organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Hy­dr­oxy­benzenaminium acetate

crossmark logo

aUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Département de Chimie, Université des Frères Mentouri, Constantine-1, 25017 Constantine, Algeria, and bCentre Universitaire Abd El Hafid Boussouf, Mila, 43000 Mila, Algeria
*Correspondence e-mail: nesrine.benarous@umc.edu.dz

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 12 January 2022; accepted 31 January 2022; online 3 February 2022)

In the title molecular salt, C6H8NO+·C2H3O2, the cations and anions are linked by O—H⋯O and N—H⋯O hydrogen bonds, generating a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In recent years, substituted anilines and their derivatives have been studied extensively for applications as anti­bacterials and in non-linear optical systems (Vivek & Murugakoothan, 2014[Vivek, P. & Murugakoothan, P. (2014). Appl. Phys. A, 115, 1139-1146.]). Amino­phenols containing equal stoichiometries of –OH, and –NH2 groups have been widely studied to understand the supra­molecular synthons existing in their assemblies (Allen et al., 1997[Allen, F. H., Hoy, V. J., Howard, J. A. K., Thalladi, V. R., Desiraju, G. R., Wilson, C. C. & McIntyre, G. J. (1997). J. Am. Chem. Soc. 119, 3477-3480.]; Dey et al., 2004[Dey, A., Desiraju, G. R., Mondal, R. & Howard, J. A. K. (2004). Chem. Commun. pp. 2528-2529.]).

In spite of this inter­est, there has been very little structural characterization of ortho-hy­droxy­anilinium salts. The structures reported include 2-hy­droxy­anilinium squarate (Yeşilel, 2007[Yeşilel, O. Z., Paşaoğlub, H., Yılan, O. O. & Büyükgüngör, O. (2007). Z. Naturforsch. Teil B, 62, 823-828.]), 2-hy­droxy­anilinium hydrogen phthalate (Jagan & Sivakumar, 2009[Jagan, R. & Sivakumar, K. (2009). Acta Cryst. C65, o414-o418.]), 2-hy­droxy­anilinium 3,5-di­nitro­salicylate (Smith et al., 2011[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2011). J. Chem. Crystallogr. 41, 1649-1662.]), 2-hy­droxy­anilinium 3,5-di­nitro­benzoate (Zhao, 2012[Zhao, Q. (2012). Acta Cryst. E68, o1535.]), and 2-hy­droxy­anilinium 2-hy­droxy-5-nitro­benzoate and 2-hy­droxy­anilinium 3,5-di­nitro­benzoate (Jin & Wang, 2013[Jin, S. & Wang, D. (2013). J. Mol. Struct. 1037, 242-255.]).

Here, we report the structure of 2-hy­droxy­benzenaminium acetate, C6H8NO+·C2H3O2, 1, obtained from the reaction of 2-hy­droxy­aniline and acetic acid. The mol­ecular structure of the title compound is shown in Fig.1. The asymmetric unit contains one 2-hy­droxy­benzenaminium cation and one acetate anion. The cation is protonated at the amine N atom (N1) and linked to the anion by an N—H⋯O hydrogen bond (Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.894 (14) 1.709 (14) 2.6025 (9) 177.8 (16)
N1—H1A⋯O2 0.930 (13) 1.807 (13) 2.7251 (9) 168.7 (12)
N1—H1B⋯O2ii 0.923 (12) 1.891 (12) 2.8019 (9) 168.8 (11)
N1—H1C⋯O3iii 0.935 (12) 1.834 (12) 2.7531 (8) 167.2 (12)
C6—H6⋯O3iii 0.95 2.55 3.2493 (11) 131
Symmetry codes: (i) x, y+1, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Diagram showing the C6H8NO+ cation and C2H3O2 anion linked by an N—H⋯O inter­action (shown as a dashed line). Displacement ellipsoids are drawn at the 50% probability level.

The best planes through the 2-hy­droxy­benzenaminium cation and acetate anion are almost perpendicular to each other, subtending a dihedral angle of 79.23 (4)°. The C—OH bond length (C2—O1) of 1.3520 (9) Å is similar to that observed for structures containing 2-hy­droxy­benzenaminium as a cation [1.350 (3) Å; Jin & Wang, 2013[Jin, S. & Wang, D. (2013). J. Mol. Struct. 1037, 242-255.]]. All bond lengths and angles in the 2-hy­droxy­benzenaminium cation are within normal ranges (Zhao, 2012[Zhao, Q. (2012). Acta Cryst. E68, o1535.]).

The presence of hydroxyl groups leads to the formation of inter­molecular O1—H1⋯O3 hydrogen bonds. The O1—H1⋯O3 and N1—H1C⋯O3 cation–anion hydrogen bonds generate a succession of infinite chains [graph set C21(7)] that propagate in a zigzag manner along the c-axis direction (Fig. 2[link] and Table 1[link]). The N1—H1A⋯O2 hydrogen bonds (Table 1[link]) link the chains into corrugated layers parallel to the bc plane, which are formed by a succession of R65(22) rings (Fig. 2[link]). N1—H1B⋯O2 hydrogen bonds lead to the formation of a three-dimensional network (Fig. 3[link]). No significant ππ stacking inter­actions were observed, despite the presence of an aromatic ring in the cation.

[Figure 2]
Figure 2
A portion of one corrugated layer viewed along the b-axis direction. O—H\⋯O and N—H⋯O hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
View of two layers viewed along the b- and c-axis directions.

Synthesis and crystallization

The title compound was prepared by heating of a mixture of 2-amino­phenol (Alfa Aesar, purity 98%) and acetic acid. This mixture was obtained by dissolution and agitation under reflux for 3 h of 0.5 g of the 2-amino­phenol and 0.27 g of acetic acid in a 1:1 stoichiometric ratio in a hot ethano­lic solution (20 ml). After warming for a few minutes using a water bath, the solution was cooled and kept at room temperature. Within a few days, yellow needle-like crystals suitable for the X-ray analysis were obtained (yield 60%) by evaporation of the solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H8NO+·C2H3O2
Mr 169.18
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.9150 (2), 7.2523 (2), 11.9573 (3)
β (°) 98.558 (2)
V3) 850.23 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.10 × 0.10 × 0.08
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Sapphire2 CCD
Absorption correction Integration (ABSORB; DeTitta, 1985[DeTitta, G. T. (1985). J. Appl. Cryst. 18, 75-79.])
Tmin, Tmax 0.966, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 52913, 3105, 2736
Rint 0.038
(sin θ/λ)max−1) 0.766
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.05
No. of reflections 3105
No. of parameters 122
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.49, −0.27
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-Hydroxybenzenaminium acetate top
Crystal data top
C6H8NO+·C2H3O2F(000) = 360
Mr = 169.18Dx = 1.322 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.9150 (2) ÅCell parameters from 52927 reflections
b = 7.2523 (2) Åθ = 3.3–33.0°
c = 11.9573 (3) ŵ = 0.10 mm1
β = 98.558 (2)°T = 100 K
V = 850.23 (4) Å3Prism, yellow
Z = 40.1 × 0.1 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2 CCD
diffractometer
2736 reflections with I > 2σ(I)
φ and ω scansRint = 0.038
Absorption correction: integration
(ABSORB; DeTitta, 1985)
θmax = 33.0°, θmin = 3.3°
Tmin = 0.966, Tmax = 0.991h = 1515
52913 measured reflectionsk = 1111
3105 independent reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.320P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3105 reflectionsΔρmax = 0.49 e Å3
122 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atoms of the NH3 and hydroxyl groups were localized in the difference-Fourier map and refined with Uiso(H) set to 1.5Ueq(O) or 1.2Ueq(N). All the other hydrogen atoms were placed in calculated positions with C—H = 0.95 Å for aromatic CH and C—H = 0.96 Å for CH3 and refined using a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C-aromatic) and Uiso(H) = 1.5Ueq(C-methyl)].

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12872 (6)0.83288 (9)0.65994 (5)0.01629 (13)
H10.1381 (14)0.928 (2)0.6142 (12)0.024*
O20.09592 (7)0.29888 (8)0.65411 (5)0.01686 (13)
O30.15033 (7)0.10731 (8)0.52349 (5)0.01664 (13)
N10.12133 (7)0.56570 (9)0.81635 (5)0.01242 (13)
H1A0.1133 (12)0.4870 (19)0.7543 (10)0.015*
H1B0.0461 (12)0.6407 (18)0.8160 (10)0.015*
H1C0.1280 (12)0.4909 (18)0.8806 (10)0.015*
C30.35594 (9)0.93249 (12)0.74235 (7)0.01774 (16)
H30.3582151.0252560.6865670.021*
C50.46510 (9)0.77468 (13)0.90970 (8)0.01994 (17)
H50.5407470.7607260.9679530.024*
C40.46648 (9)0.91021 (13)0.82754 (8)0.02042 (17)
H40.5437380.9883270.8296770.025*
C20.24139 (8)0.81883 (11)0.73847 (6)0.01328 (14)
C60.35205 (8)0.65957 (12)0.90596 (7)0.01606 (15)
H60.3504020.5661140.9614140.019*
C10.24197 (8)0.68208 (10)0.82091 (6)0.01217 (14)
C80.13683 (8)0.26870 (11)0.56096 (6)0.01288 (14)
C70.16938 (9)0.42886 (12)0.48900 (8)0.01940 (16)
H7A0.0960160.4437870.4250250.029*
H7B0.2555310.4051180.4606610.029*
H7C0.1777170.5417190.5345870.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0172 (3)0.0157 (3)0.0153 (3)0.0014 (2)0.0001 (2)0.0046 (2)
O20.0220 (3)0.0142 (3)0.0157 (3)0.0024 (2)0.0073 (2)0.0030 (2)
O30.0255 (3)0.0124 (3)0.0124 (2)0.0019 (2)0.0041 (2)0.00051 (19)
N10.0147 (3)0.0109 (3)0.0120 (3)0.0006 (2)0.0030 (2)0.0005 (2)
C30.0180 (3)0.0161 (3)0.0198 (4)0.0030 (3)0.0053 (3)0.0024 (3)
C50.0150 (3)0.0222 (4)0.0217 (4)0.0007 (3)0.0003 (3)0.0001 (3)
C40.0154 (3)0.0212 (4)0.0248 (4)0.0040 (3)0.0036 (3)0.0000 (3)
C20.0149 (3)0.0121 (3)0.0131 (3)0.0002 (2)0.0032 (2)0.0005 (2)
C60.0162 (3)0.0160 (3)0.0157 (3)0.0013 (3)0.0015 (3)0.0011 (3)
C10.0133 (3)0.0110 (3)0.0126 (3)0.0001 (2)0.0033 (2)0.0000 (2)
C80.0128 (3)0.0123 (3)0.0135 (3)0.0001 (2)0.0019 (2)0.0007 (2)
C70.0213 (4)0.0154 (3)0.0229 (4)0.0008 (3)0.0078 (3)0.0063 (3)
Geometric parameters (Å, º) top
O1—H10.892 (14)C5—H50.9500
O1—C21.3520 (9)C5—C41.3912 (13)
O2—C81.2600 (9)C5—C61.3930 (12)
O3—C81.2675 (9)C4—H40.9500
N1—H1A0.930 (13)C2—C11.3978 (11)
N1—H1B0.922 (13)C6—H60.9500
N1—H1C0.935 (12)C6—C11.3863 (11)
N1—C11.4583 (10)C8—C71.5087 (11)
C3—H30.9500C7—H7A0.9800
C3—C41.3903 (12)C7—H7B0.9800
C3—C21.3985 (11)C7—H7C0.9800
C2—O1—H1109.4 (9)O1—C2—C1117.36 (7)
H1A—N1—H1B112.7 (11)C1—C2—C3118.48 (7)
H1A—N1—H1C106.7 (11)C5—C6—H6120.2
H1B—N1—H1C107.7 (10)C1—C6—C5119.66 (8)
C1—N1—H1A110.9 (8)C1—C6—H6120.2
C1—N1—H1B108.5 (8)C2—C1—N1117.84 (7)
C1—N1—H1C110.3 (7)C6—C1—N1120.74 (7)
C4—C3—H3119.9C6—C1—C2121.40 (7)
C4—C3—C2120.24 (8)O2—C8—O3122.53 (7)
C2—C3—H3119.9O2—C8—C7119.65 (7)
C4—C5—H5120.2O3—C8—C7117.81 (7)
C4—C5—C6119.55 (8)C8—C7—H7A109.5
C6—C5—H5120.2C8—C7—H7B109.5
C3—C4—C5120.66 (8)C8—C7—H7C109.5
C3—C4—H4119.7H7A—C7—H7B109.5
C5—C4—H4119.7H7A—C7—H7C109.5
O1—C2—C3124.17 (7)H7B—C7—H7C109.5
O1—C2—C1—N10.22 (10)C4—C3—C2—O1178.84 (8)
O1—C2—C1—C6178.85 (7)C4—C3—C2—C10.83 (12)
C3—C2—C1—N1179.48 (7)C4—C5—C6—C10.39 (13)
C3—C2—C1—C60.85 (12)C2—C3—C4—C50.22 (13)
C5—C6—C1—N1178.83 (7)C6—C5—C4—C30.40 (14)
C5—C6—C1—C20.24 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.894 (14)1.709 (14)2.6025 (9)177.8 (16)
N1—H1A···O20.930 (13)1.807 (13)2.7251 (9)168.7 (12)
N1—H1B···O2ii0.923 (12)1.891 (12)2.8019 (9)168.8 (11)
N1—H1C···O3iii0.935 (12)1.834 (12)2.7531 (8)167.2 (12)
C6—H6···O3iii0.952.553.2493 (11)131
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge CRM2, Institut Jean Barriol (UMR 7036 CNRS, University de Lorraine, France), for providing access to the experimental crystallographic facilities.

References

First citationAllen, F. H., Hoy, V. J., Howard, J. A. K., Thalladi, V. R., Desiraju, G. R., Wilson, C. C. & McIntyre, G. J. (1997). J. Am. Chem. Soc. 119, 3477–3480.  CSD CrossRef CAS Web of Science Google Scholar
First citationDeTitta, G. T. (1985). J. Appl. Cryst. 18, 75–79.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDey, A., Desiraju, G. R., Mondal, R. & Howard, J. A. K. (2004). Chem. Commun. pp. 2528–2529.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJagan, R. & Sivakumar, K. (2009). Acta Cryst. C65, o414–o418.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJin, S. & Wang, D. (2013). J. Mol. Struct. 1037, 242–255.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2011). J. Chem. Crystallogr. 41, 1649–1662.  Web of Science CSD CrossRef CAS Google Scholar
First citationVivek, P. & Murugakoothan, P. (2014). Appl. Phys. A, 115, 1139–1146.  Web of Science CrossRef CAS Google Scholar
First citationYeşilel, O. Z., Paşaoğlub, H., Yılan, O. O. & Büyükgüngör, O. (2007). Z. Naturforsch. Teil B, 62, 823–828.  Google Scholar
First citationZhao, Q. (2012). Acta Cryst. E68, o1535.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds