organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Hy­dr­oxy­ethyl­ammonium [2-(2,6-di­chloro­anilino)phen­yl]acetate monohydrate

crossmark logo

aInstitute of Bioorganic Chemistry, UzAS, M. Ulugbek Str., 83, 100125, Tashkent, Uzbekistan
*Correspondence e-mail: li_izotova@mail.ru

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 24 March 2022; accepted 26 April 2022; online 28 April 2022)

In the solid-state structure of the title compound derived from diclofenac, C2H8NO+·C14H10Cl2NO2·H2O, the asymmetric unit contains one cation, one anion and a water mol­ecule, all in general positions. A complex network of hydrogen bonds is present in the crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The pharmaceutical diclofenac (D) is widely used as a non-steroidal anti-inflammatory drug, to treat pain and inflammatory diseases (Skoutakis et al., 1988[Skoutakis, V. A., Carter, C. A., Mickle, T. R., Smith, V. H., Arkin, C. R., Alissandratos, J. & Petty, D. E. (1988). Drug Intell. Clin. Pharm. 22, 850-859.]; Moser et al., 1990[Moser, P., Sallmann, A. & Wiesenberg, I. (1990). J. Med. Chem. 33, 2358-2368.]). The Cambridge Structural Database (CSD version 5.42, last update February 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) includes crystallographic data for 50 entries with the term `diclofenac'. Among them, there are 21 entries where diclofenac is present in the form of a salt, and in three entries, diclofenac forms salts with aliphatic amines: with (R) and (S)-phenyl­ethyl­ammonium (Lemmerer et al., 2010[Lemmerer, A., Bourne, S. A., Caira, M. R., Cotton, J., Hendricks, U., Peinke, L. C. & Trollope, L. (2010). CrystEngComm, 12, 3634-3641.]), with diethyl ammonium (Castellari et al., 2001[Castellari, C., Comelli, F. & Ottani, S. (2001). Acta Cryst. C57, 437-438.]) and with tris­(2-ammonio­eth­yl)amine (Lynch et al., 2003[Lynch, D. E., Bening, A. S. & Parsons, S. (2003). Acta Cryst. E59, o1314-o1317.]). In this article, we present another complex in the form of a diclofenac salt with an amino-containing compound, namely mono­ethano­lamine. Ethano­lamine is always present in significant qu­anti­ties in the human and animal body with a complete protein diet. Its formation occurs during the deca­rboxylation of serine, and in one of the metabolic variants, it turns into glycine (the simplest aliphatic amino acid; Wishart et al., 2007[Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. Ch., Young, N., Cheng, D., Jewell, K., Arndt, D., Sawhney, S., Fung, C., Nikolai, L., Lewis, M., Coutouly, M. A., Forsythe, I., Tang, P., Shrivastava, S., Jeroncic, K., Stothard, P., Amegbey, G., Block, D., Hau, D. D., Wagner, J., Miniaci, J., Clements, M., Gebremedhin, M., Guo, N., Zhang, Y., Duggan, G. E., Macinnis, G. D., Weljie, A. M., Dowlatabadi, R., Bamforth, F., Clive, D., Greiner, R., Li, L., Marrie, T., Sykes, B. D., Vogel, H. J. & Querengesser, L. (2007). Nucleic Acids Res. 35, D521-D526.]). In addition, mono­ethano­lamine is used in some cosmetic products (Knaak et al., 1997[Knaak, J. B., Leung, H. W., Stott, W. T., Busch, J. & Bilsky, J. (1997). Rev. Environ. Contam. Toxicol. 149, 1-86.]). Therefore, the inter­action of these compounds seems to be inter­esting for investigation.

The crystal structure of the title compound has one mono­ethano­lamine (MEA) cation, one 2-(2,6-di­chloro­anilino)phenyl acetic acid or diclofenac (D) anion, and one water mol­ecule in the asymmetric unit, and crystallizes in space group P21/c (Fig. 1[link]). The diclofenac anion is stabilized by one intra­molecular hydrogen bond between the amino group and atom O1 of the carb­oxy­lic group: N1—H1⋯O1 [2.884 (3) Å, 128.9°; see Table 1[link]], which forms a seven-membered ring with graph-set notation S(7) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). The dihedral angle between the two benzene rings in D is 60.2 (2)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 2.27 2.884 (3) 129
N2—H2A⋯O2i 0.89 1.96 2.811 (4) 160
N2—H2B⋯O1Wii 0.89 2.15 2.947 (4) 148
N2—H2C⋯O1iii 0.89 1.92 2.802 (3) 169
O3—H3A⋯O1W 0.82 1.96 2.770 (4) 168
O1W—H1WB⋯O2 0.85 1.87 2.690 (3) 161
O1W—H1WA⋯O1iv 0.85 2.00 2.809 (3) 158
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, y-1, z]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Perspective view of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at 40% probability level. The dashed lines represent hydrogen bonds within the asymmetric unit.

The ionic form of the title compound serves as a building block for the supra­molecular architecture. In the crystal, the building blocks form screw-like chains along the b-axis direction, due to the crystallographic twofold screw axis, via N2—H2B⋯O1Wii hydrogen bond [2.947 (4) Å, symmetry code: (ii) −x, y − [{1\over 2}], −z + [{3\over 2}]; Fig. 2[link] and Table 1[link]]. The chains are further consolidated into two-dimensional layers through N—H⋯O and O—H⋯O hydrogen bonds. These layers propagate parallel to the (100) plane, where the chains are related by the glide plane c [O1W⋯O1iv, symmetry code: (iv) x, −y + [{3\over 2}], z + [{1\over 2}]; 2.809 (3) Å] and the inversion centre [N2... O2i, symmetry code: (i) −x, −y + 1, −z + 1, 2.811 (4) Å, Fig. 2[link]]. The layers are linked by Y—XCg π–ring inter­actions, for C3—H3 and C7—Cl1 bonds, for which the XCg separations and γ angles range from 3.533 to 3.958 Å and from 25.03 to 28.79°.

[Figure 2]
Figure 2
Packing diagram of the title compound, viewed down b axis. The hydrogen bonds are shown as dashed lines.

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface analysis was carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.]). The Hirshfeld surface mapped over dnorm shows the expected bright-red spots near atoms O1 and O2, involved in the O—H⋯O and N—H⋯O hydrogen-bonding inter­actions (Fig. 3[link]). Fingerprint plots (Fig. 4[link]) reveal that H⋯H, H⋯C/C⋯H, H⋯Cl/Cl⋯H and H⋯O/O⋯H inter­actions make the greatest contributions to the surface contacts (Table 1[link]), while H⋯N/N⋯H, C⋯C and O⋯O contacts are much less significant.

[Figure 3]
Figure 3
The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (31.0%), H⋯C/C⋯H (26.3%) and H⋯Cl/Cl⋯H (25%) inter­actions.
[Figure 4]
Figure 4
Full two-dimensional fingerprint plots for the title compound, showing all inter­actions (a), and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯Cl/Cl⋯H, (e) H⋯O/O⋯H, (f) H⋯N/N⋯H, (g) C⋯C and (h) O⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from a given point on the Hirshfeld surface depicted in Fig. 3[link].

Synthesis and crystallization

To a solution of 0.1 g (0.52 mmol) of D in 4 ml of ethanol, 32 µL of mono­ethano­lamine was added. The mixture was kept in an ultrasonic bath (30 kHz) at 298 K for 5 min. The solution was then placed in a loosely closed bottle and kept at 298 K for 10 days. The precipitated prismatic crystals were selected for the single-crystal X-ray diffraction analysis.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C2H8NO+·C14H10Cl2NO2·H2O
Mr 375.24
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 19.1257 (10), 9.3864 (5), 10.0502 (6)
β (°) 103.546 (6)
V3) 1754.05 (17)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.53
Crystal size (mm) 0.31 × 0.28 × 0.1
 
Data collection
Diffractometer Agilent Technologies Xcalibur, Ruby
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.356, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12416, 3621, 2431
Rint 0.078
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.134, 1.01
No. of reflections 3621
No. of parameters 222
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.35
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP (Siemens, 1994), Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

2-Hydroxyethylammonium [2-(2,6-dichloroanilino)phenyl]acetate monohydrate top
Crystal data top
C2H8NO+·C14H10Cl2NO2·H2OF(000) = 784
Mr = 375.24Dx = 1.421 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 19.1257 (10) ÅCell parameters from 2166 reflections
b = 9.3864 (5) Åθ = 4.7–73.9°
c = 10.0502 (6) ŵ = 3.53 mm1
β = 103.546 (6)°T = 293 K
V = 1754.05 (17) Å3Prism, colourless
Z = 40.31 × 0.28 × 0.1 mm
Data collection top
Agilent Technologies Xcalibur, Ruby
diffractometer
2431 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.078
/w scansθmax = 76.5°, θmin = 4.8°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 2324
Tmin = 0.356, Tmax = 1.000k = 116
12416 measured reflectionsl = 1212
3621 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: mixed
wR(F2) = 0.134H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0614P)2]
where P = (Fo2 + 2Fc2)/3
3621 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Refinement. All hydrogen atoms were placed in idealized positions and refined as riding to their carrier atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.46202 (4)0.95109 (8)0.76764 (8)0.0441 (2)
Cl20.24250 (4)1.20690 (9)0.40514 (9)0.0500 (2)
O10.15000 (11)0.9926 (2)0.5897 (2)0.0472 (6)
O1W0.07192 (13)0.6316 (3)0.8457 (2)0.0558 (6)
H1WA0.1036240.6122150.9179820.084*
H1WB0.0853920.7106540.8187320.084*
N10.30390 (13)0.9959 (2)0.6226 (3)0.0379 (6)
H10.2693511.0411810.6452040.045*
O20.08825 (11)0.8748 (3)0.7146 (2)0.0592 (7)
N20.03573 (14)0.1808 (3)0.4921 (3)0.0446 (6)
H2A0.0033710.1487910.4196470.054*
H2B0.0156510.1874990.5632840.054*
H2C0.0726700.1205860.5120280.054*
O30.07091 (17)0.3857 (3)0.6928 (3)0.0762 (9)
H3A0.0738830.4644000.7291460.114*
C20.42880 (15)1.0634 (3)0.6305 (3)0.0327 (6)
C140.14604 (15)0.9162 (3)0.6906 (3)0.0371 (7)
C10.35476 (15)1.0754 (3)0.5751 (3)0.0322 (6)
C120.26283 (14)0.7823 (3)0.7158 (3)0.0342 (6)
C70.30532 (15)0.8463 (3)0.6360 (3)0.0342 (6)
C80.34720 (15)0.7613 (3)0.5707 (3)0.0382 (7)
H80.3741950.8033230.5154220.046*
C60.33381 (16)1.1786 (3)0.4739 (3)0.0359 (6)
C130.21653 (15)0.8708 (3)0.7865 (3)0.0383 (7)
H13A0.2430620.9551660.8248150.046*
H13B0.2060670.8163170.8615070.046*
C90.34871 (16)0.6146 (3)0.5877 (3)0.0447 (8)
H90.3777680.5591210.5460370.054*
C50.38298 (18)1.2604 (3)0.4257 (3)0.0430 (7)
H50.3669911.3287210.3584050.052*
C40.45510 (18)1.2404 (3)0.4774 (3)0.0459 (8)
H40.4882291.2926530.4429360.055*
C30.47873 (16)1.1423 (3)0.5811 (3)0.0408 (7)
H30.5276981.1294210.6174320.049*
C110.26455 (17)0.6344 (3)0.7292 (3)0.0436 (8)
H110.2364290.5907230.7814730.052*
C100.30743 (18)0.5508 (3)0.6661 (3)0.0488 (8)
H100.3082090.4523070.6768390.059*
C160.06160 (19)0.3234 (3)0.4609 (4)0.0515 (8)
H16A0.0208000.3853040.4261790.062*
H16B0.0886730.3144900.3908950.062*
C150.1082 (2)0.3869 (4)0.5871 (4)0.0593 (10)
H15A0.1523560.3324530.6147850.071*
H15B0.1206990.4839990.5689250.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0413 (4)0.0418 (4)0.0442 (4)0.0030 (3)0.0002 (3)0.0044 (3)
Cl20.0424 (4)0.0481 (5)0.0552 (5)0.0075 (3)0.0025 (4)0.0094 (4)
O10.0363 (12)0.0534 (14)0.0497 (13)0.0053 (10)0.0057 (10)0.0195 (11)
O1W0.0600 (15)0.0558 (16)0.0496 (15)0.0060 (12)0.0087 (12)0.0047 (11)
N10.0349 (13)0.0309 (13)0.0525 (15)0.0053 (10)0.0196 (12)0.0055 (11)
O20.0325 (12)0.0799 (18)0.0625 (16)0.0032 (11)0.0054 (11)0.0235 (13)
N20.0409 (14)0.0497 (16)0.0404 (15)0.0072 (12)0.0037 (12)0.0030 (12)
O30.106 (2)0.0641 (18)0.0689 (18)0.0190 (17)0.0403 (17)0.0214 (14)
C20.0376 (15)0.0276 (14)0.0331 (15)0.0030 (12)0.0087 (12)0.0018 (12)
C140.0317 (15)0.0414 (17)0.0364 (17)0.0012 (13)0.0043 (13)0.0003 (13)
C10.0351 (15)0.0267 (14)0.0347 (15)0.0014 (11)0.0080 (12)0.0029 (11)
C120.0283 (14)0.0355 (16)0.0351 (16)0.0000 (12)0.0003 (12)0.0050 (12)
C70.0300 (14)0.0310 (15)0.0377 (16)0.0010 (11)0.0002 (12)0.0027 (12)
C80.0328 (15)0.0415 (17)0.0389 (17)0.0001 (13)0.0056 (13)0.0017 (13)
C60.0373 (15)0.0322 (15)0.0374 (16)0.0013 (12)0.0071 (13)0.0013 (12)
C130.0352 (15)0.0428 (17)0.0351 (16)0.0017 (13)0.0044 (13)0.0068 (13)
C90.0415 (17)0.0377 (17)0.0498 (19)0.0045 (14)0.0004 (15)0.0099 (15)
C50.057 (2)0.0333 (16)0.0410 (18)0.0019 (14)0.0157 (16)0.0027 (13)
C40.0494 (19)0.0401 (18)0.053 (2)0.0111 (15)0.0226 (17)0.0036 (15)
C30.0346 (16)0.0380 (17)0.0505 (19)0.0056 (13)0.0115 (14)0.0067 (14)
C110.0441 (18)0.0387 (17)0.0447 (19)0.0035 (14)0.0039 (15)0.0110 (14)
C100.052 (2)0.0313 (16)0.058 (2)0.0001 (14)0.0025 (17)0.0041 (15)
C160.059 (2)0.0442 (19)0.049 (2)0.0028 (16)0.0073 (17)0.0046 (15)
C150.055 (2)0.064 (2)0.058 (2)0.0107 (18)0.0104 (18)0.0099 (19)
Geometric parameters (Å, º) top
Cl1—C21.734 (3)C7—C81.398 (4)
Cl2—C61.741 (3)C8—C91.387 (4)
O1—C141.259 (3)C8—H80.9300
O1W—H1WA0.8501C6—C51.387 (4)
O1W—H1WB0.8504C13—H13A0.9700
N1—C11.396 (3)C13—H13B0.9700
N1—C71.410 (3)C9—C101.377 (4)
N1—H10.8600C9—H90.9300
O2—C141.248 (3)C5—C41.368 (5)
N2—C161.486 (4)C5—H50.9300
N2—H2A0.8900C4—C31.384 (4)
N2—H2B0.8900C4—H40.9300
N2—H2C0.8900C3—H30.9300
O3—C151.412 (4)C11—C101.391 (5)
O3—H3A0.8200C11—H110.9300
C2—C31.389 (4)C10—H100.9300
C2—C11.400 (4)C16—C151.494 (5)
C14—C131.523 (4)C16—H16A0.9700
C1—C61.394 (4)C16—H16B0.9700
C12—C111.395 (4)C15—H15A0.9700
C12—C71.403 (4)C15—H15B0.9700
C12—C131.508 (4)
H1WA—O1W—H1WB104.5C14—C13—H13A109.0
C1—N1—C7124.4 (2)C12—C13—H13B109.0
C1—N1—H1117.8C14—C13—H13B109.0
C7—N1—H1117.8H13A—C13—H13B107.8
C16—N2—H2A109.5C10—C9—C8120.3 (3)
C16—N2—H2B109.5C10—C9—H9119.8
H2A—N2—H2B109.5C8—C9—H9119.8
C16—N2—H2C109.5C4—C5—C6119.8 (3)
H2A—N2—H2C109.5C4—C5—H5120.1
H2B—N2—H2C109.5C6—C5—H5120.1
C15—O3—H3A109.5C5—C4—C3120.0 (3)
C3—C2—C1122.1 (3)C5—C4—H4120.0
C3—C2—Cl1117.0 (2)C3—C4—H4120.0
C1—C2—Cl1120.9 (2)C4—C3—C2119.5 (3)
O2—C14—O1123.9 (3)C4—C3—H3120.2
O2—C14—C13118.9 (3)C2—C3—H3120.2
O1—C14—C13117.2 (3)C10—C11—C12121.4 (3)
C6—C1—N1121.1 (3)C10—C11—H11119.3
C6—C1—C2115.9 (3)C12—C11—H11119.3
N1—C1—C2122.8 (3)C9—C10—C11119.6 (3)
C11—C12—C7118.5 (3)C9—C10—H10120.2
C11—C12—C13120.4 (3)C11—C10—H10120.2
C7—C12—C13121.1 (3)N2—C16—C15110.0 (3)
C8—C7—C12119.7 (3)N2—C16—H16A109.7
C8—C7—N1121.6 (3)C15—C16—H16A109.7
C12—C7—N1118.7 (3)N2—C16—H16B109.7
C9—C8—C7120.4 (3)C15—C16—H16B109.7
C9—C8—H8119.8H16A—C16—H16B108.2
C7—C8—H8119.8O3—C15—C16109.2 (3)
C5—C6—C1122.5 (3)O3—C15—H15A109.8
C5—C6—Cl2118.4 (2)C16—C15—H15A109.8
C1—C6—Cl2119.1 (2)O3—C15—H15B109.8
C12—C13—C14112.7 (2)C16—C15—H15B109.8
C12—C13—H13A109.0H15A—C15—H15B108.3
C7—N1—C1—C6131.3 (3)C2—C1—C6—Cl2176.9 (2)
C7—N1—C1—C252.7 (4)C11—C12—C13—C14100.2 (3)
C3—C2—C1—C64.4 (4)C7—C12—C13—C1480.1 (3)
Cl1—C2—C1—C6174.1 (2)O2—C14—C13—C12117.9 (3)
C3—C2—C1—N1179.4 (3)O1—C14—C13—C1261.2 (4)
Cl1—C2—C1—N12.1 (4)C7—C8—C9—C101.8 (4)
C11—C12—C7—C80.9 (4)C1—C6—C5—C40.3 (5)
C13—C12—C7—C8179.4 (3)Cl2—C6—C5—C4179.8 (2)
C11—C12—C7—N1179.8 (3)C6—C5—C4—C32.4 (5)
C13—C12—C7—N10.1 (4)C5—C4—C3—C20.9 (5)
C1—N1—C7—C816.6 (4)C1—C2—C3—C42.6 (4)
C1—N1—C7—C12164.1 (3)Cl1—C2—C3—C4176.0 (2)
C12—C7—C8—C92.0 (4)C7—C12—C11—C100.3 (4)
N1—C7—C8—C9178.7 (3)C13—C12—C11—C10179.3 (3)
N1—C1—C6—C5179.3 (3)C8—C9—C10—C110.5 (5)
C2—C1—C6—C53.0 (4)C12—C11—C10—C90.5 (5)
N1—C1—C6—Cl20.6 (4)N2—C16—C15—O353.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.272.884 (3)129
N2—H2A···O2i0.891.962.811 (4)160
N2—H2B···O1Wii0.892.152.947 (4)148
N2—H2C···O1iii0.891.922.802 (3)169
O3—H3A···O1W0.821.962.770 (4)168
O1W—H1WB···O20.851.872.690 (3)161
O1W—H1WA···O1iv0.852.002.809 (3)158
Symmetry codes: (i) x, y+1, z+1; (ii) x, y1/2, z+3/2; (iii) x, y1, z; (iv) x, y+3/2, z+1/2.
 

Funding information

Funding for this research was provided by: Uzbek Academy of Sciences.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationCastellari, C., Comelli, F. & Ottani, S. (2001). Acta Cryst. C57, 437–438.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKnaak, J. B., Leung, H. W., Stott, W. T., Busch, J. & Bilsky, J. (1997). Rev. Environ. Contam. Toxicol. 149, 1–86.  CAS PubMed Google Scholar
First citationLemmerer, A., Bourne, S. A., Caira, M. R., Cotton, J., Hendricks, U., Peinke, L. C. & Trollope, L. (2010). CrystEngComm, 12, 3634–3641.  Web of Science CSD CrossRef CAS Google Scholar
First citationLynch, D. E., Bening, A. S. & Parsons, S. (2003). Acta Cryst. E59, o1314–o1317.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoser, P., Sallmann, A. & Wiesenberg, I. (1990). J. Med. Chem. 33, 2358–2368.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSkoutakis, V. A., Carter, C. A., Mickle, T. R., Smith, V. H., Arkin, C. R., Alissandratos, J. & Petty, D. E. (1988). Drug Intell. Clin. Pharm. 22, 850–859.  CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17.5. University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. Ch., Young, N., Cheng, D., Jewell, K., Arndt, D., Sawhney, S., Fung, C., Nikolai, L., Lewis, M., Coutouly, M. A., Forsythe, I., Tang, P., Shrivastava, S., Jeroncic, K., Stothard, P., Amegbey, G., Block, D., Hau, D. D., Wagner, J., Miniaci, J., Clements, M., Gebremedhin, M., Guo, N., Zhang, Y., Duggan, G. E., Macinnis, G. D., Weljie, A. M., Dowlatabadi, R., Bamforth, F., Clive, D., Greiner, R., Li, L., Marrie, T., Sykes, B. D., Vogel, H. J. & Querengesser, L. (2007). Nucleic Acids Res. 35, D521–D526.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds