organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(Phenyl­sulfon­yl)-1H-indole-2-carbaldehyde

crossmark logo

aEscuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica, and bCentro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
*Correspondence e-mail: jorge.cabezas@ucr.ac.cr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 March 2022; accepted 13 April 2022; online 22 April 2022)

The title compound, C15H11NO3S, was prepared by a facile synthetic approach. The N atom in the pyrrole ring of the indole moiety is pyramidal (bond-angle sum = 350.0°) and the phenyl ring of the phenyl­sulfonyl motif forms a dihedral angle of 76.24 (7)° with the mean plane of the indole ring system. In the crystal, C—H⋯O and C—H⋯π inter­actions link the mol­ecules into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The indole ring framework is a heterocyclic system found in many natural products. Many of these compounds possess biological activity, from neurotransmitter serotonin to vinblastine, an alkaloid clinically used as an anti­cancer agent (Inman & Moody, 2013[Inman, M. & Moody, C. J. (2013). Chem. Sci. 4, 29-41.]). The title compound, 1, is a useful synthetic inter­mediate, which has been used in the preparation of bouchardatine, a natural occurring alkaloid isolated from the rutaecarpine family (Naik et al., 2013[Naik, N. H., Urmode, T. D., Sikder, A. K. & Kusurkar, R. S. (2013). Aust. J. Chem. 66, 1112-1114.]). It has also been used to synthesize bis­(1H-indol-2-yl)methano­nes, potent inhibitors of FLT3 receptor tyrosine kinase (Mahboobi et al., 2006[Mahboobi, S., Uecker, A., Sellmer, A., Cénac, C., Höcher, H., Pongratz, H., Eichhorn, E., Hufsky, H., Trümpler, A., Sicker, M., Heidel, F., Fischer, T., Stocking, C., Elz, S., Böhmer, F. D. & Dove, S. (2006). J. Med. Chem. 49, 3101-3115.]). Usually, this synthetic inter­mediate is synthesized from indole, which is treated with benzene­sulfonyl chloride under basic conditions, and further formyl­ated at the 2-position by sequential treatment with lithium diisopropyl amide and di­methyl­formamide. As a part of our program of the synthesis of biologically active sulfanilamide derivatives (Cabezas & Arias, 2019[Cabezas, J. A. & Arias, M. L. (2019). Int J. Curr. Res, 11, 9097-9101.]), we report herein a straightforward approach for the synthesis of 1 and its crystal structure.

The crystal structure of 1 has monoclinic symmetry with one mol­ecule in the asymmetric unit: the five-membered pyrrole ring of the indole motif contains a carbaldehyde group and also binds via a nitro­gen atom to a phenyl­sulfonyl fragment (Fig. 1[link]). The bond lengths and angles in 1 do not show any unexpected features (Palani et al., 2006[Palani, K., Ponnuswamy, M. N., Jaisankar, P., Srinivasan, P. C. & Nethaji, M. (2006). Acta Cryst. E62, o437-o439.]; Sakthivel et al., 2006[Sakthivel, P., SethuSankar, K., Jaisankar, P. & Joseph, P. S. (2006). Acta Cryst. E62, o1199-o1201.]). The bond angles O3—S1—O2 [120.63 (10)°] and N1—S1—C15 [104.80 (8)°] support the distorted tetra­hedral geometry around atom S1. Atom N1 within the pyrrole ring deviates from planar geometry, showing a slight pyramidalization (bond-angle sum = 350.0°). The phenyl ring of the phenyl­sulfonyl motif subtends a dihedral angle of 76.24 (7)° with the mean plane of the indole ring system. There are two short intra­molecular C—H⋯O contacts and the crystal packing features C—H⋯O and C—H⋯π inter­actions (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3 0.93 2.44 3.014 (3) 120
C9—H9⋯O2 0.93 2.34 2.869 (3) 116
C4—H4⋯O1i 0.93 2.51 3.343 (3) 150
C12—H12⋯Cg2ii 0.93 2.71 3.638 (3) 174
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing view of the title compound. C—H⋯O and C—H⋯π inter­actions are shown as green and purple dashed lines, respectively.

Synthesis and crystallization

The title compound, 1, was synthesized by the reaction of 2-iodo­aniline, 2, with benzene­sulfonyl chloride, 3, in the presence of pyridine to obtain after purification by column chromatography, the iodo­sulfonamide 4. Treatment of the latter iodide, 4, with propargyl alcohol, 5, under Sonogashira's reaction conditions (Sonogashira et al., 1975[Sonogashira, K., Tohda, Y. & Hagihara, N. (1975). Tetrahedron Lett. 16, 4467-4470.]), at room temperature, produced [1-(phenyl­sulfon­yl)-1H-indol-2-yl]methanol 6 in a one-pot reaction and with overall yield of 84%. Similar synthetic strategies, using N-(2-iodophenyl)methane sulfonamides, required heating at 100–110°C in a sealed tube (Sakamoto et al., 1988[Sakamoto, T., Kondo, Y., Iwashita, S., Nagano, T. & Yamanaka, H. (1988). Chem. Pharm. Bull. 36, 1305-1308.]). Oxidation of this alcohol, with pyridinium chlorochromate, provided the target aldehyde in 81% yield (Fig. 3[link]). The product was recrystallized from ethyl acetate solution at room temperature resulting in light-yellow blocks.

[Figure 3]
Figure 3
A synthetic scheme for the preparation of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H11NO3S
Mr 285.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 273
a, b, c (Å) 12.6886 (7), 9.2655 (6), 11.6024 (7)
β (°) 105.374 (2)
V3) 1315.24 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.20 × 0.15 × 0.15
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.690, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 18696, 3032, 1791
Rint 0.057
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.114, 1.01
No. of reflections 3032
No. of parameters 181
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.33
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

1-(Phenylsulfonyl)-1H-indole-2-carbaldehyde top
Crystal data top
C15H11NO3SF(000) = 592
Mr = 285.31Dx = 1.441 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.6886 (7) ÅCell parameters from 3972 reflections
b = 9.2655 (6) Åθ = 2.8–23.8°
c = 11.6024 (7) ŵ = 0.25 mm1
β = 105.374 (2)°T = 273 K
V = 1315.24 (14) Å3Block, clear light yellow
Z = 40.20 × 0.15 × 0.15 mm
Data collection top
Bruker D8 Venture
diffractometer
3032 independent reflections
Radiation source: Incoatec Microsource1791 reflections with I > 2σ(I)
Mirrors monochromatorRint = 0.057
Detector resolution: 10.4167 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1212
Tmin = 0.690, Tmax = 0.746l = 1514
18696 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.1517P]
where P = (Fo2 + 2Fc2)/3
3032 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed geometrically and refined using a riding-model approximation, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.26292 (4)0.67883 (6)0.70277 (4)0.0461 (2)
O10.03455 (14)0.88036 (19)0.38393 (17)0.0771 (5)
O20.23104 (12)0.82550 (16)0.70663 (14)0.0621 (5)
O30.27691 (13)0.58878 (18)0.80466 (12)0.0645 (5)
N10.16726 (12)0.60075 (18)0.59334 (13)0.0407 (4)
C10.11260 (15)0.6739 (2)0.48512 (18)0.0421 (5)
C20.08938 (16)0.5776 (2)0.39588 (18)0.0447 (5)
H20.05230.59780.3170.054*
C30.13005 (15)0.4395 (2)0.44002 (17)0.0400 (5)
C40.12749 (18)0.3046 (3)0.3870 (2)0.0537 (6)
H40.09460.29260.30580.064*
C50.17400 (19)0.1897 (3)0.4559 (2)0.0599 (7)
H50.17350.09920.42110.072*
C60.2220 (2)0.2070 (2)0.5775 (2)0.0595 (6)
H60.25270.12720.62260.071*
C70.22548 (18)0.3386 (2)0.63281 (19)0.0519 (6)
H70.25780.34910.71420.062*
C80.17904 (15)0.4546 (2)0.56285 (17)0.0384 (5)
C90.07306 (18)0.8234 (3)0.4781 (2)0.0586 (6)
H90.07810.87470.54830.07*
C100.39626 (19)0.7687 (2)0.5702 (2)0.0523 (6)
H100.34290.83750.53920.063*
C110.4910 (2)0.7626 (3)0.5327 (2)0.0670 (7)
H110.50140.82760.47560.08*
C120.5693 (2)0.6617 (3)0.5788 (2)0.0704 (8)
H120.6330.65910.55370.084*
C130.55456 (19)0.5649 (3)0.6616 (2)0.0672 (7)
H130.60780.49580.6920.081*
C140.46101 (18)0.5694 (2)0.70013 (19)0.0538 (6)
H140.4510.50380.75690.065*
C150.38264 (15)0.6712 (2)0.65436 (16)0.0385 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0452 (3)0.0563 (4)0.0376 (3)0.0103 (3)0.0123 (2)0.0122 (3)
O10.0678 (12)0.0615 (11)0.0899 (14)0.0065 (9)0.0001 (10)0.0109 (11)
O20.0582 (10)0.0570 (11)0.0721 (11)0.0043 (8)0.0187 (8)0.0292 (8)
O30.0745 (11)0.0880 (13)0.0322 (8)0.0219 (9)0.0160 (7)0.0020 (8)
N10.0362 (9)0.0476 (11)0.0390 (10)0.0071 (8)0.0112 (8)0.0081 (8)
C10.0305 (11)0.0500 (13)0.0459 (12)0.0037 (10)0.0106 (9)0.0006 (11)
C20.0355 (11)0.0593 (14)0.0388 (12)0.0048 (11)0.0091 (9)0.0004 (11)
C30.0332 (11)0.0498 (14)0.0384 (12)0.0092 (10)0.0119 (9)0.0058 (10)
C40.0502 (14)0.0605 (16)0.0506 (13)0.0152 (12)0.0137 (11)0.0164 (13)
C50.0657 (16)0.0443 (14)0.0737 (18)0.0122 (12)0.0253 (14)0.0141 (14)
C60.0661 (16)0.0451 (15)0.0672 (17)0.0050 (12)0.0175 (13)0.0078 (13)
C70.0575 (15)0.0532 (15)0.0433 (13)0.0113 (12)0.0105 (11)0.0025 (12)
C80.0367 (11)0.0423 (13)0.0392 (12)0.0102 (10)0.0154 (9)0.0040 (10)
C90.0426 (14)0.0569 (16)0.0715 (17)0.0014 (12)0.0070 (12)0.0052 (14)
C100.0469 (14)0.0591 (15)0.0485 (13)0.0016 (11)0.0082 (11)0.0058 (12)
C110.0592 (16)0.0840 (19)0.0619 (16)0.0138 (15)0.0235 (13)0.0115 (14)
C120.0386 (14)0.102 (2)0.0726 (18)0.0104 (15)0.0182 (13)0.0179 (17)
C130.0404 (14)0.0761 (18)0.0761 (18)0.0096 (13)0.0004 (13)0.0081 (15)
C140.0515 (14)0.0565 (15)0.0476 (13)0.0034 (12)0.0028 (11)0.0012 (11)
C150.0360 (11)0.0449 (12)0.0313 (10)0.0040 (10)0.0029 (8)0.0027 (10)
Geometric parameters (Å, º) top
S1—O31.4191 (15)C6—C71.373 (3)
S1—O21.4220 (16)C6—H60.93
S1—N11.6708 (16)C7—C81.382 (3)
S1—C151.755 (2)C7—H70.93
O1—C91.195 (3)C9—H90.93
N1—C81.417 (2)C10—C151.375 (3)
N1—C11.434 (2)C10—C111.384 (3)
C1—C21.339 (3)C10—H100.93
C1—C91.468 (3)C11—C121.366 (4)
C2—C31.423 (3)C11—H110.93
C2—H20.93C12—C131.362 (3)
C3—C41.390 (3)C12—H120.93
C3—C81.403 (3)C13—C141.376 (3)
C4—C51.367 (3)C13—H130.93
C4—H40.93C14—C151.371 (3)
C5—C61.390 (3)C14—H140.93
C5—H50.93
O3—S1—O2120.63 (10)C6—C7—C8117.4 (2)
O3—S1—N1106.48 (9)C6—C7—H7121.3
O2—S1—N1106.40 (9)C8—C7—H7121.3
O3—S1—C15108.37 (10)C7—C8—C3121.63 (19)
O2—S1—C15109.04 (10)C7—C8—N1130.82 (18)
N1—S1—C15104.80 (8)C3—C8—N1107.53 (17)
C8—N1—C1106.96 (15)O1—C9—C1121.2 (2)
C8—N1—S1119.99 (13)O1—C9—H9119.4
C1—N1—S1123.09 (14)C1—C9—H9119.4
C2—C1—N1108.53 (18)C15—C10—C11118.7 (2)
C2—C1—C9125.7 (2)C15—C10—H10120.7
N1—C1—C9125.00 (19)C11—C10—H10120.7
C1—C2—C3109.67 (18)C12—C11—C10120.5 (2)
C1—C2—H2125.2C12—C11—H11119.8
C3—C2—H2125.2C10—C11—H11119.8
C4—C3—C8119.5 (2)C13—C12—C11120.4 (2)
C4—C3—C2133.3 (2)C13—C12—H12119.8
C8—C3—C2107.27 (18)C11—C12—H12119.8
C5—C4—C3119.0 (2)C12—C13—C14120.0 (2)
C5—C4—H4120.5C12—C13—H13120.0
C3—C4—H4120.5C14—C13—H13120.0
C4—C5—C6120.6 (2)C15—C14—C13119.6 (2)
C4—C5—H5119.7C15—C14—H14120.2
C6—C5—H5119.7C13—C14—H14120.2
C7—C6—C5121.9 (2)C14—C15—C10120.8 (2)
C7—C6—H6119.1C14—C15—S1120.28 (17)
C5—C6—H6119.1C10—C15—S1118.89 (16)
O3—S1—N1—C853.53 (16)C4—C3—C8—N1178.29 (17)
O2—S1—N1—C8176.62 (14)C2—C3—C8—N10.5 (2)
C15—S1—N1—C861.18 (16)C1—N1—C8—C7179.9 (2)
O3—S1—N1—C1165.38 (15)S1—N1—C8—C733.4 (3)
O2—S1—N1—C135.52 (17)C1—N1—C8—C31.55 (19)
C15—S1—N1—C179.91 (16)S1—N1—C8—C3148.17 (13)
C8—N1—C1—C22.0 (2)C2—C1—C9—O115.8 (3)
S1—N1—C1—C2147.38 (14)N1—C1—C9—O1175.04 (19)
C8—N1—C1—C9172.76 (18)C15—C10—C11—C120.2 (4)
S1—N1—C1—C941.9 (3)C10—C11—C12—C130.7 (4)
N1—C1—C2—C31.7 (2)C11—C12—C13—C140.7 (4)
C9—C1—C2—C3172.36 (19)C12—C13—C14—C150.4 (4)
C1—C2—C3—C4179.4 (2)C13—C14—C15—C100.1 (3)
C1—C2—C3—C80.7 (2)C13—C14—C15—S1179.84 (17)
C8—C3—C4—C50.7 (3)C11—C10—C15—C140.2 (3)
C2—C3—C4—C5179.1 (2)C11—C10—C15—S1179.77 (17)
C3—C4—C5—C60.7 (3)O3—S1—C15—C1411.35 (19)
C4—C5—C6—C70.4 (4)O2—S1—C15—C14144.39 (17)
C5—C6—C7—C80.0 (3)N1—S1—C15—C14102.03 (17)
C6—C7—C8—C30.1 (3)O3—S1—C15—C10168.59 (16)
C6—C7—C8—N1178.25 (19)O2—S1—C15—C1035.55 (19)
C4—C3—C8—C70.3 (3)N1—S1—C15—C1078.03 (18)
C2—C3—C8—C7179.11 (18)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C3–C8 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7···O30.932.443.014 (3)120
C9—H9···O20.932.342.869 (3)116
C4—H4···O1i0.932.513.343 (3)150
C12—H12···Cg2ii0.932.713.638 (3)174
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1, z+1.
 

Funding information

Rectoría and Vicerrectoría de Investigación, Universidad de Costa Rica are acknowledged for funding the purchase of a D8 Venture SC XRD.

References

First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabezas, J. A. & Arias, M. L. (2019). Int J. Curr. Res, 11, 9097–9101.  CAS Google Scholar
First citationInman, M. & Moody, C. J. (2013). Chem. Sci. 4, 29–41.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahboobi, S., Uecker, A., Sellmer, A., Cénac, C., Höcher, H., Pongratz, H., Eichhorn, E., Hufsky, H., Trümpler, A., Sicker, M., Heidel, F., Fischer, T., Stocking, C., Elz, S., Böhmer, F. D. & Dove, S. (2006). J. Med. Chem. 49, 3101–3115.  CrossRef PubMed CAS Google Scholar
First citationNaik, N. H., Urmode, T. D., Sikder, A. K. & Kusurkar, R. S. (2013). Aust. J. Chem. 66, 1112–1114.  CrossRef CAS Google Scholar
First citationPalani, K., Ponnuswamy, M. N., Jaisankar, P., Srinivasan, P. C. & Nethaji, M. (2006). Acta Cryst. E62, o437–o439.  CSD CrossRef IUCr Journals Google Scholar
First citationSakamoto, T., Kondo, Y., Iwashita, S., Nagano, T. & Yamanaka, H. (1988). Chem. Pharm. Bull. 36, 1305–1308.  CrossRef CAS Google Scholar
First citationSakthivel, P., SethuSankar, K., Jaisankar, P. & Joseph, P. S. (2006). Acta Cryst. E62, o1199–o1201.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSonogashira, K., Tohda, Y. & Hagihara, N. (1975). Tetrahedron Lett. 16, 4467–4470.  CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds