metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[dipotassium [(μ6-2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­acetato)­disilver(I)] 5.2-hydrate]

crossmark logo

aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevax 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 13 December 2021; accepted 22 January 2022; online 1 February 2022)

The reaction of AgNO3 with the ligand 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­acetic acid in the presence of a potassium acetate buffer lead to the formation of a silver(I)–potassium–organic framework, poly[dipotassium [(μ6-2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­acetato)­disilver(I)] 5.2-hydrate], {K2[Ag2(C16H16N2O8S4)]·5.2H2O}n, (I). The asymmetric unit is composed of half a binuclear silver complex located about a center of symmetry, a potassium cation and 2.6 disordered water mol­ecules. The whole binuclear silver complex is generated by inversion symmetry with the pyrazine ring being located about an inversion centre. The ligand coordinates in a bis-tetra­dentate manner. The binuclear silver complex anions are linked via bridging Ag⋯S⋯Ag zigzag bonds, forming a network lying parallel to the bc plane. The networks are linked by Ocarboxyl­ateK+⋯Ocarboxyl­ate bridging bonds to form a framework. The disordered water mol­ecules are present near to the K+ cations.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title ligand, tetra­kis-substituted pyrazine carb­oxy­lic acid, 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­acetic acid (H4L1), is one of a series of tetra­kis-substituted pyrazine ligands containing NxS4 and N2S4O8 donor atoms (Pacifico, 2003[Pacifico, J. (2003). PhD thesis, University of Neuchâtel, Switzerland.]).

H4L1 is the tetra­acetic acid analogue of 3,3′,3′′,3′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­propionic acid (H4L2), for which two triclinic polymorphs and two potassium–organic frameworks have been reported (Pacifico & Stoeckli-Evans, 2021b[Pacifico, J. & Stoeckli-Evans, H. (2021b). IUCrData, x211295.][Pacifico, J. & Stoeckli-Evans, H. (2021a). Acta Cryst. E77, 480-490.]). Reaction of H4L1 with NiCl2 lead to the formation of a binuclear complex, {[(H2O)2Ni2(C16H20N2O8S4)]·7(H2O)}, whose crystal structure has been reported (Pacifico & Stoeckli-Evans, 2021b[Pacifico, J. & Stoeckli-Evans, H. (2021b). IUCrData, x211295.]).

The reaction of H4L1 (Pacifico & Stoeckli-Evans, 2021a[Pacifico, J. & Stoeckli-Evans, H. (2021a). Acta Cryst. E77, 480-490.]) with AgNO3 in the presence of a potassium acetate buffer resulted in deprotonation of the ligand and the formation of a heterobimetallic silver(I)–potassium–organic framework (I).

The asymmetric unit of I consists of half a binuclear silver complex, with the ligand coordinating in a bis-tetra­dentate manner (Fig. 1[link]), a potassium cation and 2.6 disordered water mol­ecules. Selected bond lengths and bond angles involving atom Ag1 are given in Table 1[link]. The binuclear silver complex anions are linked via bridging Ag⋯S⋯Ag zigzag bonds to form a network lying parallel to the bc plane (Fig. 2[link]). The silver ion has a sixfold AgS3O2N coordination sphere. The bond lengths involving Ag1 fall within the limits observed for the various type of bond when searching the Cambridge Structural Database (CSD, last update September 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). For example, there were over 600 hits for the Ag—Npyrazine bond length that varies from 2.02 to 2.739 Å [mean value 2.321 (89) Å, median 2.304 Å and a skew of 0.866]. In I this value is 2.550 (5) Å. For Ag—Ocarboxyl­ate there were over 2,800 hits with the bond lengths varying from 1.967 to 3.089 Å [mean value 2.377 (147) Å, median 2.352 Å and a skew value of 0.532]. In I the Ag—Ocarboxyl­ate bond lengths are almost equal; 2.470 (5) and 2.466 (6) Å. Finally for the Ag—S(CH2)2— bond-length type there were over 1,000 hits with the bond length varying from 2.361 to 3.583 Å [mean value 2.596 (98) Å, median 2.565 Å and a skew value of 1.645]. In I the Ag—S(CH2)2– bond lengths vary from 2.604 (2) to 2.926 (2) Å, both values involve the bridging atom S1, while distance Ag1—S2ii is 2.824 (2) Å (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

Ag1—N1 2.550 (5) K1—O1 3.289 (6)
Ag1—O1i 2.470 (5) K1—O2 2.729 (6)
Ag1—O4ii 2.466 (6) K1—O3iv 2.724 (6)
Ag1—S1 2.926 (2) K1—O3v 2.751 (6)
Ag1—S1iii 2.604 (2) K1—O4vi 2.608 (6)
Ag1—S2ii 2.824 (2)    
       
O4ii—Ag1—O1i 90.01 (19) S1iii—Ag1—S1 87.60 (4)
O4ii—Ag1—N1 110.25 (18) S2ii—Ag1—S1 122.15 (6)
O1i—Ag1—N1 84.78 (17) Ag1i—S1—Ag1 129.26 (7)
O4ii—Ag1—S1iii 96.08 (14) O4vi—K1—O3iv 94.50 (18)
O1i—Ag1—S1iii 108.15 (12) O4vi—K1—O2 89.60 (19)
N1—Ag1—S1iii 150.87 (13) O3iv—K1—O2 170.9 (2)
O4ii—Ag1—S2ii 69.66 (14) O4vi—K1—O3v 116.0 (2)
O1i—Ag1—S2ii 138.52 (12) O3iv—K1—O3v 86.76 (14)
N1—Ag1—S2ii 70.23 (12) O2—K1—O3v 98.72 (18)
S1iii—Ag1—S2ii 109.63 (5) O4vi—K1—O1 71.53 (16)
O4ii—Ag1—S1 165.62 (14) O3iv—K1—O1 146.36 (18)
O1i—Ag1—S1 75.65 (14) O2—K1—O1 42.72 (15)
N1—Ag1—S1 70.04 (12) O3v—K1—O1 73.37 (15)
       
N1—C1—C3—S1 −61.4 (7) S2—C7—C8—O4 1.5 (10)
N1ii—C2—C6—S2 −70.4 (7)    
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, -y+1, -z+1]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, -y+1, -z+1]; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the silver complex dianion of compound I, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. For clarity, the potassium cation and the disordered water mol­ecules have been omitted. [Symmetry codes: (i) −x, y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x, −y + 1, −z + 1; (iii) −x, y − [{1\over 2}], −z + [{1\over 2}].]
[Figure 2]
Figure 2
A view along the a-axis of the network of the silver complex dianions in compound I. The silver atoms are shown as silver balls. For clarity, the potassium ions, the disordered water mol­ecules, and the C-bound H atoms have been omitted.

The three chelate rings are far from flat, as indicated by the torsion angles given in Table 1[link]. This is also shown by the mean planes of the chelate rings calculated using PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]): ring Ag1/N1/C2/C3/S1 is twisted on bond S1—C3, ring Ag1/N1/C2ii/C6ii/S2ii has an envelope conformation with atom S2ii as the flap, and ring Agii/S2/C7/C8/O4 has an envelope conformation with atom Ag1ii as the flap [symmetry code: (ii) −x, −y + 1, −z + 1].

Selected bond lengths and bond angles involving atom K1 are also given in Table 1[link]. The strongest K+⋯Ocarboxyl­ate bonds lengths vary from 2.608 (6) to 2.751 (6) Å, and there is one weak contact K1⋯O1 at 3.289 (6) Å (Fig. 3[link]). A search of the CSD for carboxyl­ato–potassium complexes revealed that in the potassium–organic frameworks catena-[(μ4-3,5,6-tri­carb­oxy­pyrazine-2-carboxyl­ato)potassium] (CSD refcode UBUPAK; Masci et al., 2010[Masci, B., Pasquale, S. & Thuéry, P. (2010). Cryst. Growth Des. 10, 2004-2010.]), and catena-[(μ-6-carb­oxy­pyridine-2-carboxyl­ato)potassium] (MUMPIW; Li et al., 2020[Li, C., Wang, K., Li, J. & Zhang, Q. (2020). Nanoscale, 12, 7870-7874.]), the K+⋯O bond lengths vary from 2.7951 (11) to 2.8668 (13) Å in UBUPAK and from 2.8197 (14) to 3.0449 (15) Å in MUMPIW. In UBUPAK the K+ cation has a coordination number of 8 (KO8) and a distorted dodeca­hedral geometry, while in MUMPIW the K+ ion has a coordination number of 7 (KO6N) and has an edge-sharing penta­gonal anti­prism geometry. In I, the stronger K⋯O bond lengths are shorter and, owing to the presence of the disordered water mol­ecules, it is not clear what the K+ ion coordination number or geometry are.

