip, with C—H 0.98 Å and H—C—H 109.5 °. Other hydrogens were included using a riding model starting from calculated positions (C—Haromatic 0.95, C—Hmethylene 0.99, C—Hmethine 1.00 Å). The U(H) values were fixed at 1.5 or 1.2 times the equivalent Uiso value of the parent carbon atoms for methyl and non-methyl hydrogens respectively. |
x | y | z | Uiso*/Ueq | ||
Br1 | 1.17709 (2) | 0.30260 (5) | 0.13689 (2) | 0.03408 (9) | |
S1 | 0.81796 (3) | 0.50666 (10) | 0.18829 (3) | 0.01870 (11) | |
S2 | 0.51931 (3) | 0.50194 (10) | 0.15908 (3) | 0.01913 (11) | |
S3 | 0.69078 (3) | 0.27394 (9) | 0.24112 (3) | 0.01767 (11) | |
O1 | 0.76755 (10) | 0.4911 (3) | 0.37404 (9) | 0.0193 (3) | |
O2 | 0.56621 (10) | 0.2394 (3) | 0.34351 (10) | 0.0210 (3) | |
O3 | 0.64615 (12) | 0.2015 (3) | 0.51551 (11) | 0.0263 (4) | |
O4 | 0.80626 (10) | 0.3125 (3) | 0.53459 (9) | 0.0236 (3) | |
O5 | 0.85216 (11) | 0.8993 (3) | 0.41271 (12) | 0.0287 (4) | |
O6 | 0.57638 (13) | −0.1299 (4) | 0.33101 (15) | 0.0391 (5) | |
O7 | 0.55812 (15) | 0.4238 (4) | 0.55315 (13) | 0.0413 (5) | |
O8 | 0.86193 (15) | 0.5092 (5) | 0.64867 (13) | 0.0468 (6) | |
O9 | 0.98997 (13) | 0.9040 (4) | 0.46564 (14) | 0.0394 (5) | |
O10 | 0.85254 (11) | 1.0388 (3) | 0.07162 (11) | 0.0243 (4) | |
N1 | 0.54299 (12) | 0.8799 (3) | 0.09717 (11) | 0.0180 (4) | |
N2 | 0.69030 (12) | 1.0127 (4) | 0.07769 (12) | 0.0196 (4) | |
H01 | 0.6390 (17) | 1.048 (6) | 0.0665 (18) | 0.023 (8)* | |
H02 | 0.726 (2) | 1.093 (6) | 0.065 (2) | 0.039 (10)* | |
C2 | 0.71837 (13) | 0.4982 (4) | 0.19001 (13) | 0.0177 (4) | |
C3 | 0.67073 (14) | 0.6741 (4) | 0.14936 (13) | 0.0167 (4) | |
C4 | 0.71933 (13) | 0.8253 (4) | 0.11822 (12) | 0.0171 (4) | |
C5 | 0.80082 (14) | 0.7495 (4) | 0.13255 (13) | 0.0188 (5) | |
C6 | 0.58211 (14) | 0.7040 (4) | 0.13374 (13) | 0.0166 (4) | |
C7 | 0.45902 (14) | 0.8671 (4) | 0.08844 (13) | 0.0174 (4) | |
C8 | 0.40068 (14) | 1.0310 (4) | 0.05402 (13) | 0.0204 (5) | |
H8 | 0.416201 | 1.161819 | 0.031863 | 0.025* | |
C9 | 0.31929 (14) | 0.9979 (5) | 0.05296 (14) | 0.0220 (5) | |
H9 | 0.278981 | 1.108347 | 0.030320 | 0.026* | |
C10 | 0.29589 (13) | 0.8040 (5) | 0.08480 (13) | 0.0226 (5) | |
H10 | 0.240008 | 0.785287 | 0.083586 | 0.027* | |
C11 | 0.35290 (15) | 0.6397 (4) | 0.11791 (14) | 0.0215 (5) | |
H11 | 0.336876 | 0.507638 | 0.138925 | 0.026* | |
C12 | 0.43461 (14) | 0.6732 (4) | 0.11962 (13) | 0.0186 (4) | |
C13 | 0.86263 (14) | 0.8523 (4) | 0.10269 (14) | 0.0196 (5) | |
C21 | 0.93984 (14) | 0.7229 (4) | 0.10924 (14) | 0.0192 (5) | |
C22 | 0.93411 (14) | 0.5116 (4) | 0.07541 (14) | 0.0214 (5) | |
H22 | 0.881300 | 0.450400 | 0.048610 | 0.026* | |
C23 | 1.00516 (15) | 0.3892 (4) | 0.08054 (15) | 0.0221 (5) | |
H23 | 1.001565 | 0.247432 | 0.055855 | 0.026* | |
C24 | 1.08128 (14) | 0.4797 (5) | 0.12261 (15) | 0.0241 (5) | |
C25 | 1.08860 (15) | 0.6910 (5) | 0.15573 (16) | 0.0248 (5) | |
H25 | 1.141475 | 0.750716 | 0.183250 | 0.030* | |
C26 | 1.01739 (14) | 0.8141 (5) | 0.14802 (14) | 0.0219 (5) | |
H26 | 1.021491 | 0.960444 | 0.169162 | 0.026* | |
C31 | 0.68674 (14) | 0.4215 (4) | 0.33099 (14) | 0.0177 (4) | |
H31 | 0.649650 | 0.553540 | 0.315148 | 0.021* | |
C32 | 0.65357 (13) | 0.2649 (4) | 0.38322 (13) | 0.0189 (5) | |
H32 | 0.682566 | 0.118429 | 0.390455 | 0.023* | |
C33 | 0.66127 (15) | 0.3731 (4) | 0.46429 (14) | 0.0211 (5) | |
H33 | 0.617097 | 0.488234 | 0.456146 | 0.025* | |
C34 | 0.74480 (15) | 0.4824 (4) | 0.50439 (14) | 0.0225 (5) | |
H34 | 0.740969 | 0.577656 | 0.550143 | 0.027* | |
C35 | 0.76617 (15) | 0.6258 (4) | 0.44166 (14) | 0.0221 (5) | |
H35 | 0.722698 | 0.742486 | 0.422673 | 0.026* | |
C36 | 0.84913 (16) | 0.7367 (5) | 0.47261 (16) | 0.0277 (5) | |
H36A | 0.855276 | 0.809402 | 0.525127 | 0.033* | |
H36B | 0.894073 | 0.626681 | 0.479826 | 0.033* | |
C37 | 0.53570 (15) | 0.0359 (4) | 0.31928 (14) | 0.0222 (5) | |
C38 | 0.44510 (15) | 0.0517 (5) | 0.27487 (15) | 0.0255 (5) | |
H38A | 0.417097 | 0.130629 | 0.308282 | 0.038* | |
H38B | 0.421897 | −0.097856 | 0.263079 | 0.038* | |
H38C | 0.437085 | 0.132674 | 0.224223 | 0.038* | |
C39 | 0.59276 (16) | 0.2497 (5) | 0.55765 (15) | 0.0279 (6) | |
C40 | 0.5876 (2) | 0.0572 (6) | 0.61001 (17) | 0.0354 (7) | |
H40A | 0.578982 | −0.079620 | 0.578079 | 0.053* | |
H40B | 0.541162 | 0.079141 | 0.631549 | 0.053* | |
H40C | 0.639093 | 0.045837 | 0.654741 | 0.053* | |
C41 | 0.86038 (18) | 0.3428 (5) | 0.60992 (15) | 0.0326 (6) | |
C42 | 0.9152 (2) | 0.1462 (6) | 0.63644 (17) | 0.0375 (7) | |
H42A | 0.883168 | 0.022697 | 0.648177 | 0.056* | |
H42B | 0.960362 | 0.183859 | 0.685145 | 0.056* | |
H42C | 0.938204 | 0.102746 | 0.593438 | 0.056* | |
C43 | 0.92782 (16) | 0.9685 (5) | 0.41543 (17) | 0.0283 (5) | |
C44 | 0.92423 (18) | 1.1323 (5) | 0.3502 (2) | 0.0352 (6) | |
H44A | 0.890426 | 1.072087 | 0.298245 | 0.053* | |
H44B | 0.980271 | 1.161330 | 0.348046 | 0.053* | |
H44C | 0.899639 | 1.270909 | 0.361338 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01892 (12) | 0.02848 (15) | 0.05928 (18) | 0.00424 (11) | 0.01851 (11) | 0.00576 (13) |
S1 | 0.0151 (2) | 0.0187 (3) | 0.0240 (2) | 0.0015 (2) | 0.00866 (19) | 0.0033 (2) |
S2 | 0.0149 (2) | 0.0184 (3) | 0.0248 (2) | −0.0013 (2) | 0.00720 (19) | 0.0027 (2) |
S3 | 0.0188 (2) | 0.0162 (3) | 0.0201 (2) | 0.0004 (2) | 0.00916 (18) | 0.0012 (2) |
O1 | 0.0162 (7) | 0.0215 (9) | 0.0208 (7) | −0.0012 (7) | 0.0064 (6) | −0.0001 (7) |
O2 | 0.0178 (8) | 0.0197 (9) | 0.0268 (8) | −0.0013 (6) | 0.0088 (6) | −0.0008 (6) |
O3 | 0.0289 (9) | 0.0290 (10) | 0.0255 (8) | −0.0005 (8) | 0.0151 (7) | 0.0046 (7) |
O4 | 0.0246 (8) | 0.0248 (9) | 0.0191 (7) | 0.0013 (8) | 0.0035 (6) | −0.0013 (7) |
O5 | 0.0223 (9) | 0.0254 (10) | 0.0370 (10) | −0.0040 (7) | 0.0071 (7) | 0.0052 (8) |
O6 | 0.0286 (10) | 0.0248 (11) | 0.0613 (13) | 0.0015 (8) | 0.0100 (9) | −0.0130 (9) |
O7 | 0.0529 (14) | 0.0450 (14) | 0.0372 (11) | 0.0105 (11) | 0.0305 (10) | 0.0039 (9) |
O8 | 0.0534 (14) | 0.0464 (14) | 0.0312 (10) | 0.0093 (12) | −0.0011 (9) | −0.0112 (10) |
O9 | 0.0244 (10) | 0.0413 (12) | 0.0470 (12) | −0.0057 (9) | 0.0030 (9) | 0.0085 (10) |
O10 | 0.0228 (8) | 0.0182 (9) | 0.0351 (9) | −0.0009 (7) | 0.0136 (7) | 0.0034 (7) |
N1 | 0.0163 (9) | 0.0204 (10) | 0.0189 (8) | 0.0004 (7) | 0.0079 (7) | −0.0008 (7) |
N2 | 0.0170 (9) | 0.0187 (10) | 0.0245 (9) | 0.0019 (8) | 0.0088 (7) | 0.0051 (8) |
C2 | 0.0165 (10) | 0.0193 (11) | 0.0194 (9) | −0.0007 (9) | 0.0086 (8) | −0.0017 (9) |
C3 | 0.0164 (10) | 0.0167 (11) | 0.0181 (10) | −0.0011 (8) | 0.0071 (8) | −0.0014 (8) |
C4 | 0.0177 (10) | 0.0183 (11) | 0.0166 (9) | −0.0018 (9) | 0.0071 (8) | −0.0014 (9) |
C5 | 0.0172 (10) | 0.0188 (12) | 0.0209 (10) | 0.0000 (8) | 0.0068 (8) | −0.0005 (8) |
C6 | 0.0179 (11) | 0.0180 (11) | 0.0157 (9) | −0.0009 (8) | 0.0079 (8) | −0.0008 (8) |
C7 | 0.0157 (10) | 0.0207 (12) | 0.0167 (9) | −0.0014 (8) | 0.0061 (8) | −0.0022 (8) |
C8 | 0.0187 (11) | 0.0239 (13) | 0.0195 (10) | 0.0021 (9) | 0.0071 (8) | 0.0024 (9) |
C9 | 0.0180 (11) | 0.0281 (13) | 0.0201 (10) | 0.0054 (10) | 0.0063 (8) | 0.0005 (10) |
C10 | 0.0158 (9) | 0.0303 (13) | 0.0226 (10) | −0.0015 (11) | 0.0073 (8) | −0.0014 (11) |
C11 | 0.0173 (11) | 0.0246 (13) | 0.0240 (11) | −0.0039 (9) | 0.0083 (9) | 0.0001 (9) |
C12 | 0.0160 (11) | 0.0207 (12) | 0.0191 (10) | −0.0002 (9) | 0.0053 (8) | −0.0010 (9) |
C13 | 0.0187 (10) | 0.0193 (12) | 0.0219 (10) | −0.0029 (8) | 0.0076 (8) | −0.0023 (8) |
C21 | 0.0190 (11) | 0.0195 (11) | 0.0227 (10) | −0.0026 (9) | 0.0116 (9) | 0.0016 (9) |
C22 | 0.0182 (11) | 0.0215 (12) | 0.0267 (11) | −0.0021 (10) | 0.0099 (9) | 0.0004 (10) |
C23 | 0.0211 (11) | 0.0192 (11) | 0.0299 (12) | −0.0015 (9) | 0.0136 (9) | 0.0003 (9) |
C24 | 0.0159 (11) | 0.0260 (13) | 0.0346 (12) | 0.0032 (10) | 0.0138 (9) | 0.0053 (11) |
C25 | 0.0172 (11) | 0.0260 (13) | 0.0326 (13) | −0.0031 (10) | 0.0097 (9) | −0.0001 (10) |
C26 | 0.0210 (10) | 0.0201 (12) | 0.0266 (10) | −0.0026 (10) | 0.0102 (9) | 0.0007 (10) |
C31 | 0.0165 (10) | 0.0179 (11) | 0.0200 (10) | −0.0003 (9) | 0.0077 (8) | 0.0010 (8) |
C32 | 0.0162 (10) | 0.0197 (13) | 0.0223 (10) | −0.0010 (9) | 0.0079 (8) | 0.0010 (9) |
C33 | 0.0224 (11) | 0.0221 (12) | 0.0215 (10) | −0.0003 (9) | 0.0104 (9) | 0.0028 (9) |
C34 | 0.0242 (12) | 0.0227 (12) | 0.0210 (10) | 0.0008 (10) | 0.0075 (9) | −0.0019 (10) |
C35 | 0.0222 (12) | 0.0207 (12) | 0.0228 (11) | −0.0014 (9) | 0.0061 (9) | −0.0022 (9) |
C36 | 0.0234 (12) | 0.0269 (14) | 0.0296 (12) | −0.0057 (10) | 0.0035 (10) | 0.0014 (10) |
C37 | 0.0235 (12) | 0.0234 (13) | 0.0235 (11) | −0.0033 (10) | 0.0128 (9) | −0.0038 (10) |
C38 | 0.0216 (11) | 0.0326 (15) | 0.0242 (11) | −0.0063 (10) | 0.0096 (9) | −0.0028 (10) |
C39 | 0.0280 (12) | 0.0387 (17) | 0.0202 (11) | −0.0052 (11) | 0.0122 (9) | −0.0025 (10) |
C40 | 0.0403 (16) | 0.0407 (18) | 0.0300 (13) | −0.0078 (13) | 0.0180 (12) | 0.0024 (12) |
C41 | 0.0381 (14) | 0.0354 (17) | 0.0215 (11) | 0.0039 (12) | 0.0050 (10) | −0.0017 (11) |
C42 | 0.0414 (16) | 0.0391 (17) | 0.0253 (13) | 0.0087 (13) | 0.0002 (12) | −0.0012 (12) |
C43 | 0.0227 (12) | 0.0249 (13) | 0.0361 (13) | −0.0042 (10) | 0.0072 (10) | −0.0019 (11) |
C44 | 0.0258 (13) | 0.0321 (16) | 0.0474 (16) | −0.0016 (12) | 0.0109 (12) | 0.0085 (13) |
Br1—C24 | 1.898 (2) | C24—C25 | 1.388 (4) |
S1—C2 | 1.703 (2) | C25—C26 | 1.390 (4) |
S1—C5 | 1.731 (2) | C31—C32 | 1.532 (3) |
S2—C6 | 1.762 (2) | C32—C33 | 1.523 (3) |
S2—C12 | 1.733 (2) | C33—C34 | 1.526 (3) |
S3—C2 | 1.759 (2) | C34—C35 | 1.521 (3) |
S3—C31 | 1.819 (2) | C35—C36 | 1.503 (3) |
O1—C31 | 1.412 (3) | C37—C38 | 1.499 (3) |
O1—C35 | 1.436 (3) | C39—C40 | 1.494 (4) |
O2—C32 | 1.441 (3) | C41—C42 | 1.490 (4) |
O2—C37 | 1.348 (3) | C43—C44 | 1.492 (4) |
O3—C33 | 1.439 (3) | N2—H01 | 0.86 (3) |
O3—C39 | 1.361 (3) | N2—H02 | 0.86 (3) |
O4—C34 | 1.442 (3) | C8—H8 | 0.9500 |
O4—C41 | 1.364 (3) | C9—H9 | 0.9500 |
O5—C36 | 1.443 (3) | C10—H10 | 0.9500 |
O5—C43 | 1.338 (3) | C11—H11 | 0.9500 |
O6—C37 | 1.196 (3) | C22—H22 | 0.9500 |
O7—C39 | 1.194 (4) | C23—H23 | 0.9500 |
O8—C41 | 1.205 (4) | C25—H25 | 0.9500 |
O9—C43 | 1.210 (3) | C26—H26 | 0.9500 |
O10—C13 | 1.237 (3) | C31—H31 | 1.0000 |
N1—C6 | 1.308 (3) | C32—H32 | 1.0000 |
N1—C7 | 1.390 (3) | C33—H33 | 1.0000 |
N2—C4 | 1.343 (3) | C34—H34 | 1.0000 |
C2—C3 | 1.389 (3) | C35—H35 | 1.0000 |
C3—C4 | 1.442 (3) | C36—H36A | 0.9900 |
C3—C6 | 1.457 (3) | C36—H36B | 0.9900 |
C4—C5 | 1.406 (3) | C38—H38A | 0.9800 |
C5—C13 | 1.446 (3) | C38—H38B | 0.9800 |
C7—C8 | 1.398 (3) | C38—H38C | 0.9800 |
C7—C12 | 1.404 (3) | C40—H40A | 0.9800 |
C8—C9 | 1.392 (3) | C40—H40B | 0.9800 |
C9—C10 | 1.402 (4) | C40—H40C | 0.9800 |
C10—C11 | 1.382 (4) | C42—H42A | 0.9800 |
C11—C12 | 1.394 (3) | C42—H42B | 0.9800 |
C13—C21 | 1.500 (3) | C42—H42C | 0.9800 |
C21—C22 | 1.394 (4) | C44—H44A | 0.9800 |
C21—C26 | 1.396 (3) | C44—H44B | 0.9800 |
C22—C23 | 1.394 (3) | C44—H44C | 0.9800 |
C23—C24 | 1.388 (3) | ||
C2—S1—C5 | 92.15 (12) | O4—C41—C42 | 111.4 (2) |
C12—S2—C6 | 88.99 (12) | O8—C41—O4 | 122.8 (3) |
C2—S3—C31 | 98.36 (11) | O8—C41—C42 | 125.7 (3) |
C31—O1—C35 | 110.22 (17) | O5—C43—C44 | 111.4 (2) |
C37—O2—C32 | 119.22 (19) | O9—C43—O5 | 122.8 (3) |
C39—O3—C33 | 117.1 (2) | O9—C43—C44 | 125.8 (3) |
C41—O4—C34 | 117.1 (2) | C4—N2—H01 | 121 (2) |
C43—O5—C36 | 115.6 (2) | C4—N2—H02 | 116 (3) |
C6—N1—C7 | 111.1 (2) | H01—N2—H02 | 123 (3) |
S1—C2—S3 | 116.88 (14) | C9—C8—H8 | 120.8 |
C3—C2—S1 | 113.32 (18) | C7—C8—H8 | 120.8 |
C3—C2—S3 | 129.80 (17) | C8—C9—H9 | 119.5 |
C2—C3—C4 | 111.2 (2) | C10—C9—H9 | 119.5 |
C2—C3—C6 | 126.7 (2) | C11—C10—H10 | 119.5 |
C4—C3—C6 | 122.0 (2) | C9—C10—H10 | 119.5 |
N2—C4—C3 | 124.6 (2) | C10—C11—H11 | 120.9 |
N2—C4—C5 | 123.3 (2) | C12—C11—H11 | 120.9 |
C5—C4—C3 | 112.0 (2) | C21—C22—H22 | 119.7 |
C4—C5—S1 | 111.20 (17) | C23—C22—H22 | 119.7 |
C4—C5—C13 | 125.6 (2) | C24—C23—H23 | 120.8 |
C13—C5—S1 | 123.20 (18) | C22—C23—H23 | 120.8 |
N1—C6—S2 | 115.18 (17) | C24—C25—H25 | 120.5 |
N1—C6—C3 | 122.2 (2) | C26—C25—H25 | 120.5 |
C3—C6—S2 | 122.57 (18) | C25—C26—H26 | 120.0 |
N1—C7—C8 | 125.2 (2) | C21—C26—H26 | 120.0 |
N1—C7—C12 | 114.8 (2) | O1—C31—H31 | 109.8 |
C8—C7—C12 | 120.0 (2) | C32—C31—H31 | 109.8 |
C9—C8—C7 | 118.4 (2) | S3—C31—H31 | 109.8 |
C8—C9—C10 | 121.0 (2) | O2—C32—H32 | 111.2 |
C11—C10—C9 | 121.0 (2) | C33—C32—H32 | 111.2 |
C10—C11—C12 | 118.2 (2) | C31—C32—H32 | 111.2 |
C7—C12—S2 | 109.94 (17) | O3—C33—H33 | 108.5 |
C11—C12—S2 | 128.6 (2) | C32—C33—H33 | 108.5 |
C11—C12—C7 | 121.5 (2) | C34—C33—H33 | 108.5 |
O10—C13—C5 | 121.9 (2) | O4—C34—H34 | 109.5 |
O10—C13—C21 | 120.4 (2) | C35—C34—H34 | 109.5 |
C5—C13—C21 | 117.7 (2) | C33—C34—H34 | 109.5 |
C22—C21—C13 | 119.8 (2) | O1—C35—H35 | 108.8 |
C22—C21—C26 | 119.8 (2) | C36—C35—H35 | 108.8 |
C26—C21—C13 | 120.4 (2) | C34—C35—H35 | 108.8 |
C21—C22—C23 | 120.6 (2) | O5—C36—H36A | 110.5 |
C24—C23—C22 | 118.4 (2) | C35—C36—H36A | 110.5 |
C23—C24—Br1 | 118.1 (2) | O5—C36—H36B | 110.5 |
C23—C24—C25 | 122.0 (2) | C35—C36—H36B | 110.5 |
C25—C24—Br1 | 119.82 (19) | H36A—C36—H36B | 108.7 |
C24—C25—C26 | 119.0 (2) | C37—C38—H38A | 109.5 |
C25—C26—C21 | 120.1 (2) | C37—C38—H38B | 109.5 |
O1—C31—S3 | 108.36 (15) | H38A—C38—H38B | 109.5 |
O1—C31—C32 | 110.05 (18) | C37—C38—H38C | 109.5 |
C32—C31—S3 | 109.08 (16) | H38A—C38—H38C | 109.5 |
O2—C32—C31 | 107.04 (18) | H38B—C38—H38C | 109.5 |
O2—C32—C33 | 105.88 (18) | C39—C40—H40A | 109.5 |
C33—C32—C31 | 110.08 (19) | C39—C40—H40B | 109.5 |
O3—C33—C32 | 106.6 (2) | H40A—C40—H40B | 109.5 |
O3—C33—C34 | 110.14 (19) | C39—C40—H40C | 109.5 |
C32—C33—C34 | 114.36 (19) | H40A—C40—H40C | 109.5 |
O4—C34—C33 | 109.2 (2) | H40B—C40—H40C | 109.5 |
O4—C34—C35 | 111.1 (2) | C41—C42—H42A | 109.5 |
C35—C34—C33 | 108.05 (19) | C41—C42—H42B | 109.5 |
O1—C35—C34 | 109.6 (2) | H42A—C42—H42B | 109.5 |
O1—C35—C36 | 107.2 (2) | C41—C42—H42C | 109.5 |
C36—C35—C34 | 113.5 (2) | H42A—C42—H42C | 109.5 |
O5—C36—C35 | 106.3 (2) | H42B—C42—H42C | 109.5 |
O2—C37—C38 | 109.8 (2) | C43—C44—H44A | 109.5 |
O6—C37—O2 | 124.0 (2) | C43—C44—H44B | 109.5 |
O6—C37—C38 | 126.1 (2) | H44A—C44—H44B | 109.5 |
O3—C39—C40 | 109.7 (2) | C43—C44—H44C | 109.5 |
O7—C39—O3 | 123.3 (2) | H44A—C44—H44C | 109.5 |
O7—C39—C40 | 127.0 (3) | H44B—C44—H44C | 109.5 |
Br1—C24—C25—C26 | −176.89 (19) | C7—N1—C6—S2 | 1.4 (2) |
S1—C2—C3—C4 | −2.1 (2) | C7—N1—C6—C3 | 179.0 (2) |
S1—C2—C3—C6 | 174.13 (19) | C7—C8—C9—C10 | −0.7 (3) |
S1—C5—C13—O10 | −171.04 (18) | C8—C7—C12—S2 | −179.43 (18) |
S1—C5—C13—C21 | 10.0 (3) | C8—C7—C12—C11 | −0.6 (3) |
S3—C2—C3—C4 | 178.18 (17) | C8—C9—C10—C11 | −0.2 (4) |
S3—C2—C3—C6 | −5.6 (4) | C9—C10—C11—C12 | 0.7 (4) |
S3—C31—C32—O2 | −73.6 (2) | C10—C11—C12—S2 | 178.28 (19) |
S3—C31—C32—C33 | 171.81 (16) | C10—C11—C12—C7 | −0.3 (4) |
O1—C31—C32—O2 | 167.69 (18) | C12—S2—C6—N1 | −1.70 (18) |
O1—C31—C32—C33 | 53.1 (2) | C12—S2—C6—C3 | −179.36 (19) |
O1—C35—C36—O5 | 70.6 (3) | C12—C7—C8—C9 | 1.1 (3) |
O2—C32—C33—O3 | 76.8 (2) | C13—C21—C22—C23 | 179.7 (2) |
O2—C32—C33—C34 | −161.3 (2) | C13—C21—C26—C25 | 178.3 (2) |
O3—C33—C34—O4 | 47.2 (2) | C21—C22—C23—C24 | 2.3 (4) |
O3—C33—C34—C35 | 168.1 (2) | C22—C21—C26—C25 | −2.6 (4) |
O4—C34—C35—O1 | 61.9 (2) | C22—C23—C24—Br1 | 174.97 (18) |
O4—C34—C35—C36 | −58.0 (3) | C22—C23—C24—C25 | −3.3 (4) |
O10—C13—C21—C22 | −123.4 (3) | C23—C24—C25—C26 | 1.4 (4) |
O10—C13—C21—C26 | 55.7 (3) | C24—C25—C26—C21 | 1.6 (4) |
N1—C7—C8—C9 | −177.1 (2) | C26—C21—C22—C23 | 0.6 (3) |
N1—C7—C12—S2 | −1.1 (2) | C31—S3—C2—S1 | 105.40 (14) |
N1—C7—C12—C11 | 177.7 (2) | C31—S3—C2—C3 | −74.9 (2) |
N2—C4—C5—S1 | 178.69 (18) | C31—O1—C35—C34 | 69.4 (2) |
N2—C4—C5—C13 | −3.7 (4) | C31—O1—C35—C36 | −166.9 (2) |
C2—S1—C5—C4 | 1.97 (18) | C31—C32—C33—O3 | −167.85 (18) |
C2—S1—C5—C13 | −175.7 (2) | C31—C32—C33—C34 | −45.9 (3) |
C2—S3—C31—O1 | −66.64 (17) | C32—O2—C37—O6 | 2.7 (3) |
C2—S3—C31—C32 | 173.56 (15) | C32—O2—C37—C38 | −176.21 (19) |
C2—C3—C4—N2 | −178.6 (2) | C32—C33—C34—O4 | −72.8 (2) |
C2—C3—C4—C5 | 3.6 (3) | C32—C33—C34—C35 | 48.1 (3) |
C2—C3—C6—S2 | −4.9 (3) | C33—O3—C39—O7 | 0.9 (4) |
C2—C3—C6—N1 | 177.6 (2) | C33—O3—C39—C40 | −177.5 (2) |
C3—C4—C5—S1 | −3.5 (2) | C33—C34—C35—O1 | −57.9 (3) |
C3—C4—C5—C13 | 174.1 (2) | C33—C34—C35—C36 | −177.7 (2) |
C4—C3—C6—S2 | 170.96 (17) | C34—O4—C41—O8 | −5.0 (4) |
C4—C3—C6—N1 | −6.5 (3) | C34—O4—C41—C42 | 174.8 (2) |
C4—C5—C13—O10 | 11.6 (4) | C34—C35—C36—O5 | −168.2 (2) |
C4—C5—C13—C21 | −167.4 (2) | C35—O1—C31—S3 | 174.79 (15) |
C5—S1—C2—S3 | 179.85 (14) | C35—O1—C31—C32 | −66.0 (2) |
C5—S1—C2—C3 | 0.13 (18) | C36—O5—C43—O9 | −1.6 (4) |
C5—C13—C21—C22 | 55.6 (3) | C36—O5—C43—C44 | 178.8 (2) |
C5—C13—C21—C26 | −125.3 (2) | C37—O2—C32—C31 | 119.2 (2) |
C6—S2—C12—C7 | 1.47 (17) | C37—O2—C32—C33 | −123.3 (2) |
C6—S2—C12—C11 | −177.2 (2) | C39—O3—C33—C32 | −132.7 (2) |
C6—N1—C7—C8 | 178.1 (2) | C39—O3—C33—C34 | 102.8 (2) |
C6—N1—C7—C12 | −0.2 (3) | C41—O4—C34—C33 | −136.2 (2) |
C6—C3—C4—N2 | 4.9 (3) | C41—O4—C34—C35 | 104.8 (3) |
C6—C3—C4—C5 | −172.8 (2) | C43—O5—C36—C35 | −160.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H01···N1 | 0.86 (3) | 2.12 (3) | 2.746 (3) | 129 (3) |
N2—H02···O10 | 0.86 (3) | 2.14 (3) | 2.795 (3) | 133 (3) |
C11—H11···Br1i | 0.95 | 2.97 | 3.710 (2) | 135 |
C31—H31···O6ii | 1.00 | 2.34 | 3.290 (3) | 158 |
C35—H35···O6ii | 1.00 | 2.62 | 3.532 (3) | 151 |
C36—H36B···O9iii | 0.99 | 2.33 | 3.294 (4) | 164 |
Symmetry codes: (i) x−1, y, z; (ii) x, y+1, z; (iii) −x+2, y−1/2, −z+1. |
Acknowledgements
The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.
References
Abu-Zaied, M. A., Elgemeie, G. H. & Jones, P. G. (2019a). Acta Cryst. E75, 1820–1823. CSD CrossRef IUCr Journals Google Scholar
Abu-Zaied, M. A., El-Telbani, E. M., Elgemeie, G. H. & Nawwar, G. A. (2011). Eur. J. Med. Chem. 46, 229–235. CAS PubMed Google Scholar
Abu-Zaied, M. A., Loutfy, S. A., Hassan, A. E. & Elgemeie, G. H. (2019b). Drug. Des. Dev. Ther. 13, 2437–2457. CAS Google Scholar
Abu-Zaied, M. A., Mahmoud, N. M. & Elgemeie, G. H. (2020). Am. Chem. Soc. (Omega), 5, 20042–20050. CAS Google Scholar
Abu-Zaied, M. A., Mahmoud, N. M. & Elgemeie, G. H. (2021). Am. Chem. Soc. (Omega), 6, 16890–16904. CAS Google Scholar
Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2020a). ACS Omega, 5, 30023–30036. Web of Science CrossRef CAS PubMed Google Scholar
Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017a). Acta Cryst. E73, 1820–1822. Web of Science CSD CrossRef IUCr Journals Google Scholar
Azzam, R. A., Elgemeie, G. H., Elsayed, R. E. & Jones, P. G. (2017b). Acta Cryst. E73, 1041–1043. Web of Science CSD CrossRef IUCr Journals Google Scholar
Azzam, R. A., Elgemeie, G. H., Seif, M. M. & Jones, P. G. (2021). Acta Cryst. E77, 891–894. Web of Science CSD CrossRef IUCr Journals Google Scholar
Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182–26194. Web of Science CrossRef CAS PubMed Google Scholar
Azzam, R. A., Osman, R. R. & Elgemeie, G. H. (2020c). ACS Omega, 5, 1640–1655. Web of Science CrossRef CAS PubMed Google Scholar
Bonde, C., Vedala, D. & Bonde, S. (2015). J. Pharm. Res. 9, 573–580. CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Elgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides Nucleotides Nucleic Acids, 34, 659–673. Web of Science CrossRef CAS PubMed Google Scholar
Elgemeie, G. H., Abu-Zaied, M. A. & Loutfy, S. A. (2017b). Tetrahedron, 73, 5853–5861. CrossRef CAS Google Scholar
Elgemeie, G. H., Abu-Zaied, M. A. & Nawwar, G. A. (2018). Nucleosides Nucleotides Nucleic Acids, 37, 112–123. CrossRef CAS PubMed Google Scholar
Elgemeie, G. H., Abu-Zaied, M. & Azzam, R. (2016). Nucleosides Nucleotides Nucleic Acids, 35, 211–222. Web of Science CrossRef CAS PubMed Google Scholar
Elgemeie, G. H., Alkhursani, S. A. & Mohamed, R. A. (2019). Nucleosides Nucleotides Nucleic Acids, 38, 12–87. Web of Science CrossRef CAS PubMed Google Scholar
Elgemeie, G. H., Azzam, R. A. & Osman, R. R. (2020a). Inorg. Chim. Acta, 502, 119302. CrossRef Google Scholar
Elgemeie, G. H., Eltamny, E. H., Elgawad, I. I. & Mahmoud, N. M. (2009). Synth. Commun. 39, 443–458. Web of Science CrossRef CAS Google Scholar
Elgemeie, G. H., Fathy, N. M., Farag, A. B. & Yahab, A. M. B. (2020b). Nucleosides Nucleotides Nucleic Acids, 39, 1134–1149. CrossRef CAS PubMed Google Scholar
Elgemeie, G. H., Fathy, N. M., Zaghary, W. & Farag, A. (2017a). Nucleosides Nucleotides Nucleic Acids, 36, 198–212. CrossRef CAS PubMed Google Scholar
Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017c). Nucleosides Nucleotides Nucleic Acids, 36, 139–150. CrossRef CAS PubMed Google Scholar
Elgemeie, G. H., Shams, H. Z., Elkholy, Y. M. & Abbas, N. S. (2000a). Phosphorus Sulfur Silicon, 165, 265–272. Web of Science CrossRef CAS Google Scholar
Elgemeie, G. H., Shams, Z., Elkholy, M. & Abbas, N. S. (2000b). Heterocycl. Commun. 6, 363–268. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hammad, S. F., Masoud, D. M., Elgemeie, G. H. & Jones, P. G. (2018). Acta Cryst. E74, 853–856. Web of Science CSD CrossRef IUCr Journals Google Scholar
Huang, Q., Mao, J., Wan, B., Wang, Y., Brun, R., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 6757–6767. CrossRef PubMed CAS Google Scholar
Khiar, N., Alonso, I., Rodriguez, N., Fernandez-Mayoralas, A., Jimenez-Barbero, J., Nieto, O., Cano, F., Foces-Foces, C. & Martin-Lomas, M. (1997). Tetrahedron Lett. 38, 8267–8270. CSD CrossRef CAS Google Scholar
Masoud, D. M., Hammad, S. F., Elgemeie, G. H. & Jones, P. G. (2017). Acta Cryst. E73, 1751–1754. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rana, A., Siddiqui, N., Khan, S. A., Haque, E. S. & Bhat, M. A. (2008). Eur. J. Med. Chem. 43, 1114–1122. CrossRef PubMed CAS Google Scholar
Rigaku D (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Scala, S., Akhmed, K., Rao, U. S., Paull, K., Lan, L., Dickstein, B., Lee, J., Elgemeie, G. H., Stein, W. D. & Bates, S. E. P. (1997). Mol. Pharmacol. 51, 1024–1033. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siemens (1994). XP. Siemens Analytical X-Ray Instruments, Madison, Wisconsin, USA. Google Scholar
Smith, R., Zeng, X., Müller-Bunz, H. & Zhu, X. (2013). Tetrahedron Lett. 54, 5348–5350. CSD CrossRef CAS Google Scholar
Wang, X., Sarris, K., Kage, K., Zhang, D., Brown, S. P., Kolasa, T., Surowy, C., El Kouhen, O. F., Muchmore, S. W., Brioni, J. D. & Stewart, A. O. (2009). J. Med. Chem. 52, 170–180. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.