organic compounds
1-(Phenylsulfonyl)-1H-indole-2-carbaldehyde
aEscuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica, and bCentro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
*Correspondence e-mail: jorge.cabezas@ucr.ac.cr
The title compound, C15H11NO3S, was prepared by a facile synthetic approach. The N atom in the pyrrole ring of the indole moiety is pyramidal (bond-angle sum = 350.0°) and the phenyl ring of the phenylsulfonyl motif forms a dihedral angle of 76.24 (7)° with the mean plane of the indole ring system. In the crystal, C—H⋯O and C—H⋯π interactions link the molecules into a three-dimensional network.
Keywords: crystal structure; heterocyclic system; indole; sulfanilamide.
CCDC reference: 2123919
Structure description
The indole ring framework is a heterocyclic system found in many natural products. Many of these compounds possess biological activity, from neurotransmitter serotonin to vinblastine, an alkaloid clinically used as an anticancer agent (Inman & Moody, 2013). The title compound, 1, is a useful synthetic intermediate, which has been used in the preparation of bouchardatine, a natural occurring alkaloid isolated from the rutaecarpine family (Naik et al., 2013). It has also been used to synthesize bis(1H-indol-2-yl)methanones, potent inhibitors of FLT3 receptor tyrosine kinase (Mahboobi et al., 2006). Usually, this synthetic intermediate is synthesized from indole, which is treated with benzenesulfonyl chloride under basic conditions, and further formylated at the 2-position by sequential treatment with lithium diisopropyl amide and dimethylformamide. As a part of our program of the synthesis of biologically active sulfanilamide derivatives (Cabezas & Arias, 2019), we report herein a straightforward approach for the synthesis of 1 and its crystal structure.
The 1 has monoclinic symmetry with one molecule in the the five-membered pyrrole ring of the indole motif contains a carbaldehyde group and also binds via a nitrogen atom to a phenylsulfonyl fragment (Fig. 1). The bond lengths and angles in 1 do not show any unexpected features (Palani et al., 2006; Sakthivel et al., 2006). The bond angles O3—S1—O2 [120.63 (10)°] and N1—S1—C15 [104.80 (8)°] support the distorted tetrahedral geometry around atom S1. Atom N1 within the pyrrole ring deviates from planar geometry, showing a slight pyramidalization (bond-angle sum = 350.0°). The phenyl ring of the phenylsulfonyl motif subtends a dihedral angle of 76.24 (7)° with the mean plane of the indole ring system. There are two short intramolecular C—H⋯O contacts and the crystal packing features C—H⋯O and C—H⋯π interactions (Table 1, Fig. 2).
ofSynthesis and crystallization
The title compound, 1, was synthesized by the reaction of 2-iodoaniline, 2, with benzenesulfonyl chloride, 3, in the presence of pyridine to obtain after purification by the iodosulfonamide 4. Treatment of the latter iodide, 4, with propargyl alcohol, 5, under Sonogashira's reaction conditions (Sonogashira et al., 1975), at room temperature, produced [1-(phenylsulfonyl)-1H-indol-2-yl]methanol 6 in a one-pot reaction and with overall yield of 84%. Similar synthetic strategies, using N-(2-iodophenyl)methane required heating at 100–110°C in a sealed tube (Sakamoto et al., 1988). Oxidation of this alcohol, with pyridinium chlorochromate, provided the target aldehyde in 81% yield (Fig. 3). The product was recrystallized from ethyl acetate solution at room temperature resulting in light-yellow blocks.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2123919
https://doi.org/10.1107/S2414314622004011/hb4405sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622004011/hb4405Isup2.hkl
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C15H11NO3S | F(000) = 592 |
Mr = 285.31 | Dx = 1.441 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.6886 (7) Å | Cell parameters from 3972 reflections |
b = 9.2655 (6) Å | θ = 2.8–23.8° |
c = 11.6024 (7) Å | µ = 0.25 mm−1 |
β = 105.374 (2)° | T = 273 K |
V = 1315.24 (14) Å3 | Block, clear light yellow |
Z = 4 | 0.20 × 0.15 × 0.15 mm |
Bruker D8 Venture diffractometer | 3032 independent reflections |
Radiation source: Incoatec Microsource | 1791 reflections with I > 2σ(I) |
Mirrors monochromator | Rint = 0.057 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 27.5°, θmin = 2.8° |
ω scans | h = −16→16 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | k = −12→12 |
Tmin = 0.690, Tmax = 0.746 | l = −15→14 |
18696 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0529P)2 + 0.1517P] where P = (Fo2 + 2Fc2)/3 |
3032 reflections | (Δ/σ)max = 0.001 |
181 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All hydrogen atoms were placed geometrically and refined using a riding-model approximation, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C). |
x | y | z | Uiso*/Ueq | ||
S1 | 0.26292 (4) | 0.67883 (6) | 0.70277 (4) | 0.0461 (2) | |
O1 | 0.03455 (14) | 0.88036 (19) | 0.38393 (17) | 0.0771 (5) | |
O2 | 0.23104 (12) | 0.82550 (16) | 0.70663 (14) | 0.0621 (5) | |
O3 | 0.27691 (13) | 0.58878 (18) | 0.80466 (12) | 0.0645 (5) | |
N1 | 0.16726 (12) | 0.60075 (18) | 0.59334 (13) | 0.0407 (4) | |
C1 | 0.11260 (15) | 0.6739 (2) | 0.48512 (18) | 0.0421 (5) | |
C2 | 0.08938 (16) | 0.5776 (2) | 0.39588 (18) | 0.0447 (5) | |
H2 | 0.0523 | 0.5978 | 0.317 | 0.054* | |
C3 | 0.13005 (15) | 0.4395 (2) | 0.44002 (17) | 0.0400 (5) | |
C4 | 0.12749 (18) | 0.3046 (3) | 0.3870 (2) | 0.0537 (6) | |
H4 | 0.0946 | 0.2926 | 0.3058 | 0.064* | |
C5 | 0.17400 (19) | 0.1897 (3) | 0.4559 (2) | 0.0599 (7) | |
H5 | 0.1735 | 0.0992 | 0.4211 | 0.072* | |
C6 | 0.2220 (2) | 0.2070 (2) | 0.5775 (2) | 0.0595 (6) | |
H6 | 0.2527 | 0.1272 | 0.6226 | 0.071* | |
C7 | 0.22548 (18) | 0.3386 (2) | 0.63281 (19) | 0.0519 (6) | |
H7 | 0.2578 | 0.3491 | 0.7142 | 0.062* | |
C8 | 0.17904 (15) | 0.4546 (2) | 0.56285 (17) | 0.0384 (5) | |
C9 | 0.07306 (18) | 0.8234 (3) | 0.4781 (2) | 0.0586 (6) | |
H9 | 0.0781 | 0.8747 | 0.5483 | 0.07* | |
C10 | 0.39626 (19) | 0.7687 (2) | 0.5702 (2) | 0.0523 (6) | |
H10 | 0.3429 | 0.8375 | 0.5392 | 0.063* | |
C11 | 0.4910 (2) | 0.7626 (3) | 0.5327 (2) | 0.0670 (7) | |
H11 | 0.5014 | 0.8276 | 0.4756 | 0.08* | |
C12 | 0.5693 (2) | 0.6617 (3) | 0.5788 (2) | 0.0704 (8) | |
H12 | 0.633 | 0.6591 | 0.5537 | 0.084* | |
C13 | 0.55456 (19) | 0.5649 (3) | 0.6616 (2) | 0.0672 (7) | |
H13 | 0.6078 | 0.4958 | 0.692 | 0.081* | |
C14 | 0.46101 (18) | 0.5694 (2) | 0.70013 (19) | 0.0538 (6) | |
H14 | 0.451 | 0.5038 | 0.7569 | 0.065* | |
C15 | 0.38264 (15) | 0.6712 (2) | 0.65436 (16) | 0.0385 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0452 (3) | 0.0563 (4) | 0.0376 (3) | −0.0103 (3) | 0.0123 (2) | −0.0122 (3) |
O1 | 0.0678 (12) | 0.0615 (11) | 0.0899 (14) | 0.0065 (9) | −0.0001 (10) | 0.0109 (11) |
O2 | 0.0582 (10) | 0.0570 (11) | 0.0721 (11) | −0.0043 (8) | 0.0187 (8) | −0.0292 (8) |
O3 | 0.0745 (11) | 0.0880 (13) | 0.0322 (8) | −0.0219 (9) | 0.0160 (7) | −0.0020 (8) |
N1 | 0.0362 (9) | 0.0476 (11) | 0.0390 (10) | −0.0071 (8) | 0.0112 (8) | −0.0081 (8) |
C1 | 0.0305 (11) | 0.0500 (13) | 0.0459 (12) | −0.0037 (10) | 0.0106 (9) | −0.0006 (11) |
C2 | 0.0355 (11) | 0.0593 (14) | 0.0388 (12) | −0.0048 (11) | 0.0091 (9) | 0.0004 (11) |
C3 | 0.0332 (11) | 0.0498 (14) | 0.0384 (12) | −0.0092 (10) | 0.0119 (9) | −0.0058 (10) |
C4 | 0.0502 (14) | 0.0605 (16) | 0.0506 (13) | −0.0152 (12) | 0.0137 (11) | −0.0164 (13) |
C5 | 0.0657 (16) | 0.0443 (14) | 0.0737 (18) | −0.0122 (12) | 0.0253 (14) | −0.0141 (14) |
C6 | 0.0661 (16) | 0.0451 (15) | 0.0672 (17) | −0.0050 (12) | 0.0175 (13) | 0.0078 (13) |
C7 | 0.0575 (15) | 0.0532 (15) | 0.0433 (13) | −0.0113 (12) | 0.0105 (11) | 0.0025 (12) |
C8 | 0.0367 (11) | 0.0423 (13) | 0.0392 (12) | −0.0102 (10) | 0.0154 (9) | −0.0040 (10) |
C9 | 0.0426 (14) | 0.0569 (16) | 0.0715 (17) | −0.0014 (12) | 0.0070 (12) | −0.0052 (14) |
C10 | 0.0469 (14) | 0.0591 (15) | 0.0485 (13) | 0.0016 (11) | 0.0082 (11) | 0.0058 (12) |
C11 | 0.0592 (16) | 0.0840 (19) | 0.0619 (16) | −0.0138 (15) | 0.0235 (13) | 0.0115 (14) |
C12 | 0.0386 (14) | 0.102 (2) | 0.0726 (18) | −0.0104 (15) | 0.0182 (13) | −0.0179 (17) |
C13 | 0.0404 (14) | 0.0761 (18) | 0.0761 (18) | 0.0096 (13) | −0.0004 (13) | −0.0081 (15) |
C14 | 0.0515 (14) | 0.0565 (15) | 0.0476 (13) | −0.0034 (12) | 0.0028 (11) | 0.0012 (11) |
C15 | 0.0360 (11) | 0.0449 (12) | 0.0313 (10) | −0.0040 (10) | 0.0029 (8) | −0.0027 (10) |
S1—O3 | 1.4191 (15) | C6—C7 | 1.373 (3) |
S1—O2 | 1.4220 (16) | C6—H6 | 0.93 |
S1—N1 | 1.6708 (16) | C7—C8 | 1.382 (3) |
S1—C15 | 1.755 (2) | C7—H7 | 0.93 |
O1—C9 | 1.195 (3) | C9—H9 | 0.93 |
N1—C8 | 1.417 (2) | C10—C15 | 1.375 (3) |
N1—C1 | 1.434 (2) | C10—C11 | 1.384 (3) |
C1—C2 | 1.339 (3) | C10—H10 | 0.93 |
C1—C9 | 1.468 (3) | C11—C12 | 1.366 (4) |
C2—C3 | 1.423 (3) | C11—H11 | 0.93 |
C2—H2 | 0.93 | C12—C13 | 1.362 (3) |
C3—C4 | 1.390 (3) | C12—H12 | 0.93 |
C3—C8 | 1.403 (3) | C13—C14 | 1.376 (3) |
C4—C5 | 1.367 (3) | C13—H13 | 0.93 |
C4—H4 | 0.93 | C14—C15 | 1.371 (3) |
C5—C6 | 1.390 (3) | C14—H14 | 0.93 |
C5—H5 | 0.93 | ||
O3—S1—O2 | 120.63 (10) | C6—C7—C8 | 117.4 (2) |
O3—S1—N1 | 106.48 (9) | C6—C7—H7 | 121.3 |
O2—S1—N1 | 106.40 (9) | C8—C7—H7 | 121.3 |
O3—S1—C15 | 108.37 (10) | C7—C8—C3 | 121.63 (19) |
O2—S1—C15 | 109.04 (10) | C7—C8—N1 | 130.82 (18) |
N1—S1—C15 | 104.80 (8) | C3—C8—N1 | 107.53 (17) |
C8—N1—C1 | 106.96 (15) | O1—C9—C1 | 121.2 (2) |
C8—N1—S1 | 119.99 (13) | O1—C9—H9 | 119.4 |
C1—N1—S1 | 123.09 (14) | C1—C9—H9 | 119.4 |
C2—C1—N1 | 108.53 (18) | C15—C10—C11 | 118.7 (2) |
C2—C1—C9 | 125.7 (2) | C15—C10—H10 | 120.7 |
N1—C1—C9 | 125.00 (19) | C11—C10—H10 | 120.7 |
C1—C2—C3 | 109.67 (18) | C12—C11—C10 | 120.5 (2) |
C1—C2—H2 | 125.2 | C12—C11—H11 | 119.8 |
C3—C2—H2 | 125.2 | C10—C11—H11 | 119.8 |
C4—C3—C8 | 119.5 (2) | C13—C12—C11 | 120.4 (2) |
C4—C3—C2 | 133.3 (2) | C13—C12—H12 | 119.8 |
C8—C3—C2 | 107.27 (18) | C11—C12—H12 | 119.8 |
C5—C4—C3 | 119.0 (2) | C12—C13—C14 | 120.0 (2) |
C5—C4—H4 | 120.5 | C12—C13—H13 | 120.0 |
C3—C4—H4 | 120.5 | C14—C13—H13 | 120.0 |
C4—C5—C6 | 120.6 (2) | C15—C14—C13 | 119.6 (2) |
C4—C5—H5 | 119.7 | C15—C14—H14 | 120.2 |
C6—C5—H5 | 119.7 | C13—C14—H14 | 120.2 |
C7—C6—C5 | 121.9 (2) | C14—C15—C10 | 120.8 (2) |
C7—C6—H6 | 119.1 | C14—C15—S1 | 120.28 (17) |
C5—C6—H6 | 119.1 | C10—C15—S1 | 118.89 (16) |
O3—S1—N1—C8 | −53.53 (16) | C4—C3—C8—N1 | −178.29 (17) |
O2—S1—N1—C8 | 176.62 (14) | C2—C3—C8—N1 | 0.5 (2) |
C15—S1—N1—C8 | 61.18 (16) | C1—N1—C8—C7 | −179.9 (2) |
O3—S1—N1—C1 | 165.38 (15) | S1—N1—C8—C7 | 33.4 (3) |
O2—S1—N1—C1 | 35.52 (17) | C1—N1—C8—C3 | −1.55 (19) |
C15—S1—N1—C1 | −79.91 (16) | S1—N1—C8—C3 | −148.17 (13) |
C8—N1—C1—C2 | 2.0 (2) | C2—C1—C9—O1 | −15.8 (3) |
S1—N1—C1—C2 | 147.38 (14) | N1—C1—C9—O1 | 175.04 (19) |
C8—N1—C1—C9 | 172.76 (18) | C15—C10—C11—C12 | −0.2 (4) |
S1—N1—C1—C9 | −41.9 (3) | C10—C11—C12—C13 | 0.7 (4) |
N1—C1—C2—C3 | −1.7 (2) | C11—C12—C13—C14 | −0.7 (4) |
C9—C1—C2—C3 | −172.36 (19) | C12—C13—C14—C15 | 0.4 (4) |
C1—C2—C3—C4 | 179.4 (2) | C13—C14—C15—C10 | 0.1 (3) |
C1—C2—C3—C8 | 0.7 (2) | C13—C14—C15—S1 | −179.84 (17) |
C8—C3—C4—C5 | −0.7 (3) | C11—C10—C15—C14 | −0.2 (3) |
C2—C3—C4—C5 | −179.1 (2) | C11—C10—C15—S1 | 179.77 (17) |
C3—C4—C5—C6 | 0.7 (3) | O3—S1—C15—C14 | 11.35 (19) |
C4—C5—C6—C7 | −0.4 (4) | O2—S1—C15—C14 | 144.39 (17) |
C5—C6—C7—C8 | 0.0 (3) | N1—S1—C15—C14 | −102.03 (17) |
C6—C7—C8—C3 | 0.1 (3) | O3—S1—C15—C10 | −168.59 (16) |
C6—C7—C8—N1 | 178.25 (19) | O2—S1—C15—C10 | −35.55 (19) |
C4—C3—C8—C7 | 0.3 (3) | N1—S1—C15—C10 | 78.03 (18) |
C2—C3—C8—C7 | 179.11 (18) |
Cg2 is the centroid of the C3–C8 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O3 | 0.93 | 2.44 | 3.014 (3) | 120 |
C9—H9···O2 | 0.93 | 2.34 | 2.869 (3) | 116 |
C4—H4···O1i | 0.93 | 2.51 | 3.343 (3) | 150 |
C12—H12···Cg2ii | 0.93 | 2.71 | 3.638 (3) | 174 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+1. |
Funding information
Rectoría and Vicerrectoría de Investigación, Universidad de Costa Rica are acknowledged for funding the purchase of a D8 Venture SC XRD.
References
Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cabezas, J. A. & Arias, M. L. (2019). Int J. Curr. Res, 11, 9097–9101. CAS Google Scholar
Inman, M. & Moody, C. J. (2013). Chem. Sci. 4, 29–41. CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mahboobi, S., Uecker, A., Sellmer, A., Cénac, C., Höcher, H., Pongratz, H., Eichhorn, E., Hufsky, H., Trümpler, A., Sicker, M., Heidel, F., Fischer, T., Stocking, C., Elz, S., Böhmer, F. D. & Dove, S. (2006). J. Med. Chem. 49, 3101–3115. CrossRef PubMed CAS Google Scholar
Naik, N. H., Urmode, T. D., Sikder, A. K. & Kusurkar, R. S. (2013). Aust. J. Chem. 66, 1112–1114. CrossRef CAS Google Scholar
Palani, K., Ponnuswamy, M. N., Jaisankar, P., Srinivasan, P. C. & Nethaji, M. (2006). Acta Cryst. E62, o437–o439. CSD CrossRef IUCr Journals Google Scholar
Sakamoto, T., Kondo, Y., Iwashita, S., Nagano, T. & Yamanaka, H. (1988). Chem. Pharm. Bull. 36, 1305–1308. CrossRef CAS Google Scholar
Sakthivel, P., SethuSankar, K., Jaisankar, P. & Joseph, P. S. (2006). Acta Cryst. E62, o1199–o1201. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sonogashira, K., Tohda, Y. & Hagihara, N. (1975). Tetrahedron Lett. 16, 4467–4470. CrossRef Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.