[Figure 3]
Figure 3
A view of the environment of the potassium cation in compound I. [X(red) regions of disordered water mol­ecules; symmetry codes: (iii) −x, y − [{1\over 2}], −z + [{1\over 2}]; (iv) −x + 1, −y + 1, −z + 1; (v) x, −y + [{1\over 2}], z − [{1\over 2}]; (vi) x, −y + [{3\over 2}], z − [{1\over 2}].]

In the crystal of I, the networks of the binuclear silver complex anions are linked by the bridging Ocarboxyl­ateK+⋯Ocarboxyl­ate bonds to form a framework (Fig. 4[link]; Table 1[link]). The disordered water mol­ecules are present near to the K+ cations.

[Figure 4]
Figure 4
A view along the b-axis of the crystal packing of compound I. The silver atoms are shown as small silver balls and the potassium ions as large purple balls. The blue ellipse indicates the region occupied by the disordered water mol­ecules. For clarity, the C-bound H atoms have been omitted.

Synthesis and crystallization

The synthesis of the ligand H4L1 has been described (Pacifico & Stoeckli-Evans, 2021a[Pacifico, J. (2003). PhD thesis, University of Neuchâtel, Switzerland.]).

Synthesis of poly{(μ-2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)] tetra­kis­(sulfanedi­yl)}tetra­acetato)}-bis­[silver(I)]-bis­[potassium] 5.2(hydrate)} (I):

AgNO3 (20.5 mg, 0.121 mmol, 2 eq) and H4L1 (30 mg, 0.060 mmol, 1 eq) were mixed in 20 ml of a 1M potassium acetate buffer solution. The mixture was left at 323 K under stirring and nitro­gen conditions for 1 h. The mixture was then filtered and left to evaporate in air for six weeks, yielding yellow rod-like crystals of compound I (m.p. 553 K decomposition).

Analysis for C16H16Ag2N2O8S4, K2, 5.2(H2O), Mw = 880.175 g mol−1: Calculated (%): C 21.88, H 2.99, N 3.18. Found (%): C 23.03, H 2.91, N 3.03. The small deviation is probably due to the loss of water mol­ecules of crystallization.

ESI–MS: unstable under mass spectroscopy experimental conditions.

IR (KBr disc, cm−1) ν: 3401(s), 2938(m), 1599(s), 1385(s), 1223(m).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The occupancy factors for the disordered water mol­ecules were initially freely refined and then fixed at rounded values; the final total is 5.2(H2O). It was not possible to locate the H atoms of the disordered water mol­ecules of crystallization. The residual electron density peaks of 1.14 and −1.10 eÅ3 are at distances of 0.96 and 0.91 Å, respectively, from atom Ag1.

Table 2
Experimental details

Crystal data
Chemical formula K2[Ag2(C16H16N2O8S4)]5.2H2O
Mr 880.17
Crystal system, space group Monoclinic, P21/c
Temperature (K) 153
a, b, c (Å) 13.386 (3), 6.0085 (7), 17.843 (3)
β (°) 108.657 (15)
V3) 1359.7 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.12
Crystal size (mm) 0.24 × 0.13 × 0.05
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Multi-scan (MULABS; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.])
Tmin, Tmax 0.611, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9305, 2316, 2088
Rint 0.043
(sin θ/λ)max−1) 0.591
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.114, 1.17
No. of reflections 2316
No. of parameters 218
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.14, −1.10
Computer programs: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Poly[dipotassium [(µ6-2,2',2'',2'''-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(sulfanediyl)}tetraacetato)disilver(I)] 5.2-hydrate] top
Crystal data top
K2[Ag2(C16H16N2O8S4)]5.2H2OF(000) = 852
Mr = 880.17Dx = 2.097 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.386 (3) ÅCell parameters from 17882 reflections
b = 6.0085 (7) Åθ = 1.6–24.9°
c = 17.843 (3) ŵ = 2.12 mm1
β = 108.657 (15)°T = 153 K
V = 1359.7 (4) Å3Rod, yellow
Z = 20.24 × 0.13 × 0.05 mm
Data collection top
Stoe IPDS 2
diffractometer
2316 independent reflections
Radiation source: fine-focus sealed tube2088 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.043
φ + ω scansθmax = 24.8°, θmin = 2.4°
Absorption correction: multi-scan
(MULABS; Spek, 2020)
h = 1515
Tmin = 0.611, Tmax = 1.000k = 76
9305 measured reflectionsl = 2021
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0335P)2 + 8.3123P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max < 0.001
2316 reflectionsΔρmax = 1.14 e Å3
218 parametersΔρmin = 1.10 e Å3
0 restraintsExtinction correction: (SHELXL2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0058 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The C-bound H atoms were included in calculated positions and treated as riding on their parent C atom: C—H = 0.99 Å with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.11736 (5)0.22235 (9)0.29645 (3)0.0422 (2)
K10.42397 (15)0.0830 (3)0.31383 (13)0.0662 (6)
S10.07736 (14)0.4594 (3)0.30640 (9)0.0383 (4)
S20.13892 (15)1.0313 (3)0.57635 (11)0.0456 (5)
O10.1777 (5)0.0832 (8)0.2686 (3)0.0534 (13)
O20.2813 (5)0.0081 (9)0.3913 (3)0.0602 (15)
O30.4123 (4)1.1764 (10)0.7406 (4)0.0625 (15)
O40.3022 (5)0.8947 (10)0.7311 (3)0.0617 (15)
N10.0564 (4)0.4506 (9)0.4235 (3)0.0363 (13)
C10.0288 (5)0.5773 (10)0.4399 (3)0.0335 (14)
C20.0881 (5)0.6285 (10)0.5180 (4)0.0367 (15)
C30.0533 (6)0.6731 (11)0.3695 (4)0.0392 (15)
H3A0.1162800.7698450.3884150.047*
H3B0.0065960.7663850.3384850.047*
C40.1990 (6)0.3419 (12)0.3732 (4)0.0486 (18)
H4A0.2583730.4449670.3778600.058*
H4B0.1922400.3217550.4264140.058*
C50.2207 (6)0.1200 (12)0.3415 (5)0.0478 (18)
C60.1824 (6)0.7758 (11)0.5427 (4)0.0397 (15)
H6A0.2085100.8053660.4976290.048*
H6B0.2397470.7061210.5859030.048*
C70.2611 (6)1.1711 (12)0.6282 (5)0.0508 (18)
H7A0.3039711.1794230.5922070.061*
H7B0.2440801.3257160.6389950.061*
C80.3293 (6)1.0693 (13)0.7059 (5)0.052 (2)
O1W0.479 (2)0.483 (5)0.3773 (16)0.072 (7)0.3
O2W0.4522 (18)0.660 (4)0.0890 (13)0.071 (6)0.3
O3W0.4365 (15)0.538 (4)0.0344 (9)0.123 (7)0.5
O4W0.4421 (18)0.285 (3)0.0195 (13)0.105 (7)0.4
O5W0.4629 (16)0.844 (4)0.0802 (13)0.057 (5)0.3
O6W0.451 (3)0.951 (7)0.115 (2)0.198 (17)0.5
O7W0.556 (4)0.047 (9)0.009 (3)0.23 (3)0.3
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0620 (4)0.0363 (3)0.0386 (3)0.0055 (2)0.0305 (3)0.0060 (2)
K10.0607 (11)0.0602 (12)0.0891 (14)0.0039 (9)0.0400 (10)0.0048 (10)
S10.0579 (11)0.0325 (8)0.0332 (8)0.0005 (7)0.0266 (8)0.0006 (7)
S20.0552 (11)0.0347 (9)0.0531 (11)0.0041 (8)0.0261 (9)0.0089 (8)
O10.082 (4)0.037 (3)0.050 (3)0.003 (3)0.034 (3)0.002 (2)
O20.069 (4)0.053 (3)0.067 (3)0.011 (3)0.033 (3)0.015 (3)
O30.059 (4)0.059 (4)0.075 (4)0.012 (3)0.030 (3)0.018 (3)
O40.070 (4)0.057 (3)0.064 (4)0.007 (3)0.030 (3)0.005 (3)
N10.057 (4)0.031 (3)0.028 (3)0.002 (3)0.024 (2)0.001 (2)
C10.050 (4)0.028 (3)0.030 (3)0.000 (3)0.025 (3)0.004 (3)
C20.055 (4)0.027 (3)0.039 (3)0.001 (3)0.031 (3)0.001 (3)
C30.064 (4)0.032 (3)0.030 (3)0.003 (3)0.028 (3)0.001 (3)
C40.063 (5)0.045 (4)0.045 (4)0.002 (4)0.028 (4)0.004 (3)
C50.059 (5)0.034 (4)0.065 (5)0.003 (3)0.040 (4)0.010 (4)
C60.059 (4)0.032 (3)0.039 (3)0.005 (3)0.030 (3)0.007 (3)
C70.065 (5)0.036 (4)0.058 (5)0.010 (3)0.030 (4)0.005 (3)
C80.057 (5)0.045 (4)0.069 (5)0.013 (4)0.039 (4)0.019 (4)
O1W0.081 (17)0.052 (12)0.066 (14)0.000 (13)0.000 (13)0.017 (11)
O2W0.084 (15)0.055 (14)0.060 (13)0.001 (11)0.003 (11)0.004 (11)
O3W0.123 (15)0.18 (2)0.065 (10)0.040 (14)0.024 (9)0.005 (12)
O4W0.113 (17)0.077 (13)0.111 (16)0.001 (12)0.016 (13)0.011 (12)
O5W0.044 (11)0.043 (12)0.062 (13)0.006 (9)0.015 (9)0.000 (10)
O6W0.22 (4)0.16 (3)0.21 (3)0.05 (3)0.06 (3)0.01 (3)
O7W0.21 (5)0.21 (5)0.16 (4)0.08 (5)0.09 (4)0.02 (4)
Geometric parameters (Å, º) top
Ag1—N12.550 (5)O4—C81.241 (9)
Ag1—O1i2.470 (5)N1—C11.324 (8)
Ag1—O4ii2.466 (6)N1—C2ii1.334 (8)
Ag1—S12.926 (2)C1—C21.399 (9)
Ag1—S1iii2.604 (2)C1—C31.509 (8)
Ag1—S2ii2.824 (2)C2—C61.489 (10)
Ag1—K1i4.113 (2)C3—H3A0.9900
K1—O2Wiv2.46 (2)C3—H3B0.9900
K1—O13.289 (6)C4—C51.512 (10)
K1—O22.729 (6)C4—H4A0.9900
K1—O3v2.724 (6)C4—H4B0.9900
K1—O3vi2.751 (6)C6—H6A0.9900
K1—O4vii2.608 (6)C6—H6B0.9900
K1—O1Wviii2.84 (3)C7—C81.523 (12)
K1—O3Wiv2.848 (17)C7—H7A0.9900
K1—O4Wiv3.05 (2)C7—H7B0.9900
K1—C53.162 (7)O1W—O6Wiv0.93 (4)
K1—O5Wiv3.26 (2)O1W—O5Wiv1.22 (4)
K1—O6Wix3.30 (4)O2W—O5W1.13 (3)
S1—C31.803 (6)O2W—O3W1.19 (3)
S1—C41.824 (8)O2W—O6W1.81 (4)
S2—C71.808 (8)O3W—O4W1.55 (3)
S2—C61.811 (7)O5W—O6W0.94 (4)
O1—C51.263 (9)O5W—O7Wx1.66 (6)
O2—C51.256 (9)O7W—O7Wxi1.53 (11)
O3—C81.262 (9)
O4ii—Ag1—O1i90.01 (19)C7—S2—C6103.3 (4)
O4ii—Ag1—N1110.25 (18)C7—S2—Ag1ii98.5 (3)
O1i—Ag1—N184.78 (17)C6—S2—Ag1ii86.3 (2)
O4ii—Ag1—S1iii96.08 (14)C5—O1—Ag1iii127.6 (5)
O1i—Ag1—S1iii108.15 (12)C5—O1—K173.1 (4)
N1—Ag1—S1iii150.87 (13)Ag1iii—O1—K190.02 (15)
O4ii—Ag1—S2ii69.66 (14)C5—O2—K198.2 (4)
O1i—Ag1—S2ii138.52 (12)C8—O3—K1v113.7 (5)
N1—Ag1—S2ii70.23 (12)C8—O3—K1xii126.4 (5)
S1iii—Ag1—S2ii109.63 (5)K1v—O3—K1xii115.0 (2)
O4ii—Ag1—S1165.62 (14)C8—O4—Ag1ii124.0 (6)
O1i—Ag1—S175.65 (14)C8—O4—K1xiii127.6 (5)
N1—Ag1—S170.04 (12)Ag1ii—O4—K1xiii108.3 (2)
S1iii—Ag1—S187.60 (4)C1—N1—C2ii119.9 (6)
S2ii—Ag1—S1122.15 (6)C1—N1—Ag1120.9 (4)
O4ii—Ag1—K1i37.02 (14)C2ii—N1—Ag1114.4 (4)
O1i—Ag1—K1i53.08 (13)N1—C1—C2121.4 (5)
N1—Ag1—K1i105.00 (13)N1—C1—C3115.9 (6)
S1iii—Ag1—K1i103.54 (5)C2—C1—C3122.7 (6)
S2ii—Ag1—K1i101.25 (5)N1ii—C2—C1118.7 (6)
S1—Ag1—K1i128.60 (5)N1ii—C2—C6115.6 (6)
Ag1i—S1—Ag1129.26 (7)C1—C2—C6125.6 (5)
O2Wiv—K1—O4vii169.6 (6)C1—C3—S1112.2 (4)
O2Wiv—K1—O3v86.3 (6)C1—C3—H3A109.2
O4vii—K1—O3v94.50 (18)S1—C3—H3A109.2
O2Wiv—K1—O288.2 (6)C1—C3—H3B109.2
O4vii—K1—O289.60 (19)S1—C3—H3B109.2
O3v—K1—O2170.9 (2)H3A—C3—H3B107.9
O2Wiv—K1—O3vi74.4 (6)C5—C4—S1109.6 (5)
O4vii—K1—O3vi116.0 (2)C5—C4—H4A109.7
O3v—K1—O3vi86.76 (14)S1—C4—H4A109.7
O2—K1—O3vi98.72 (18)C5—C4—H4B109.7
O2Wiv—K1—O1Wviii103.5 (8)S1—C4—H4B109.7
O4vii—K1—O1Wviii66.6 (6)H4A—C4—H4B108.2
O3v—K1—O1Wviii79.4 (6)O2—C5—O1126.8 (7)
O2—K1—O1Wviii94.8 (6)O2—C5—C4115.7 (7)
O3vi—K1—O1Wviii166.2 (6)O1—C5—C4117.4 (7)
O2Wiv—K1—O3Wiv24.4 (6)O2—C5—K158.7 (4)
O4vii—K1—O3Wiv145.2 (5)O1—C5—K184.4 (4)
O3v—K1—O3Wiv91.9 (4)C4—C5—K1132.6 (5)
O2—K1—O3Wiv80.2 (4)C2—C6—S2105.7 (5)
O3vi—K1—O3Wiv98.4 (5)C2—C6—H6A110.6
O1Wviii—K1—O3Wiv81.2 (8)S2—C6—H6A110.6
O2Wiv—K1—O4Wiv54.0 (7)C2—C6—H6B110.6
O4vii—K1—O4Wiv115.6 (4)S2—C6—H6B110.6
O3v—K1—O4Wiv90.3 (5)H6A—C6—H6B108.7
O2—K1—O4Wiv80.6 (5)C8—C7—S2117.4 (5)
O3vi—K1—O4Wiv128.4 (4)C8—C7—H7A108.0
O1Wviii—K1—O4Wiv51.4 (7)S2—C7—H7A108.0
O3Wiv—K1—O4Wiv30.2 (6)C8—C7—H7B108.0
O2Wiv—K1—C594.6 (6)S2—C7—H7B108.0
O4vii—K1—C587.3 (2)H7A—C7—H7B107.2
O3v—K1—C5165.0 (2)O4—C8—O3124.6 (9)
O2—K1—C523.16 (17)O4—C8—C7120.7 (7)
O3vi—K1—C579.11 (18)O3—C8—C7114.8 (7)
O1Wviii—K1—C5114.7 (6)O4—C8—K1v117.4 (5)
O3Wiv—K1—C595.1 (5)O3—C8—K1v46.6 (4)
O4Wiv—K1—C5102.4 (5)C7—C8—K1v102.3 (4)
O2Wiv—K1—O5Wiv16.3 (6)O4—C8—K1xiii36.1 (4)
O4vii—K1—O5Wiv169.7 (4)O3—C8—K1xiii92.8 (5)
O3v—K1—O5Wiv95.3 (4)C7—C8—K1xiii147.2 (5)
O2—K1—O5Wiv81.2 (5)K1v—C8—K1xiii83.44 (19)
O3vi—K1—O5Wiv61.4 (4)O6Wiv—O1W—O5Wiv50 (3)
O1Wviii—K1—O5Wiv118.5 (7)O6Wiv—O1W—K1xiv112 (4)
O3Wiv—K1—O5Wiv37.5 (6)O5Wiv—O1W—K1xiv155 (2)
O4Wiv—K1—O5Wiv67.6 (5)O5W—O2W—O3W119 (3)
C5—K1—O5Wiv82.5 (4)O5W—O2W—O6W27 (2)
O2Wiv—K1—O1112.9 (6)O3W—O2W—O6W143 (2)
O4vii—K1—O171.53 (16)O5W—O2W—K1xv126.2 (17)
O3v—K1—O1146.36 (18)O3W—O2W—K1xv96.4 (16)
O2—K1—O142.72 (15)O6W—O2W—K1xv117.0 (16)
O3vi—K1—O173.37 (15)O2W—O3W—O4W138 (2)
O1Wviii—K1—O1119.2 (6)O2W—O3W—K1xv59.1 (13)
O3Wiv—K1—O1117.2 (5)O4W—O3W—K1xv82.0 (11)
O4Wiv—K1—O1123.3 (5)O3W—O4W—K1xv67.8 (10)
C5—K1—O122.47 (17)O6W—O5W—O2W121 (4)
O5Wiv—K1—O198.4 (4)O6W—O5W—O1Wxv49 (3)
O2Wiv—K1—O6Wix95.0 (8)O2W—O5W—O1Wxv131 (2)
O4vii—K1—O6Wix76.0 (7)O6W—O5W—O7Wx111 (4)
O3v—K1—O6Wix66.1 (7)O2W—O5W—O7Wx122 (3)
O2—K1—O6Wix107.3 (7)O1Wxv—O5W—O7Wx101 (3)
O3vi—K1—O6Wix151.6 (7)O6W—O5W—K1xv107 (3)
O1Wviii—K1—O6Wix15.1 (8)O2W—O5W—K1xv37.5 (13)
O3Wiv—K1—O6Wix75.6 (9)O1Wxv—O5W—K1xv95.3 (16)
O4Wiv—K1—O6Wix48.4 (8)O7Wx—O5W—K1xv140 (2)
C5—K1—O6Wix128.6 (7)O1Wxv—O6W—O5W82 (4)
O5Wiv—K1—O6Wix111.1 (7)O1Wxv—O6W—O2W98 (4)
O1—K1—O6Wix134.3 (7)O5W—O6W—O2W32 (2)
C3—S1—C499.7 (3)O1Wxv—O6W—K1xvi53 (3)
C3—S1—Ag1i97.3 (2)O5W—O6W—K1xvi131 (4)
C4—S1—Ag1i110.7 (2)O2W—O6W—K1xvi151 (2)
C3—S1—Ag192.9 (2)O7Wxi—O7W—O5Wx96 (3)
C4—S1—Ag1116.3 (3)
C2ii—N1—C1—C20.9 (10)K1xii—O3—C8—C770.3 (8)
Ag1—N1—C1—C2153.3 (5)K1xii—O3—C8—K1v153.8 (8)
C2ii—N1—C1—C3175.4 (6)K1v—O3—C8—K1xiii78.2 (4)
Ag1—N1—C1—C330.4 (7)K1xii—O3—C8—K1xiii128.0 (4)
N1—C1—C2—N1ii0.9 (10)S2—C7—C8—O41.5 (10)
C3—C1—C2—N1ii175.2 (6)S2—C7—C8—O3178.3 (5)
N1—C1—C2—C6177.5 (6)S2—C7—C8—K1v134.0 (4)
C3—C1—C2—C61.4 (10)S2—C7—C8—K1xiii37.0 (11)
N1—C1—C3—S161.4 (7)O5W—O2W—O3W—O4W162 (3)
C2—C1—C3—S1122.3 (6)O6W—O2W—O3W—O4W179 (3)
C4—S1—C3—C166.2 (6)K1xv—O2W—O3W—O4W24 (3)
Ag1i—S1—C3—C1178.7 (5)O5W—O2W—O3W—K1xv138 (3)
Ag1—S1—C3—C151.1 (5)O6W—O2W—O3W—K1xv155 (4)
C3—S1—C4—C5165.4 (5)O2W—O3W—O4W—K1xv21 (3)
Ag1i—S1—C4—C593.0 (5)O3W—O2W—O5W—O6W157 (4)
Ag1—S1—C4—C567.3 (5)K1xv—O2W—O5W—O6W78 (4)
K1—O2—C5—O153.3 (8)O3W—O2W—O5W—O1Wxv143 (3)
K1—O2—C5—C4125.8 (5)O6W—O2W—O5W—O1Wxv60 (4)
Ag1iii—O1—C5—O233.0 (11)K1xv—O2W—O5W—O1Wxv18 (5)
K1—O1—C5—O243.5 (7)O3W—O2W—O5W—O7Wx7 (4)
Ag1iii—O1—C5—C4147.9 (5)O6W—O2W—O5W—O7Wx150 (6)
K1—O1—C5—C4135.6 (6)K1xv—O2W—O5W—O7Wx132 (3)
Ag1iii—O1—C5—K176.5 (5)O3W—O2W—O5W—K1xv125 (4)
S1—C4—C5—O2159.1 (5)O6W—O2W—O5W—K1xv78 (4)
S1—C4—C5—O121.6 (8)O2W—O5W—O6W—O1Wxv120 (4)
S1—C4—C5—K1130.8 (5)O7Wx—O5W—O6W—O1Wxv87 (4)
N1ii—C2—C6—S270.4 (7)K1xv—O5W—O6W—O1Wxv81 (4)
C1—C2—C6—S2106.2 (6)O1Wxv—O5W—O6W—O2W120 (4)
C7—S2—C6—C2165.8 (5)O7Wx—O5W—O6W—O2W153 (5)
Ag1ii—S2—C6—C268.0 (4)K1xv—O5W—O6W—O2W39 (2)
C6—S2—C7—C869.2 (6)O2W—O5W—O6W—K1xvi142 (3)
Ag1ii—S2—C7—C818.9 (6)O1Wxv—O5W—O6W—K1xvi22 (2)
Ag1ii—O4—C8—O3150.8 (6)O7Wx—O5W—O6W—K1xvi65 (5)
K1xiii—O4—C8—O332.5 (10)K1xv—O5W—O6W—K1xvi103 (4)
Ag1ii—O4—C8—C729.0 (9)O5W—O2W—O6W—O1Wxv60 (5)
K1xiii—O4—C8—C7147.7 (6)O3W—O2W—O6W—O1Wxv94 (5)
Ag1ii—O4—C8—K1v154.8 (3)K1xv—O2W—O6W—O1Wxv58 (5)
K1xiii—O4—C8—K1v21.9 (8)O3W—O2W—O6W—O5W34 (6)
Ag1ii—O4—C8—K1xiii176.7 (9)K1xv—O2W—O6W—O5W118 (4)
K1v—O3—C8—O496.7 (8)O5W—O2W—O6W—K1xvi72 (5)
K1xii—O3—C8—O4109.5 (8)O3W—O2W—O6W—K1xvi106 (5)
K1v—O3—C8—C783.5 (7)K1xv—O2W—O6W—K1xvi45 (5)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z+1; (iii) x, y1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x, y+3/2, z1/2; (vii) x, y+1/2, z1/2; (viii) x, y1, z; (ix) x+1, y3/2, z+1/2; (x) x+1, y+1, z; (xi) x+1, y, z; (xii) x, y+3/2, z+1/2; (xiii) x, y+1/2, z+1/2; (xiv) x, y+1, z; (xv) x+1, y+1/2, z+1/2; (xvi) x+1, y+3/2, z+1/2.
 

Acknowledgements

HSE is grateful to the University of Neuchâtel for their support over the years.

Funding information

Funding for this research was provided by: Swiss National Science Foundation; University of Neuchatel.

References

First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLi, C., Wang, K., Li, J. & Zhang, Q. (2020). Nanoscale, 12, 7870–7874.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMasci, B., Pasquale, S. & Thuéry, P. (2010). Cryst. Growth Des. 10, 2004–2010.  Web of Science CSD CrossRef CAS Google Scholar
First citationPacifico, J. (2003). PhD thesis, University of Neuchâtel, Switzerland.  Google Scholar
First citationPacifico, J. & Stoeckli-Evans, H. (2021a). Acta Cryst. E77, 480–490.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPacifico, J. & Stoeckli-Evans, H. (2021b). IUCrData, x211295.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds