organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-{[4-(Di­methyl­amino)­phen­yl]ethyn­yl}pyrimidine–1,2,3,5-tetra­fluoro-4,6-di­iodo­benzene (1/2)

crossmark logo

aChemistry and Biochemistry Department, Missouri State University, Springfield MO 65897, USA, and bDepartment of Chemistry, University of Wisconsin-Stevens Point, 2101 Fourth Avenue, Stevens Point, WI 54481, USA
*Correspondence e-mail: ericbosch@missouristate.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 March 2022; accepted 6 April 2022; online 12 April 2022)

The treatment of 5-{[4-(di­methyl­amino)­phen­yl]ethyn­yl}pyrimidine with a threefold excess of 1,2,3,5-tetra­fluoro-4,6-di­iodo­benzene in di­chloro­methane solution led to the formation of the unexpected 1:2 title co-crystal, C14H13N3·2CF4I2. In the extended structure, two unique C—I⋯N halogen bonds from one of the 1,2,3,5-tetra­fluoro-4,6-di­iodo­benzene mol­ecules to the pyrimidine N atoms of the 5-{[4-(di­methyl­amino)­phen­yl]ethyn­yl}pyrimidine mol­ecule generate [110] chains and layers of these chains are π-stacked along the a-axis direction. The second 1,2,3,5-tetra­fluoro-4,6-di­iodo­benzene mol­ecule resides in channels formed parallel to the a-axis direction between stacks of 5-{[4-(di­methyl­amino)­phen­yl]ethyn­yl}pyrimidine mol­ecules and inter­acts with them via C—I⋯π(alkyne) contacts.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Halogen bonding is now a widely studied and accepted non-covalent inter­action wherein a halogen atom, most commonly iodine, inter­acts with a Lewis base as halogen-bond acceptor (Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]). This inter­action has predictable geometry and has accordingly been incorporated in strategies for the self-assembly of multicomponent mol­ecular solids (Mir et al., 2019[Mir, N. A., Dubey, R. & Desiraju, G. R. (2019). Acc. Chem. Res. 52, 2210-2220.]). Among the most studied ditopic halogen-bond donors are the three isomeric di­iodo­tetra­fluoro­benzenes as the halogen-bond donor ability is increased by substitution of iodo­benzenes with electronegative fluorine atoms (Roper et al., 2010[Roper, L. C., Präsang, C., Whitwood, A. C. & Bruce, D. W. (2010). CrystEngComm, 12, 3382-3384.]). Herein we report a rare example of inclusion of a 1,2,3,5-tetra­fluoro-4,6-di­iodo­benzene mol­ecule in a co-crystal in which one of the 1,2,3,5-tetra­fluoro-4,6-di­iodo­benzene mol­ecules does not inter­act with the primary Lewis base.

In the 1:2 co-crystal (Fig. 1[link]) formed between 5-{[4-(di­methyl­amino)­phen­yl]ethyn­yl}pyrimidine, C14H13N3 (APEP) and 1,2,3,5-tetra­fluoro-4,6-di­iodo­benzene, C6F4I2 (13DIFP), only one of the 13DIFP mol­ecules is halogen bonded to the APEP. The APEP and the halogen-bonded 13DIFP mol­ecule are essentially coplanar: the inter­planar angle between the pyrimidine ring and the amino­phenyl ring is 4.24 (15)° and the inter­planar angle between the pyrimidine ring and the halogen-bonded 13DIFP mol­ecule is 6.63 (15)°. The two unique C—I⋯N halogen bonds that combine to form a zigzag alternating halogen-bonded chain, shown in Fig. 2[link], have separations of I1⋯N1 and I2⋯N2i = 2.853 (2) and 2.901 (2) Å and angles C15—I1⋯N1 and C17—I2⋯N2i = 174.8 (9) and 173.8 (8)°, respectively [symmetry code: (i) −1 + x, −1 + y, z]. These distances and angles are similar to those previously reported in the 1:1 co-crystal formed between these two mol­ecules of 2.920 (2) Å and 178.27 (6)° (Nwachukwu et al., 2020[Nwachukwu, C. I., Patton, L. J., Bowling, N. P. & Bosch, E. (2020). Acta Cryst. C76, 458-467.]). The Hirshfeld surface (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) of the halogen-bonded 13DIFB mol­ecules shown in Fig. 3[link] highlights these two inter­actions.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at 50% and the halogen bond shown as a dashed line.
[Figure 2]
Figure 2
Partial view of a chain of halogen-bonded APEP and 13DIFB mol­ecules with pairs of 13DIFB mol­ecules shown between APEP mol­ecules.
[Figure 3]
Figure 3
Hirshfeld surface highlighting the halogen-bonding inter­actions to pyrimidine APEP.

In the extended structure, the APEP mol­ecules are offset π-stacked in a head-to-tail manner such that the halogen-bonded 13DIFB mol­ecules are also alternately π-stacked as shown in Fig. 4[link]. With this arrangement, the second non-halogen-bonded 13DIFB mol­ecule is located as a π-stacked pair in channels that lie parallel to the a-axis direction (Fig. 4[link]).

[Figure 4]
Figure 4
View of crystal packing of the title compound viewed along the a-axis direction.

The pair of loosely π-stacked 13DIFB mol­ecules inter­act with the surrounding mol­ecules as shown in the Hirshfeld surface plot in Fig. 5[link]. This highlights a close I⋯π contact to a neighboring alkyne group with I4⋯C6ii and I4⋯C5ii [symmetry code: (ii) 1 − x, 2 − y, 1 − z] separations of 3.276 (3) and 3.316 (3) Å, respectively. These are significantly less than the sum of the van der Waals radii of 3.68 Å at 89 and 90%, respectively. The second I atom has close I⋯F contacts to two neighboring 13DIFB mol­ecules with I3⋯F6iii and I3⋯F3iv separations of 3.2142 (17) and 3.30129 (15) Å as compared to the sum of the van der Waals radii of 3.38 Å [symmetry codes: (iii) 1 + x, y, z; (iv) x, 1 + y, −1 + z].

[Figure 5]
Figure 5
Hirshfeld surface highlighting the close contacts to the solvate 13DIFB mol­ecule.

Synthesis and crystallization

The pyrimidine APEP (8.3 mg) was dissolved in 2 ml of di­chloro­methane in a screw-cap vial. Three equivalents of 13DIFB were added and the solvent was allowed to slowly evaporate until crystals formed when the vial was sealed to prevent further loss of solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C14H13N3·2C6F4I2
Mr 1026.99
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.1574 (5), 12.0339 (6), 14.0667 (7)
α, β, γ (°) 91.989 (1), 96.924 (1), 102.996 (1)
V3) 1496.35 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.24
Crystal size (mm) 0.52 × 0.28 × 0.20
 
Data collection
Diffractometer Bruker APEXI CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.518, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 19410, 6594, 6107
Rint 0.023
(sin θ/λ)max−1) 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.046, 1.09
No. of reflections 6594
No. of parameters 372
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.69, −0.56
Computer programs: SMART and SAINT (Bruker, 2014[Bruker (2014). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and X-SEED (Barbour, 2020[Barbour, L. J. (2020). J. Appl. Cryst. 53, 1141-1146.]).

Structural data


Computing details top

Data collection: SMART (Bruker, 2014); cell refinement: SMART (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: X-SEED (Barbour, 2020); software used to prepare material for publication: X-SEED (Barbour, 2020).

5-{[4-(Dimethylamino)phenyl]ethynyl}pyrimidine bis(1,2,3,5-tetrafluoro-4,6-diiodobenzene) top
Crystal data top
C14H13N3·2C6F4I2Z = 2
Mr = 1026.99F(000) = 948
Triclinic, P1Dx = 2.279 Mg m3
a = 9.1574 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.0339 (6) ÅCell parameters from 9920 reflections
c = 14.0667 (7) Åθ = 2.3–27.1°
α = 91.989 (1)°µ = 4.24 mm1
β = 96.924 (1)°T = 100 K
γ = 102.996 (1)°Irregular cut block, colourless
V = 1496.35 (13) Å30.52 × 0.28 × 0.20 mm
Data collection top
Bruker APEXI CCD
diffractometer
6594 independent reflections
Radiation source: fine-focus sealed tube6107 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.3660 pixels mm-1θmax = 27.1°, θmin = 2.2°
phi and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1515
Tmin = 0.518, Tmax = 0.746l = 1718
19410 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0204P)2 + 0.5553P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
6594 reflectionsΔρmax = 0.69 e Å3
372 parametersΔρmin = 0.56 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.49323 (2)0.32275 (2)0.93280 (2)0.02074 (5)
F10.21264 (18)0.11841 (13)0.85256 (11)0.0253 (4)
N10.6063 (3)0.52854 (19)0.84397 (16)0.0228 (5)
C10.5221 (3)0.5211 (2)0.75898 (19)0.0203 (6)
H10.4423920.4552140.7420230.024*
I20.02348 (2)0.12845 (2)0.89212 (2)0.01983 (5)
F20.23180 (18)0.14839 (13)1.08815 (11)0.0245 (3)
N20.7521 (3)0.70747 (19)0.80721 (16)0.0228 (5)
C20.7169 (3)0.6221 (2)0.8639 (2)0.0215 (6)
H20.7767410.6286080.9248030.026*
I31.23452 (2)0.97142 (2)0.34507 (2)0.02347 (5)
F30.47643 (17)0.00515 (14)1.18660 (11)0.0240 (3)
N30.0078 (3)0.5104 (2)0.17456 (18)0.0288 (6)
C30.6668 (3)0.6985 (2)0.7221 (2)0.0229 (6)
H30.6894190.7574180.6792870.027*
I40.70571 (2)1.18190 (2)0.39166 (2)0.01903 (5)
F40.58522 (17)0.20184 (14)1.12306 (11)0.0256 (4)
C40.5460 (3)0.6057 (2)0.69404 (19)0.0176 (5)
F51.03550 (16)1.15246 (12)0.36927 (11)0.0219 (3)
C50.4513 (3)0.5954 (2)0.6039 (2)0.0203 (6)
F60.56017 (17)0.91354 (14)0.39466 (14)0.0306 (4)
C60.3687 (3)0.5801 (2)0.5296 (2)0.0199 (5)
F70.67827 (19)0.72914 (14)0.38368 (16)0.0402 (5)
C70.2714 (3)0.5631 (2)0.44040 (19)0.0192 (5)
F80.97066 (19)0.75248 (14)0.36268 (14)0.0338 (4)
C80.2961 (3)0.6402 (2)0.36941 (19)0.0200 (5)
H80.3782420.7052950.3810430.024*
C90.2039 (3)0.6246 (2)0.2823 (2)0.0203 (6)
H90.2238360.6787280.2352260.024*
C100.0812 (3)0.5295 (2)0.2628 (2)0.0202 (5)
C110.0557 (3)0.4526 (2)0.3355 (2)0.0236 (6)
H110.0271980.3879580.3246170.028*
C120.1480 (3)0.4689 (2)0.4219 (2)0.0239 (6)
H120.1278700.4156190.4695810.029*
C130.0052 (4)0.6021 (3)0.1095 (2)0.0473 (10)
H13A0.0257220.6669050.1385730.071*
H13B0.0601740.5750190.0489780.071*
H13C0.1103690.6262970.0971300.071*
C140.1542 (3)0.4298 (3)0.1657 (3)0.0378 (8)
H14A0.1396520.3538620.1809130.057*
H14B0.2049860.4265490.0999270.057*
H14C0.2163830.4548090.2104280.057*
C150.4006 (3)0.1649 (2)0.98576 (19)0.0193 (5)
C160.2772 (3)0.0880 (2)0.93589 (18)0.0179 (5)
C170.2162 (3)0.0179 (2)0.96755 (18)0.0174 (5)
C180.2848 (3)0.0463 (2)1.05331 (19)0.0186 (5)
C190.4083 (3)0.0263 (2)1.10472 (18)0.0176 (5)
C200.4647 (3)0.1320 (2)1.07115 (19)0.0188 (5)
C211.0096 (3)0.9535 (2)0.36423 (18)0.0171 (5)
C220.9461 (3)1.0476 (2)0.37107 (18)0.0162 (5)
C230.7959 (3)1.0382 (2)0.38056 (18)0.0167 (5)
C240.7064 (3)0.9287 (2)0.3845 (2)0.0201 (6)
C250.7661 (3)0.8338 (2)0.3796 (2)0.0246 (6)
C260.9165 (3)0.8463 (2)0.3691 (2)0.0207 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02265 (9)0.01765 (9)0.01957 (9)0.00020 (7)0.00227 (7)0.00274 (7)
F10.0277 (9)0.0261 (9)0.0181 (8)0.0016 (7)0.0051 (7)0.0070 (7)
N10.0279 (13)0.0181 (11)0.0208 (12)0.0025 (10)0.0016 (10)0.0021 (9)
C10.0222 (14)0.0143 (12)0.0224 (14)0.0011 (10)0.0016 (11)0.0002 (10)
I20.01730 (9)0.02003 (9)0.01945 (9)0.00009 (7)0.00027 (7)0.00083 (7)
F20.0278 (9)0.0195 (8)0.0241 (8)0.0002 (6)0.0041 (7)0.0074 (6)
N20.0216 (12)0.0219 (12)0.0209 (12)0.0008 (9)0.0009 (10)0.0006 (10)
C20.0225 (14)0.0240 (14)0.0178 (13)0.0069 (11)0.0000 (11)0.0014 (11)
I30.01585 (9)0.02765 (10)0.03083 (10)0.00845 (7)0.00992 (7)0.00949 (8)
F30.0245 (8)0.0328 (9)0.0135 (7)0.0048 (7)0.0003 (6)0.0060 (7)
N30.0262 (13)0.0250 (13)0.0287 (13)0.0008 (10)0.0095 (11)0.0027 (11)
C30.0248 (14)0.0195 (13)0.0227 (14)0.0020 (11)0.0021 (11)0.0031 (11)
I40.02028 (9)0.01707 (9)0.02182 (9)0.00801 (7)0.00392 (7)0.00142 (7)
F40.0234 (8)0.0289 (9)0.0181 (8)0.0044 (7)0.0027 (7)0.0003 (7)
C40.0180 (13)0.0159 (12)0.0190 (13)0.0052 (10)0.0018 (10)0.0016 (10)
F50.0188 (8)0.0159 (7)0.0305 (9)0.0005 (6)0.0071 (7)0.0045 (6)
C50.0225 (14)0.0145 (12)0.0236 (14)0.0043 (10)0.0027 (11)0.0004 (11)
F60.0127 (8)0.0240 (9)0.0551 (12)0.0025 (6)0.0081 (8)0.0028 (8)
C60.0207 (13)0.0178 (13)0.0222 (14)0.0080 (10)0.0021 (11)0.0034 (11)
F70.0230 (9)0.0150 (8)0.0807 (15)0.0028 (7)0.0133 (9)0.0034 (9)
C70.0176 (13)0.0199 (13)0.0211 (13)0.0081 (10)0.0004 (11)0.0032 (11)
F80.0280 (9)0.0184 (8)0.0603 (12)0.0122 (7)0.0135 (9)0.0039 (8)
C80.0162 (13)0.0177 (13)0.0238 (14)0.0012 (10)0.0009 (11)0.0037 (11)
C90.0195 (13)0.0187 (13)0.0222 (14)0.0026 (10)0.0034 (11)0.0019 (11)
C100.0182 (13)0.0196 (13)0.0225 (14)0.0064 (10)0.0023 (11)0.0016 (11)
C110.0206 (14)0.0186 (13)0.0270 (15)0.0023 (11)0.0020 (12)0.0013 (11)
C120.0274 (15)0.0175 (13)0.0259 (15)0.0032 (11)0.0023 (12)0.0031 (11)
C130.057 (2)0.041 (2)0.0320 (18)0.0005 (17)0.0209 (17)0.0090 (16)
C140.0239 (16)0.0400 (19)0.0421 (19)0.0014 (14)0.0120 (14)0.0023 (15)
C150.0206 (13)0.0180 (13)0.0188 (13)0.0020 (10)0.0052 (11)0.0017 (10)
C160.0189 (13)0.0228 (13)0.0127 (12)0.0072 (11)0.0004 (10)0.0006 (10)
C170.0147 (12)0.0193 (13)0.0167 (13)0.0014 (10)0.0017 (10)0.0020 (10)
C180.0191 (13)0.0188 (13)0.0181 (13)0.0026 (10)0.0064 (10)0.0026 (10)
C190.0173 (13)0.0235 (14)0.0125 (12)0.0051 (10)0.0026 (10)0.0021 (10)
C200.0166 (13)0.0218 (13)0.0158 (13)0.0001 (10)0.0017 (10)0.0018 (10)
C210.0126 (12)0.0230 (13)0.0168 (13)0.0052 (10)0.0041 (10)0.0036 (10)
C220.0166 (12)0.0167 (12)0.0147 (12)0.0022 (10)0.0020 (10)0.0017 (10)
C230.0166 (12)0.0166 (12)0.0184 (13)0.0061 (10)0.0034 (10)0.0003 (10)
C240.0123 (12)0.0212 (13)0.0264 (14)0.0025 (10)0.0038 (11)0.0014 (11)
C250.0205 (14)0.0151 (13)0.0370 (17)0.0007 (11)0.0053 (12)0.0018 (12)
C260.0233 (14)0.0149 (13)0.0256 (14)0.0068 (11)0.0052 (11)0.0031 (11)
Geometric parameters (Å, º) top
I1—C152.099 (3)F8—C261.336 (3)
F1—C161.348 (3)C8—C91.382 (4)
N1—C21.330 (3)C8—H80.9500
N1—C11.331 (3)C9—C101.405 (4)
C1—C41.390 (4)C9—H90.9500
C1—H10.9500C10—C111.408 (4)
I2—C172.099 (2)C11—C121.375 (4)
F2—C181.347 (3)C11—H110.9500
N2—C21.328 (3)C12—H120.9500
N2—C31.335 (4)C13—H13A0.9800
C2—H20.9500C13—H13B0.9800
I3—C212.074 (2)C13—H13C0.9800
F3—C191.350 (3)C14—H14A0.9800
N3—C101.382 (3)C14—H14B0.9800
N3—C131.451 (4)C14—H14C0.9800
N3—C141.456 (4)C15—C201.382 (4)
C3—C41.392 (4)C15—C161.386 (4)
C3—H30.9500C16—C171.383 (4)
I4—C232.086 (2)C17—C181.382 (4)
F4—C201.343 (3)C18—C191.371 (4)
C4—C51.432 (4)C19—C201.383 (4)
F5—C221.344 (3)C21—C261.387 (4)
C5—C61.196 (4)C21—C221.389 (4)
F6—C241.336 (3)C22—C231.378 (4)
C6—C71.428 (4)C23—C241.394 (4)
F7—C251.341 (3)C24—C251.376 (4)
C7—C81.391 (4)C25—C261.377 (4)
C7—C121.401 (4)
C2—N1—C1116.2 (2)N3—C14—H14A109.5
N1—C1—C4122.7 (2)N3—C14—H14B109.5
N1—C1—H1118.7H14A—C14—H14B109.5
C4—C1—H1118.7N3—C14—H14C109.5
C2—N2—C3116.5 (2)H14A—C14—H14C109.5
N2—C2—N1126.5 (3)H14B—C14—H14C109.5
N2—C2—H2116.7C20—C15—C16117.2 (2)
N1—C2—H2116.7C20—C15—I1120.76 (19)
C10—N3—C13118.6 (2)C16—C15—I1122.0 (2)
C10—N3—C14118.7 (3)F1—C16—C17118.4 (2)
C13—N3—C14116.1 (3)F1—C16—C15118.2 (2)
N2—C3—C4122.2 (3)C17—C16—C15123.4 (2)
N2—C3—H3118.9C18—C17—C16116.9 (2)
C4—C3—H3118.9C18—C17—I2121.17 (19)
C1—C4—C3115.8 (2)C16—C17—I2121.86 (19)
C1—C4—C5121.1 (2)F2—C18—C19118.1 (2)
C3—C4—C5123.1 (2)F2—C18—C17120.1 (2)
C6—C5—C4176.0 (3)C19—C18—C17121.8 (2)
C5—C6—C7179.2 (3)F3—C19—C18120.7 (2)
C8—C7—C12117.9 (2)F3—C19—C20119.9 (2)
C8—C7—C6120.9 (2)C18—C19—C20119.4 (2)
C12—C7—C6121.2 (3)F4—C20—C15120.5 (2)
C9—C8—C7121.6 (2)F4—C20—C19118.3 (2)
C9—C8—H8119.2C15—C20—C19121.2 (2)
C7—C8—H8119.2C26—C21—C22117.7 (2)
C8—C9—C10120.7 (3)C26—C21—I3120.75 (19)
C8—C9—H9119.6C22—C21—I3121.58 (19)
C10—C9—H9119.6F5—C22—C23118.5 (2)
N3—C10—C9121.2 (3)F5—C22—C21118.6 (2)
N3—C10—C11121.4 (2)C23—C22—C21122.9 (2)
C9—C10—C11117.4 (2)C22—C23—C24117.4 (2)
C12—C11—C10121.5 (2)C22—C23—I4121.67 (19)
C12—C11—H11119.3C24—C23—I4120.92 (19)
C10—C11—H11119.3F6—C24—C25118.3 (2)
C11—C12—C7120.9 (3)F6—C24—C23120.6 (2)
C11—C12—H12119.6C25—C24—C23121.2 (2)
C7—C12—H12119.6F7—C25—C24120.3 (2)
N3—C13—H13A109.5F7—C25—C26119.8 (2)
N3—C13—H13B109.5C24—C25—C26119.8 (2)
H13A—C13—H13B109.5F8—C26—C25118.5 (2)
N3—C13—H13C109.5F8—C26—C21120.5 (2)
H13A—C13—H13C109.5C25—C26—C21121.0 (2)
H13B—C13—H13C109.5
 

Acknowledgements

EB acknowledges the Missouri State University Provost Incentive Fund for the purchase of the X-ray diffractometer used in this contribution.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. 1606556).

References

First citationBarbour, L. J. (2020). J. Appl. Cryst. 53, 1141–1146.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2014). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMir, N. A., Dubey, R. & Desiraju, G. R. (2019). Acc. Chem. Res. 52, 2210–2220.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNwachukwu, C. I., Patton, L. J., Bowling, N. P. & Bosch, E. (2020). Acta Cryst. C76, 458–467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoper, L. C., Präsang, C., Whitwood, A. C. & Bruce, D. W. (2010). CrystEngComm, 12, 3382–3384.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds