metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Bis(4-amino­pyridine-κN)bis­­(quin­ox­aline-2,3-di­thiol­ato-κ2S,S′)platinum(IV) di­methyl sulfoxide monosolvate

crossmark logo

aAustin College, 900 N Grand, Sherman, TX 75090, USA, and bDepartment of Chemistry, University of North Texas, 1508 W. Mulberry, Denton, TX, 76201, USA
*Correspondence e-mail: bsmucker@austincollege.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 18 January 2022; accepted 28 January 2022; online 3 February 2022)

In the structure of the title solvated complex, [Pt(C8H4N2S2)2(C5H6N2)2]·C2H6OS or trans-[Pt(4-ap)2(qdt)2]·dmso (4-ap = 4-amino­pyridyl, C5H6N2; qdt = quinoxaline-2,3-di­thiol­ate, C8H4N2S2; dmso = dimethyl sulfoxide, C2H6OS) the centrosymmetric complex exhibits Pt—S distances in agreement with other PtIV—S bond lengths found in platinum(IV) di­thiol­ene complexes. The qdt ligands have inter­molecular inter­actions with an amine hydrogen atom on a 4-ap ligand (hydrogen bonding) and have sandwich ππ inter­actions with a neighboring qdt ligand.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title trans-[Pt(4-ap)2(qdt)2] ((4-ap = 4-amino­pyridyl; qdt = quinoxaline-2,3-di­thiol­ate) complex is located about an inversion center and has the central PtIV atom in a pseudo-octa­hedral N2S4 coordination environment (Fig. 1[link]). In contrast to the shorter PtII—S distances in salts of [Pt(mnt)2]2– (mnt = maleo­nitrile­dithiol­ate), such as 2.295 (2) and 2.2958 (19) Å with the tetra­phenyl­phosphine cation (Begum et al., 2014[Begum, A., Tripathi, K. M. & Sarkar, S. (2014). Chem. Eur. J. 20, 16657-16661.]) or 2.290 (2) and 2.282 (2) Å with the tetra­butyl­ammonium cation (Güntner et al., 1989[Güntner, W., Gliemann, G., Klement, U. & Zabel, M. (1989). Inorg. Chim. Acta, 165, 51-56.]), the PtIV—S distances of the title coordination compound are 2.3514 (11) Å (Pt1—S1) and 2.3495 (11) Å (Pt1—S2). These distances are similar to those in other platinum(IV) complexes containing bis­(di­thiol­ene) ligands and either trans-bis­(NH3) co-ligands, with Pt—S distances of 2.3434 (8) and 2.3461 (7) Å (Siddiqui et al., 2020[Siddiqui, M. J., Nesterov, V. V., Steidle, M. T. & Smucker, B. W. (2020). IUCrData, 5, x200980.]), or trans-bis­(PMe3) co-ligands, with a Pt—S distance of 2.3619 (8) Å (Chandrasekaran et al., 2014[Chandrasekaran, P., Greene, A. F., Lillich, K., Capone, S., Mague, J. T., DeBeer, S. & Donahue, J. P. (2014). Inorg. Chem. 53, 9192-9205.]). The Pt1—N1 distance in the title complex is 2.063 (4) Å, which is similar to the Pt—N distance of 2.055 (2) Å in the aforementioned trans-[Pt(NH3)2(mnt)2] complex (Siddiqui et al., 2020[Siddiqui, M. J., Nesterov, V. V., Steidle, M. T. & Smucker, B. W. (2020). IUCrData, 5, x200980.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title complex drawn with displacement ellipsoids at the 50% probability level. Non-labeled atoms are generated by symmetry operation −x + 1, −y + 1, −z. The disordered dmso solvate mol­ecule is shown with only one orientation.

The chelating qdt ligands of this platinum(IV) complex are slightly canted relative to the platinum-sulfur atoms, with a 15.59 (11)° angle between the plane of all the non-H atoms of the qdt ligand versus the plane containing Pt, S1, S2, S1 (1 − x, 1 − y, −z) and S2 (1 − x, 1 − y, −z). This tilt enables sandwich packing between inter­molecular qdt ligands with a distance between centroids of the two qdt rings of 3.610 Å (Fig. 2[link]), within the range of ππ inter­actions (Sinnokrot et al., 2002[Sinnokrot, M. O., Valeev, E. F. & Sherrill, C. D. (2002). J. Am. Chem. Soc. 124, 10887-10893.]). The basicity of the nitro­gen atom on the coordinating qdt ligand (Cummings & Eisenberg, 1995b[Cummings, S. D. & Eisenberg, R. (1995b). Inorg. Chem. 34, 3396-3403.]) makes it suitable for hydrogen bonding. This is observed between the amine hydrogen H4A and the N3 (x, y + 1, z) atom on a neighboring qdt ligand, with a distance of 2.23 Å (Table 1[link], Fig. 2[link]). N—H⋯O hydrogen bonding is observed between the complex and the O atom of the dmso solvent mol­ecule.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N3i 0.87 2.30 3.085 (7) 151
N4—H4B⋯O1ii 0.87 2.28 3.045 (11) 148
Symmetry codes: (i) x, y+1, z; (ii) [x-1, y, z].
[Figure 2]
Figure 2
The packing of the complexes showing the hydrogen bonding between the H4A amine hydrogen atom and the N3 (x, y + 1, z) atom on a neighboring qdt ligand as well as the sandwich orientation between adjacent qdt ligands and the distance (Å) between centroids of two qdt rings. Displacement ellipsoids are drawn at the 50% probability level; the dmso solvate is omitted for clarity.

Synthesis and crystallization

An orange solution of the anionic qdt ligand was prepared by combining 9.3 mg of 2,3-quinoxalinedi­thiol (Cummings & Eisenberg, 1995a[Cummings, S. D. & Eisenberg, R. (1995a). Inorg. Chem. 34, 2007-2014.]) and 7.7 mg of NaHCO3 with 25 ml of water and heating at 333 K for 5 h. Upon cooling to room temperature, the orange solution was added, via cannula, to a Schlenk flask containing 34.3 mg of [Pt(4-ap)4](BF4)2, prepared in a similar manner to [Pt(pyz)4](BF4)2 (Derry et al., 2008[Derry, P. J., Wang, X. & Smucker, B. W. (2008). Acta Cryst. E64, m1449.]), and 7.9 mg of NaHCO3. The solution was stirred for 7 d with the exclusion of light. The resulting orange–brown solid was collected via vacuum filtration in air and washed with 3 × 10 ml of water and 15 ml of diethyl ether to give 7.4 mg (28% for [Pt(4-ap)2(qdt)]). Oxidation of platinum(II) to platinum(IV) likely occurred upon prolonged air exposure of the compound in solution (Geiger et al., 2001[Geiger, W. E., Barrière, F., LeSuer, R. J. & Trupia, S. (2001). Inorg. Chem. 40, 2472-2473.]; Siddiqui et al., 2020[Siddiqui, M. J., Nesterov, V. V., Steidle, M. T. & Smucker, B. W. (2020). IUCrData, 5, x200980.]).

Light-yellow crystals of the title compound were grown by slow diffusion of water into a dmso solution of the platinum complex.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The dmso solvent mol­ecule is disordered about an inversion center and shows half occupancy.

Table 2
Experimental details

Crystal data
Chemical formula [Pt(C8H4N2S2)2(C5H6N2)2]·C2H6OS
Mr 845.96
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 7.74108 (18), 9.8690 (2), 10.47021 (18)
α, β, γ (°) 99.6963 (16), 102.9798 (17), 100.9394 (19)
V3) 746.43 (3)
Z 1
Radiation type Cu Kα
μ (mm−1) 12.39
Crystal size (mm) 0.03 × 0.02 × 0.01
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Yarnton, England.])
Tmin, Tmax 0.671, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15557, 3130, 3097
Rint 0.046
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.11
No. of reflections 3130
No. of parameters 218
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.33, −1.21
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Yarnton, England.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

trans-Bis(4-aminopyridine-κN)bis(quinoxaline-2,3-dithiolato-κ2S,S')platinum(IV) dimethyl sulfoxide monosolvate top
Crystal data top
[Pt(C8H4N2S2)2(C5H6N2)2]·C2H6OSZ = 1
Mr = 845.96F(000) = 416
Triclinic, P1Dx = 1.882 Mg m3
a = 7.74108 (18) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.8690 (2) ÅCell parameters from 10134 reflections
c = 10.47021 (18) Åθ = 4.7–77.2°
α = 99.6963 (16)°µ = 12.39 mm1
β = 102.9798 (17)°T = 200 K
γ = 100.9394 (19)°Plate, clear light yellow
V = 746.43 (3) Å30.03 × 0.02 × 0.01 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3130 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3097 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 10.0000 pixels mm-1θmax = 77.7°, θmin = 4.4°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
k = 1212
Tmin = 0.671, Tmax = 1.000l = 1113
15557 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0335P)2 + 2.9739P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max < 0.001
S = 1.11Δρmax = 1.33 e Å3
3130 reflectionsΔρmin = 1.21 e Å3
218 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00059 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.5000000.5000000.0000000.02644 (11)
S10.81596 (15)0.56972 (12)0.10110 (12)0.0312 (2)
S20.46861 (16)0.38023 (12)0.17238 (12)0.0317 (2)
N10.4661 (5)0.6809 (4)0.1128 (4)0.0302 (8)
N21.0148 (6)0.4701 (4)0.2823 (4)0.0340 (9)
N30.7159 (6)0.2878 (4)0.3258 (4)0.0326 (9)
N40.4058 (8)1.0482 (5)0.3409 (5)0.0487 (12)
H4A0.4592401.1211620.3164720.058*
H4B0.2916081.0485430.3299400.058*
C10.8464 (6)0.4641 (5)0.2183 (5)0.0286 (9)
C21.0401 (7)0.3838 (5)0.3712 (5)0.0344 (10)
C31.2200 (8)0.3870 (6)0.4442 (6)0.0429 (12)
H31.3192190.4498730.4340330.051*
C41.2469 (9)0.2974 (7)0.5296 (6)0.0485 (14)
H41.3646340.3003430.5778820.058*
C51.0979 (9)0.2013 (6)0.5445 (6)0.0475 (14)
H51.1179970.1400230.6018200.057*
C60.9238 (9)0.1967 (6)0.4759 (5)0.0441 (13)
H60.8261800.1320570.4860980.053*
C70.8918 (7)0.2901 (5)0.3894 (5)0.0344 (10)
C80.6925 (7)0.3742 (5)0.2431 (5)0.0297 (9)
C90.5791 (8)0.8073 (5)0.1265 (6)0.0392 (12)
H90.6725400.8113040.0837820.047*
C100.5625 (8)0.9305 (6)0.2007 (6)0.0419 (12)
H100.6435361.0156210.2072140.050*
C110.4242 (8)0.9282 (5)0.2661 (5)0.0377 (11)
C120.3087 (8)0.7949 (6)0.2519 (6)0.0408 (12)
H120.2149270.7871830.2942590.049*
C130.3334 (7)0.6769 (5)0.1764 (5)0.0344 (10)
H130.2550250.5901510.1686600.041*
S31.0758 (5)1.0293 (4)0.0794 (4)0.0557 (8)0.5
O11.0037 (13)0.9818 (10)0.1907 (10)0.058 (2)0.5
C1A1.000 (3)0.8879 (17)0.058 (2)0.072 (5)0.5
H1AA1.0619930.8149970.0401180.108*0.5
H1AB1.0235160.9186710.1354330.108*0.5
H1AC0.8706580.8514960.0732360.108*0.5
C1B0.950 (3)1.150 (2)0.030 (2)0.072 (5)0.5
H1BA0.8219921.1071330.0085880.108*0.5
H1BB0.9792221.1777890.0478990.108*0.5
H1BC0.9797971.2324010.1017680.108*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02549 (16)0.02164 (15)0.02864 (16)0.00156 (10)0.00498 (10)0.00351 (10)
S10.0253 (5)0.0292 (5)0.0350 (6)0.0001 (4)0.0036 (4)0.0095 (4)
S20.0294 (6)0.0311 (6)0.0341 (6)0.0030 (4)0.0081 (5)0.0111 (5)
N10.032 (2)0.0230 (18)0.035 (2)0.0056 (15)0.0114 (17)0.0015 (15)
N20.033 (2)0.033 (2)0.033 (2)0.0061 (17)0.0046 (17)0.0048 (17)
N30.040 (2)0.0248 (19)0.030 (2)0.0051 (16)0.0079 (17)0.0045 (16)
N40.055 (3)0.031 (2)0.060 (3)0.008 (2)0.025 (3)0.000 (2)
C10.029 (2)0.025 (2)0.029 (2)0.0064 (17)0.0039 (18)0.0018 (17)
C20.041 (3)0.033 (2)0.029 (2)0.012 (2)0.006 (2)0.0035 (19)
C30.040 (3)0.047 (3)0.036 (3)0.014 (2)0.003 (2)0.002 (2)
C40.055 (4)0.054 (3)0.030 (3)0.025 (3)0.004 (2)0.001 (2)
C50.066 (4)0.041 (3)0.033 (3)0.022 (3)0.001 (3)0.009 (2)
C60.062 (4)0.033 (3)0.034 (3)0.012 (2)0.007 (3)0.006 (2)
C70.044 (3)0.029 (2)0.026 (2)0.010 (2)0.003 (2)0.0031 (18)
C80.034 (2)0.025 (2)0.028 (2)0.0053 (18)0.0069 (19)0.0029 (18)
C90.040 (3)0.025 (2)0.052 (3)0.001 (2)0.022 (2)0.003 (2)
C100.045 (3)0.028 (2)0.051 (3)0.001 (2)0.020 (3)0.001 (2)
C110.040 (3)0.031 (2)0.040 (3)0.008 (2)0.010 (2)0.004 (2)
C120.038 (3)0.035 (3)0.049 (3)0.003 (2)0.018 (2)0.005 (2)
C130.032 (2)0.028 (2)0.041 (3)0.0019 (19)0.011 (2)0.004 (2)
S30.0454 (16)0.0553 (18)0.0601 (19)0.0016 (14)0.0131 (14)0.0125 (15)
O10.053 (5)0.062 (6)0.065 (6)0.013 (4)0.023 (4)0.020 (5)
C1A0.078 (13)0.045 (9)0.108 (16)0.036 (8)0.035 (11)0.020 (9)
C1B0.087 (13)0.063 (11)0.087 (12)0.055 (10)0.026 (10)0.026 (9)
Geometric parameters (Å, º) top
Pt1—S12.3514 (11)C4—C51.404 (10)
Pt1—S1i2.3514 (11)C5—H50.9300
Pt1—S22.3495 (11)C5—C61.366 (9)
Pt1—S2i2.3495 (11)C6—H60.9300
Pt1—N12.063 (4)C6—C71.413 (7)
Pt1—N1i2.063 (4)C9—H90.9300
S1—C11.743 (5)C9—C101.373 (7)
S2—C81.741 (5)C10—H100.9300
N1—C91.346 (6)C10—C111.393 (8)
N1—C131.342 (6)C11—C121.407 (7)
N2—C11.310 (6)C12—H120.9300
N2—C21.371 (7)C12—C131.363 (7)
N3—C71.369 (7)C13—H130.9300
N3—C81.323 (6)S3—O11.505 (10)
N4—H4A0.8662S3—C1A1.728 (19)
N4—H4B0.8665S3—C1B1.752 (16)
N4—C111.355 (7)C1A—H1AA0.9600
C1—C81.446 (7)C1A—H1AB0.9600
C2—C31.421 (8)C1A—H1AC0.9600
C2—C71.402 (8)C1B—H1BA0.9600
C3—H30.9300C1B—H1BB0.9600
C3—C41.370 (8)C1B—H1BC0.9600
C4—H40.9300
S1—Pt1—S1i180.0C5—C6—H6120.0
S2—Pt1—S188.43 (4)C5—C6—C7120.0 (6)
S2i—Pt1—S1i88.43 (4)C7—C6—H6120.0
S2—Pt1—S1i91.57 (4)N3—C7—C2121.3 (4)
S2i—Pt1—S191.57 (4)N3—C7—C6119.1 (5)
S2i—Pt1—S2180.0C2—C7—C6119.6 (5)
N1i—Pt1—S1i89.99 (12)N3—C8—S2116.7 (4)
N1i—Pt1—S190.01 (12)N3—C8—C1121.3 (4)
N1—Pt1—S189.99 (12)C1—C8—S2121.9 (4)
N1—Pt1—S1i90.01 (12)N1—C9—H9118.6
N1—Pt1—S290.33 (12)N1—C9—C10122.9 (5)
N1i—Pt1—S2i90.33 (12)C10—C9—H9118.6
N1—Pt1—S2i89.67 (12)C9—C10—H10120.0
N1i—Pt1—S289.67 (12)C9—C10—C11120.0 (5)
N1i—Pt1—N1180.0C11—C10—H10120.0
C1—S1—Pt1103.03 (16)N4—C11—C10121.2 (5)
C8—S2—Pt1102.34 (17)N4—C11—C12122.6 (5)
C9—N1—Pt1120.7 (3)C10—C11—C12116.2 (5)
C13—N1—Pt1121.6 (3)C11—C12—H12119.8
C13—N1—C9117.7 (4)C13—C12—C11120.5 (5)
C1—N2—C2117.3 (4)C13—C12—H12119.8
C8—N3—C7117.1 (4)N1—C13—C12122.7 (5)
H4A—N4—H4B108.6N1—C13—H13118.7
C11—N4—H4A109.7C12—C13—H13118.7
C11—N4—H4B110.6O1—S3—C1A106.8 (8)
N2—C1—S1116.9 (4)O1—S3—C1B104.6 (9)
N2—C1—C8121.8 (4)C1A—S3—C1B103.1 (11)
C8—C1—S1121.3 (4)S3—C1A—H1AA109.5
N2—C2—C3119.6 (5)S3—C1A—H1AB109.5
N2—C2—C7121.1 (5)S3—C1A—H1AC109.5
C7—C2—C3119.3 (5)H1AA—C1A—H1AB109.5
C2—C3—H3120.0H1AA—C1A—H1AC109.5
C4—C3—C2120.0 (6)H1AB—C1A—H1AC109.5
C4—C3—H3120.0S3—C1B—H1BA109.5
C3—C4—H4119.8S3—C1B—H1BB109.5
C3—C4—C5120.4 (6)S3—C1B—H1BC109.5
C5—C4—H4119.8H1BA—C1B—H1BB109.5
C4—C5—H5119.6H1BA—C1B—H1BC109.5
C6—C5—C4120.7 (5)H1BB—C1B—H1BC109.5
C6—C5—H5119.6
Pt1—S1—C1—N2173.6 (3)C2—C3—C4—C50.6 (8)
Pt1—S1—C1—C86.3 (4)C3—C2—C7—N3177.0 (5)
Pt1—S2—C8—N3166.6 (3)C3—C2—C7—C62.5 (7)
Pt1—S2—C8—C116.4 (4)C3—C4—C5—C60.9 (9)
Pt1—N1—C9—C10179.9 (5)C4—C5—C6—C70.5 (9)
Pt1—N1—C13—C12179.8 (4)C5—C6—C7—N3177.3 (5)
S1—C1—C8—S27.3 (6)C5—C6—C7—C22.2 (8)
S1—C1—C8—N3175.8 (4)C7—N3—C8—S2175.4 (3)
N1—C9—C10—C110.1 (10)C7—N3—C8—C11.7 (7)
N2—C1—C8—S2172.8 (4)C7—C2—C3—C41.1 (8)
N2—C1—C8—N34.1 (7)C8—N3—C7—C22.3 (7)
N2—C2—C3—C4177.7 (5)C8—N3—C7—C6178.2 (5)
N2—C2—C7—N34.2 (7)C9—N1—C13—C120.7 (8)
N2—C2—C7—C6176.3 (5)C9—C10—C11—N4179.4 (6)
N4—C11—C12—C13179.5 (6)C9—C10—C11—C120.6 (9)
C1—N2—C2—C3179.4 (4)C10—C11—C12—C130.7 (9)
C1—N2—C2—C71.8 (7)C11—C12—C13—N10.0 (9)
C2—N2—C1—S1177.8 (3)C13—N1—C9—C100.7 (8)
C2—N2—C1—C82.2 (7)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···N3ii0.872.303.085 (7)151
N4—H4B···O1iii0.872.283.045 (11)148
Symmetry codes: (ii) x, y+1, z; (iii) x1, y, z.
 

Funding information

Funding for this research was provided by: National Science Foundation (grant No. 1726652 to UNT); Welch Foundation (grant No. AD-0007 to Austin College).

References

First citationBegum, A., Tripathi, K. M. & Sarkar, S. (2014). Chem. Eur. J. 20, 16657–16661.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChandrasekaran, P., Greene, A. F., Lillich, K., Capone, S., Mague, J. T., DeBeer, S. & Donahue, J. P. (2014). Inorg. Chem. 53, 9192–9205.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationCummings, S. D. & Eisenberg, R. (1995a). Inorg. Chem. 34, 2007–2014.  CrossRef CAS Web of Science Google Scholar
First citationCummings, S. D. & Eisenberg, R. (1995b). Inorg. Chem. 34, 3396–3403.  CrossRef CAS Web of Science Google Scholar
First citationDerry, P. J., Wang, X. & Smucker, B. W. (2008). Acta Cryst. E64, m1449.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeiger, W. E., Barrière, F., LeSuer, R. J. & Trupia, S. (2001). Inorg. Chem. 40, 2472–2473.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGüntner, W., Gliemann, G., Klement, U. & Zabel, M. (1989). Inorg. Chim. Acta, 165, 51–56.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, M. J., Nesterov, V. V., Steidle, M. T. & Smucker, B. W. (2020). IUCrData, 5, x200980.  Google Scholar
First citationSinnokrot, M. O., Valeev, E. F. & Sherrill, C. D. (2002). J. Am. Chem. Soc. 124, 10887–10893.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds