organic compounds
2-Hydroxybenzenaminium acetate
aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Département de Chimie, Université des Frères Mentouri, Constantine-1, 25017 Constantine, Algeria, and bCentre Universitaire Abd El Hafid Boussouf, Mila, 43000 Mila, Algeria
*Correspondence e-mail: nesrine.benarous@umc.edu.dz
In the title molecular salt, C6H8NO+·C2H3O2−, the cations and anions are linked by O—H⋯O and N—H⋯O hydrogen bonds, generating a three-dimensional network.
CCDC reference: 2149479
Structure description
In recent years, substituted anilines and their derivatives have been studied extensively for applications as antibacterials and in non-linear optical systems (Vivek & Murugakoothan, 2014). Aminophenols containing equal stoichiometries of –OH, and –NH2 groups have been widely studied to understand the supramolecular synthons existing in their assemblies (Allen et al., 1997; Dey et al., 2004).
In spite of this interest, there has been very little structural characterization of ortho-hydroxyanilinium salts. The structures reported include 2-hydroxyanilinium squarate (Yeşilel, 2007), 2-hydroxyanilinium hydrogen phthalate (Jagan & Sivakumar, 2009), 2-hydroxyanilinium 3,5-dinitrosalicylate (Smith et al., 2011), 2-hydroxyanilinium 3,5-dinitrobenzoate (Zhao, 2012), and 2-hydroxyanilinium 2-hydroxy-5-nitrobenzoate and 2-hydroxyanilinium 3,5-dinitrobenzoate (Jin & Wang, 2013).
Here, we report the structure of 2-hydroxybenzenaminium acetate, C6H8NO+·C2H3O2−, 1, obtained from the reaction of 2-hydroxyaniline and acetic acid. The molecular structure of the title compound is shown in Fig.1. The contains one 2-hydroxybenzenaminium cation and one acetate anion. The cation is protonated at the amine N atom (N1) and linked to the anion by an N—H⋯O hydrogen bond (Fig. 1 and Table 1).
The best planes through the 2-hydroxybenzenaminium cation and acetate anion are almost perpendicular to each other, subtending a dihedral angle of 79.23 (4)°. The C—OH bond length (C2—O1) of 1.3520 (9) Å is similar to that observed for structures containing 2-hydroxybenzenaminium as a cation [1.350 (3) Å; Jin & Wang, 2013]. All bond lengths and angles in the 2-hydroxybenzenaminium cation are within normal ranges (Zhao, 2012).
The presence of hydroxyl groups leads to the formation of intermolecular O1—H1⋯O3 hydrogen bonds. The O1—H1⋯O3 and N1—H1C⋯O3 cation–anion hydrogen bonds generate a succession of infinite chains [graph set C21(7)] that propagate in a zigzag manner along the c-axis direction (Fig. 2 and Table 1). The N1—H1A⋯O2 hydrogen bonds (Table 1) link the chains into corrugated layers parallel to the bc plane, which are formed by a succession of R65(22) rings (Fig. 2). N1—H1B⋯O2 hydrogen bonds lead to the formation of a three-dimensional network (Fig. 3). No significant π–π stacking interactions were observed, despite the presence of an aromatic ring in the cation.
Synthesis and crystallization
The title compound was prepared by heating of a mixture of 2-aminophenol (Alfa Aesar, purity 98%) and acetic acid. This mixture was obtained by dissolution and agitation under reflux for 3 h of 0.5 g of the 2-aminophenol and 0.27 g of acetic acid in a 1:1 stoichiometric ratio in a hot ethanolic solution (20 ml). After warming for a few minutes using a water bath, the solution was cooled and kept at room temperature. Within a few days, yellow needle-like crystals suitable for the X-ray analysis were obtained (yield 60%) by evaporation of the solution.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 2149479
https://doi.org/10.1107/S2414314622001122/vm4050sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622001122/vm4050Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314622001122/vm4050Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C6H8NO+·C2H3O2− | F(000) = 360 |
Mr = 169.18 | Dx = 1.322 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.9150 (2) Å | Cell parameters from 52927 reflections |
b = 7.2523 (2) Å | θ = 3.3–33.0° |
c = 11.9573 (3) Å | µ = 0.10 mm−1 |
β = 98.558 (2)° | T = 100 K |
V = 850.23 (4) Å3 | Prism, yellow |
Z = 4 | 0.1 × 0.1 × 0.08 mm |
Oxford Diffraction Xcalibur Sapphire2 CCD diffractometer | 2736 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.038 |
Absorption correction: integration (ABSORB; DeTitta, 1985) | θmax = 33.0°, θmin = 3.3° |
Tmin = 0.966, Tmax = 0.991 | h = −15→15 |
52913 measured reflections | k = −11→11 |
3105 independent reflections | l = −17→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0542P)2 + 0.320P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3105 reflections | Δρmax = 0.49 e Å−3 |
122 parameters | Δρmin = −0.27 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The hydrogen atoms of the NH3 and hydroxyl groups were localized in the difference-Fourier map and refined with Uiso(H) set to 1.5Ueq(O) or 1.2Ueq(N). All the other hydrogen atoms were placed in calculated positions with C—H = 0.95 Å for aromatic CH and C—H = 0.96 Å for CH3 and refined using a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C-aromatic) and Uiso(H) = 1.5Ueq(C-methyl)]. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.12872 (6) | 0.83288 (9) | 0.65994 (5) | 0.01629 (13) | |
H1 | 0.1381 (14) | 0.928 (2) | 0.6142 (12) | 0.024* | |
O2 | 0.09592 (7) | 0.29888 (8) | 0.65411 (5) | 0.01686 (13) | |
O3 | 0.15033 (7) | 0.10731 (8) | 0.52349 (5) | 0.01664 (13) | |
N1 | 0.12133 (7) | 0.56570 (9) | 0.81635 (5) | 0.01242 (13) | |
H1A | 0.1133 (12) | 0.4870 (19) | 0.7543 (10) | 0.015* | |
H1B | 0.0461 (12) | 0.6407 (18) | 0.8160 (10) | 0.015* | |
H1C | 0.1280 (12) | 0.4909 (18) | 0.8806 (10) | 0.015* | |
C3 | 0.35594 (9) | 0.93249 (12) | 0.74235 (7) | 0.01774 (16) | |
H3 | 0.358215 | 1.025256 | 0.686567 | 0.021* | |
C5 | 0.46510 (9) | 0.77468 (13) | 0.90970 (8) | 0.01994 (17) | |
H5 | 0.540747 | 0.760726 | 0.967953 | 0.024* | |
C4 | 0.46648 (9) | 0.91021 (13) | 0.82754 (8) | 0.02042 (17) | |
H4 | 0.543738 | 0.988327 | 0.829677 | 0.025* | |
C2 | 0.24139 (8) | 0.81883 (11) | 0.73847 (6) | 0.01328 (14) | |
C6 | 0.35205 (8) | 0.65957 (12) | 0.90596 (7) | 0.01606 (15) | |
H6 | 0.350402 | 0.566114 | 0.961414 | 0.019* | |
C1 | 0.24197 (8) | 0.68208 (10) | 0.82091 (6) | 0.01217 (14) | |
C8 | 0.13683 (8) | 0.26870 (11) | 0.56096 (6) | 0.01288 (14) | |
C7 | 0.16938 (9) | 0.42886 (12) | 0.48900 (8) | 0.01940 (16) | |
H7A | 0.096016 | 0.443787 | 0.425025 | 0.029* | |
H7B | 0.255531 | 0.405118 | 0.460661 | 0.029* | |
H7C | 0.177717 | 0.541719 | 0.534587 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0172 (3) | 0.0157 (3) | 0.0153 (3) | −0.0014 (2) | 0.0001 (2) | 0.0046 (2) |
O2 | 0.0220 (3) | 0.0142 (3) | 0.0157 (3) | −0.0024 (2) | 0.0073 (2) | −0.0030 (2) |
O3 | 0.0255 (3) | 0.0124 (3) | 0.0124 (2) | 0.0019 (2) | 0.0041 (2) | −0.00051 (19) |
N1 | 0.0147 (3) | 0.0109 (3) | 0.0120 (3) | −0.0006 (2) | 0.0030 (2) | 0.0005 (2) |
C3 | 0.0180 (3) | 0.0161 (3) | 0.0198 (4) | −0.0030 (3) | 0.0053 (3) | 0.0024 (3) |
C5 | 0.0150 (3) | 0.0222 (4) | 0.0217 (4) | −0.0007 (3) | −0.0003 (3) | 0.0001 (3) |
C4 | 0.0154 (3) | 0.0212 (4) | 0.0248 (4) | −0.0040 (3) | 0.0036 (3) | 0.0000 (3) |
C2 | 0.0149 (3) | 0.0121 (3) | 0.0131 (3) | 0.0002 (2) | 0.0032 (2) | 0.0005 (2) |
C6 | 0.0162 (3) | 0.0160 (3) | 0.0157 (3) | 0.0013 (3) | 0.0015 (3) | 0.0011 (3) |
C1 | 0.0133 (3) | 0.0110 (3) | 0.0126 (3) | −0.0001 (2) | 0.0033 (2) | 0.0000 (2) |
C8 | 0.0128 (3) | 0.0123 (3) | 0.0135 (3) | 0.0001 (2) | 0.0019 (2) | 0.0007 (2) |
C7 | 0.0213 (4) | 0.0154 (3) | 0.0229 (4) | 0.0008 (3) | 0.0078 (3) | 0.0063 (3) |
O1—H1 | 0.892 (14) | C5—H5 | 0.9500 |
O1—C2 | 1.3520 (9) | C5—C4 | 1.3912 (13) |
O2—C8 | 1.2600 (9) | C5—C6 | 1.3930 (12) |
O3—C8 | 1.2675 (9) | C4—H4 | 0.9500 |
N1—H1A | 0.930 (13) | C2—C1 | 1.3978 (11) |
N1—H1B | 0.922 (13) | C6—H6 | 0.9500 |
N1—H1C | 0.935 (12) | C6—C1 | 1.3863 (11) |
N1—C1 | 1.4583 (10) | C8—C7 | 1.5087 (11) |
C3—H3 | 0.9500 | C7—H7A | 0.9800 |
C3—C4 | 1.3903 (12) | C7—H7B | 0.9800 |
C3—C2 | 1.3985 (11) | C7—H7C | 0.9800 |
C2—O1—H1 | 109.4 (9) | O1—C2—C1 | 117.36 (7) |
H1A—N1—H1B | 112.7 (11) | C1—C2—C3 | 118.48 (7) |
H1A—N1—H1C | 106.7 (11) | C5—C6—H6 | 120.2 |
H1B—N1—H1C | 107.7 (10) | C1—C6—C5 | 119.66 (8) |
C1—N1—H1A | 110.9 (8) | C1—C6—H6 | 120.2 |
C1—N1—H1B | 108.5 (8) | C2—C1—N1 | 117.84 (7) |
C1—N1—H1C | 110.3 (7) | C6—C1—N1 | 120.74 (7) |
C4—C3—H3 | 119.9 | C6—C1—C2 | 121.40 (7) |
C4—C3—C2 | 120.24 (8) | O2—C8—O3 | 122.53 (7) |
C2—C3—H3 | 119.9 | O2—C8—C7 | 119.65 (7) |
C4—C5—H5 | 120.2 | O3—C8—C7 | 117.81 (7) |
C4—C5—C6 | 119.55 (8) | C8—C7—H7A | 109.5 |
C6—C5—H5 | 120.2 | C8—C7—H7B | 109.5 |
C3—C4—C5 | 120.66 (8) | C8—C7—H7C | 109.5 |
C3—C4—H4 | 119.7 | H7A—C7—H7B | 109.5 |
C5—C4—H4 | 119.7 | H7A—C7—H7C | 109.5 |
O1—C2—C3 | 124.17 (7) | H7B—C7—H7C | 109.5 |
O1—C2—C1—N1 | −0.22 (10) | C4—C3—C2—O1 | 178.84 (8) |
O1—C2—C1—C6 | −178.85 (7) | C4—C3—C2—C1 | −0.83 (12) |
C3—C2—C1—N1 | 179.48 (7) | C4—C5—C6—C1 | −0.39 (13) |
C3—C2—C1—C6 | 0.85 (12) | C2—C3—C4—C5 | 0.22 (13) |
C5—C6—C1—N1 | −178.83 (7) | C6—C5—C4—C3 | 0.40 (14) |
C5—C6—C1—C2 | −0.24 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3i | 0.894 (14) | 1.709 (14) | 2.6025 (9) | 177.8 (16) |
N1—H1A···O2 | 0.930 (13) | 1.807 (13) | 2.7251 (9) | 168.7 (12) |
N1—H1B···O2ii | 0.923 (12) | 1.891 (12) | 2.8019 (9) | 168.8 (11) |
N1—H1C···O3iii | 0.935 (12) | 1.834 (12) | 2.7531 (8) | 167.2 (12) |
C6—H6···O3iii | 0.95 | 2.55 | 3.2493 (11) | 131 |
Symmetry codes: (i) x, y+1, z; (ii) −x, y+1/2, −z+3/2; (iii) x, −y+1/2, z+1/2. |
Acknowledgements
The authors acknowledge CRM2, Institut Jean Barriol (UMR 7036 CNRS, University de Lorraine, France), for providing access to the experimental crystallographic facilities.
References
Allen, F. H., Hoy, V. J., Howard, J. A. K., Thalladi, V. R., Desiraju, G. R., Wilson, C. C. & McIntyre, G. J. (1997). J. Am. Chem. Soc. 119, 3477–3480. CSD CrossRef CAS Web of Science Google Scholar
DeTitta, G. T. (1985). J. Appl. Cryst. 18, 75–79. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dey, A., Desiraju, G. R., Mondal, R. & Howard, J. A. K. (2004). Chem. Commun. pp. 2528–2529. Web of Science CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Jagan, R. & Sivakumar, K. (2009). Acta Cryst. C65, o414–o418. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Jin, S. & Wang, D. (2013). J. Mol. Struct. 1037, 242–255. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2011). J. Chem. Crystallogr. 41, 1649–1662. Web of Science CSD CrossRef CAS Google Scholar
Vivek, P. & Murugakoothan, P. (2014). Appl. Phys. A, 115, 1139–1146. Web of Science CrossRef CAS Google Scholar
Yeşilel, O. Z., Paşaoğlub, H., Yılan, O. O. & Büyükgüngör, O. (2007). Z. Naturforsch. Teil B, 62, 823–828. Google Scholar
Zhao, Q. (2012). Acta Cryst. E68, o1535. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.