metal-organic compounds
Poly[dipotassium [(μ6-2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(sulfanediyl)}tetraacetato)disilver(I)] 5.2-hydrate]
aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevax 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch
The reaction of AgNO3 with the ligand 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(sulfanediyl)}tetraacetic acid in the presence of a potassium acetate buffer lead to the formation of a silver(I)–potassium–organic framework, poly[dipotassium [(μ6-2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(sulfanediyl)}tetraacetato)disilver(I)] 5.2-hydrate], {K2[Ag2(C16H16N2O8S4)]·5.2H2O}n, (I). The is composed of half a binuclear silver complex located about a center of symmetry, a potassium cation and 2.6 disordered water molecules. The whole binuclear silver complex is generated by inversion symmetry with the pyrazine ring being located about an inversion centre. The ligand coordinates in a bis-tetradentate manner. The binuclear silver complex anions are linked via bridging Ag⋯S⋯Ag zigzag bonds, forming a network lying parallel to the bc plane. The networks are linked by Ocarboxylate⋯K+⋯Ocarboxylate bridging bonds to form a framework. The disordered water molecules are present near to the K+ cations.
Keywords: crystal structure; pyrazine; carboxylate; tetrakis; silver–potassium–organic framework.
CCDC reference: 2143798
Structure description
The title ligand, tetrakis-substituted pyrazine carboxylic acid, 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(sulfanediyl)}tetraacetic acid (H4L1), is one of a series of tetrakis-substituted pyrazine ligands containing NxS4 and N2S4O8 donor atoms (Pacifico, 2003).
H4L1 is the tetraacetic acid analogue of 3,3′,3′′,3′′′-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(sulfanediyl)}tetrapropionic acid (H4L2), for which two triclinic polymorphs and two potassium–organic frameworks have been reported (Pacifico & Stoeckli-Evans, 2021b). Reaction of H4L1 with NiCl2 lead to the formation of a binuclear complex, {[(H2O)2Ni2(C16H20N2O8S4)]·7(H2O)}, whose has been reported (Pacifico & Stoeckli-Evans, 2021b).
The reaction of H4L1 (Pacifico & Stoeckli-Evans, 2021a) with AgNO3 in the presence of a potassium acetate buffer resulted in deprotonation of the ligand and the formation of a heterobimetallic silver(I)–potassium–organic framework (I).
The I consists of half a binuclear silver complex, with the ligand coordinating in a bis-tetradentate manner (Fig. 1), a potassium cation and 2.6 disordered water molecules. Selected bond lengths and bond angles involving atom Ag1 are given in Table 1. The binuclear silver complex anions are linked via bridging Ag⋯S⋯Ag zigzag bonds to form a network lying parallel to the bc plane (Fig. 2). The silver ion has a sixfold AgS3O2N coordination sphere. The bond lengths involving Ag1 fall within the limits observed for the various type of bond when searching the Cambridge Structural Database (CSD, last update September 2021; Groom et al., 2016). For example, there were over 600 hits for the Ag—Npyrazine bond length that varies from 2.02 to 2.739 Å [mean value 2.321 (89) Å, median 2.304 Å and a skew of 0.866]. In I this value is 2.550 (5) Å. For Ag—Ocarboxylate there were over 2,800 hits with the bond lengths varying from 1.967 to 3.089 Å [mean value 2.377 (147) Å, median 2.352 Å and a skew value of 0.532]. In I the Ag—Ocarboxylate bond lengths are almost equal; 2.470 (5) and 2.466 (6) Å. Finally for the Ag—S(CH2)2— bond-length type there were over 1,000 hits with the bond length varying from 2.361 to 3.583 Å [mean value 2.596 (98) Å, median 2.565 Å and a skew value of 1.645]. In I the Ag—S(CH2)2– bond lengths vary from 2.604 (2) to 2.926 (2) Å, both values involve the bridging atom S1, while distance Ag1—S2ii is 2.824 (2) Å (Table 1).
ofThe three chelate rings are far from flat, as indicated by the torsion angles given in Table 1. This is also shown by the mean planes of the chelate rings calculated using PLATON (Spek, 2020): ring Ag1/N1/C2/C3/S1 is twisted on bond S1—C3, ring Ag1/N1/C2ii/C6ii/S2ii has an with atom S2ii as the flap, and ring Agii/S2/C7/C8/O4 has an with atom Ag1ii as the flap [symmetry code: (ii) −x, −y + 1, −z + 1].
Selected bond lengths and bond angles involving atom K1 are also given in Table 1. The strongest K+⋯Ocarboxylate bonds lengths vary from 2.608 (6) to 2.751 (6) Å, and there is one weak contact K1⋯O1 at 3.289 (6) Å (Fig. 3). A search of the CSD for carboxylato–potassium complexes revealed that in the potassium–organic frameworks catena-[(μ4-3,5,6-tricarboxypyrazine-2-carboxylato)potassium] (CSD refcode UBUPAK; Masci et al., 2010), and catena-[(μ-6-carboxypyridine-2-carboxylato)potassium] (MUMPIW; Li et al., 2020), the K+⋯O bond lengths vary from 2.7951 (11) to 2.8668 (13) Å in UBUPAK and from 2.8197 (14) to 3.0449 (15) Å in MUMPIW. In UBUPAK the K+ cation has a of 8 (KO8) and a distorted dodecahedral geometry, while in MUMPIW the K+ ion has a of 7 (KO6N) and has an edge-sharing pentagonal antiprism geometry. In I, the stronger K⋯O bond lengths are shorter and, owing to the presence of the disordered water molecules, it is not clear what the K+ ion or geometry are.
In the crystal of I, the networks of the binuclear silver complex anions are linked by the bridging Ocarboxylate⋯K+⋯Ocarboxylate bonds to form a framework (Fig. 4; Table 1). The disordered water molecules are present near to the K+ cations.
Synthesis and crystallization
The synthesis of the ligand H4L1 has been described (Pacifico & Stoeckli-Evans, 2021a).
Synthesis of poly{(μ-2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene)] tetrakis(sulfanediyl)}tetraacetato)}-bis[silver(I)]-bis[potassium] 5.2(hydrate)} (I):
AgNO3 (20.5 mg, 0.121 mmol, 2 eq) and H4L1 (30 mg, 0.060 mmol, 1 eq) were mixed in 20 ml of a 1M potassium acetate buffer solution. The mixture was left at 323 K under stirring and nitrogen conditions for 1 h. The mixture was then filtered and left to evaporate in air for six weeks, yielding yellow rod-like crystals of compound I (m.p. 553 K decomposition).
Analysis for C16H16Ag2N2O8S4, K2, 5.2(H2O), Mw = 880.175 g mol−1: Calculated (%): C 21.88, H 2.99, N 3.18. Found (%): C 23.03, H 2.91, N 3.03. The small deviation is probably due to the loss of water molecules of crystallization.
ESI–MS: unstable under
experimental conditions.IR (KBr disc, cm−1) ν: 3401(s), 2938(m), 1599(s), 1385(s), 1223(m).
Refinement
Crystal data, data collection and structure . The occupancy factors for the disordered water molecules were initially freely refined and then fixed at rounded values; the final total is 5.2(H2O). It was not possible to locate the H atoms of the disordered water molecules of crystallization. The residual electron density peaks of 1.14 and −1.10 eÅ3 are at distances of 0.96 and 0.91 Å, respectively, from atom Ag1.
details are summarized in Table 2
|
Structural data
CCDC reference: 2143798
https://doi.org/10.1107/S2414314622000773/im4015sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622000773/im4015Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).K2[Ag2(C16H16N2O8S4)]5.2H2O | F(000) = 852 |
Mr = 880.17 | Dx = 2.097 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.386 (3) Å | Cell parameters from 17882 reflections |
b = 6.0085 (7) Å | θ = 1.6–24.9° |
c = 17.843 (3) Å | µ = 2.12 mm−1 |
β = 108.657 (15)° | T = 153 K |
V = 1359.7 (4) Å3 | Rod, yellow |
Z = 2 | 0.24 × 0.13 × 0.05 mm |
Stoe IPDS 2 diffractometer | 2316 independent reflections |
Radiation source: fine-focus sealed tube | 2088 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.043 |
φ + ω scans | θmax = 24.8°, θmin = 2.4° |
Absorption correction: multi-scan (MULABS; Spek, 2020) | h = −15→15 |
Tmin = 0.611, Tmax = 1.000 | k = −7→6 |
9305 measured reflections | l = −20→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.0335P)2 + 8.3123P] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max < 0.001 |
2316 reflections | Δρmax = 1.14 e Å−3 |
218 parameters | Δρmin = −1.10 e Å−3 |
0 restraints | Extinction correction: (SHELXL2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0058 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The C-bound H atoms were included in calculated positions and treated as riding on their parent C atom: C—H = 0.99 Å with Uiso(H) = 1.2Ueq(C). |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag1 | −0.11736 (5) | 0.22235 (9) | 0.29645 (3) | 0.0422 (2) | |
K1 | 0.42397 (15) | −0.0830 (3) | 0.31383 (13) | 0.0662 (6) | |
S1 | 0.07736 (14) | 0.4594 (3) | 0.30640 (9) | 0.0383 (4) | |
S2 | 0.13892 (15) | 1.0313 (3) | 0.57635 (11) | 0.0456 (5) | |
O1 | 0.1777 (5) | 0.0832 (8) | 0.2686 (3) | 0.0534 (13) | |
O2 | 0.2813 (5) | −0.0081 (9) | 0.3913 (3) | 0.0602 (15) | |
O3 | 0.4123 (4) | 1.1764 (10) | 0.7406 (4) | 0.0625 (15) | |
O4 | 0.3022 (5) | 0.8947 (10) | 0.7311 (3) | 0.0617 (15) | |
N1 | −0.0564 (4) | 0.4506 (9) | 0.4235 (3) | 0.0363 (13) | |
C1 | 0.0288 (5) | 0.5773 (10) | 0.4399 (3) | 0.0335 (14) | |
C2 | 0.0881 (5) | 0.6285 (10) | 0.5180 (4) | 0.0367 (15) | |
C3 | 0.0533 (6) | 0.6731 (11) | 0.3695 (4) | 0.0392 (15) | |
H3A | 0.116280 | 0.769845 | 0.388415 | 0.047* | |
H3B | −0.006596 | 0.766385 | 0.338485 | 0.047* | |
C4 | 0.1990 (6) | 0.3419 (12) | 0.3732 (4) | 0.0486 (18) | |
H4A | 0.258373 | 0.444967 | 0.377860 | 0.058* | |
H4B | 0.192240 | 0.321755 | 0.426414 | 0.058* | |
C5 | 0.2207 (6) | 0.1200 (12) | 0.3415 (5) | 0.0478 (18) | |
C6 | 0.1824 (6) | 0.7758 (11) | 0.5427 (4) | 0.0397 (15) | |
H6A | 0.208510 | 0.805366 | 0.497629 | 0.048* | |
H6B | 0.239747 | 0.706121 | 0.585903 | 0.048* | |
C7 | 0.2611 (6) | 1.1711 (12) | 0.6282 (5) | 0.0508 (18) | |
H7A | 0.303971 | 1.179423 | 0.592207 | 0.061* | |
H7B | 0.244080 | 1.325716 | 0.638995 | 0.061* | |
C8 | 0.3293 (6) | 1.0693 (13) | 0.7059 (5) | 0.052 (2) | |
O1W | 0.479 (2) | 0.483 (5) | 0.3773 (16) | 0.072 (7) | 0.3 |
O2W | 0.4522 (18) | 0.660 (4) | 0.0890 (13) | 0.071 (6) | 0.3 |
O3W | 0.4365 (15) | 0.538 (4) | 0.0344 (9) | 0.123 (7) | 0.5 |
O4W | 0.4421 (18) | 0.285 (3) | 0.0195 (13) | 0.105 (7) | 0.4 |
O5W | 0.4629 (16) | 0.844 (4) | 0.0802 (13) | 0.057 (5) | 0.3 |
O6W | 0.451 (3) | 0.951 (7) | 0.115 (2) | 0.198 (17) | 0.5 |
O7W | 0.556 (4) | 0.047 (9) | 0.009 (3) | 0.23 (3) | 0.3 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0620 (4) | 0.0363 (3) | 0.0386 (3) | −0.0055 (2) | 0.0305 (3) | −0.0060 (2) |
K1 | 0.0607 (11) | 0.0602 (12) | 0.0891 (14) | 0.0039 (9) | 0.0400 (10) | 0.0048 (10) |
S1 | 0.0579 (11) | 0.0325 (8) | 0.0332 (8) | −0.0005 (7) | 0.0266 (8) | −0.0006 (7) |
S2 | 0.0552 (11) | 0.0347 (9) | 0.0531 (11) | −0.0041 (8) | 0.0261 (9) | −0.0089 (8) |
O1 | 0.082 (4) | 0.037 (3) | 0.050 (3) | 0.003 (3) | 0.034 (3) | −0.002 (2) |
O2 | 0.069 (4) | 0.053 (3) | 0.067 (3) | 0.011 (3) | 0.033 (3) | 0.015 (3) |
O3 | 0.059 (4) | 0.059 (4) | 0.075 (4) | −0.012 (3) | 0.030 (3) | −0.018 (3) |
O4 | 0.070 (4) | 0.057 (3) | 0.064 (4) | −0.007 (3) | 0.030 (3) | 0.005 (3) |
N1 | 0.057 (4) | 0.031 (3) | 0.028 (3) | −0.002 (3) | 0.024 (2) | −0.001 (2) |
C1 | 0.050 (4) | 0.028 (3) | 0.030 (3) | 0.000 (3) | 0.025 (3) | −0.004 (3) |
C2 | 0.055 (4) | 0.027 (3) | 0.039 (3) | 0.001 (3) | 0.031 (3) | −0.001 (3) |
C3 | 0.064 (4) | 0.032 (3) | 0.030 (3) | −0.003 (3) | 0.028 (3) | −0.001 (3) |
C4 | 0.063 (5) | 0.045 (4) | 0.045 (4) | 0.002 (4) | 0.028 (4) | 0.004 (3) |
C5 | 0.059 (5) | 0.034 (4) | 0.065 (5) | 0.003 (3) | 0.040 (4) | 0.010 (4) |
C6 | 0.059 (4) | 0.032 (3) | 0.039 (3) | −0.005 (3) | 0.030 (3) | −0.007 (3) |
C7 | 0.065 (5) | 0.036 (4) | 0.058 (5) | −0.010 (3) | 0.030 (4) | −0.005 (3) |
C8 | 0.057 (5) | 0.045 (4) | 0.069 (5) | −0.013 (4) | 0.039 (4) | −0.019 (4) |
O1W | 0.081 (17) | 0.052 (12) | 0.066 (14) | 0.000 (13) | 0.000 (13) | 0.017 (11) |
O2W | 0.084 (15) | 0.055 (14) | 0.060 (13) | −0.001 (11) | 0.003 (11) | −0.004 (11) |
O3W | 0.123 (15) | 0.18 (2) | 0.065 (10) | 0.040 (14) | 0.024 (9) | −0.005 (12) |
O4W | 0.113 (17) | 0.077 (13) | 0.111 (16) | 0.001 (12) | 0.016 (13) | 0.011 (12) |
O5W | 0.044 (11) | 0.043 (12) | 0.062 (13) | 0.006 (9) | −0.015 (9) | 0.000 (10) |
O6W | 0.22 (4) | 0.16 (3) | 0.21 (3) | 0.05 (3) | 0.06 (3) | −0.01 (3) |
O7W | 0.21 (5) | 0.21 (5) | 0.16 (4) | 0.08 (5) | −0.09 (4) | −0.02 (4) |
Ag1—N1 | 2.550 (5) | O4—C8 | 1.241 (9) |
Ag1—O1i | 2.470 (5) | N1—C1 | 1.324 (8) |
Ag1—O4ii | 2.466 (6) | N1—C2ii | 1.334 (8) |
Ag1—S1 | 2.926 (2) | C1—C2 | 1.399 (9) |
Ag1—S1iii | 2.604 (2) | C1—C3 | 1.509 (8) |
Ag1—S2ii | 2.824 (2) | C2—C6 | 1.489 (10) |
Ag1—K1i | 4.113 (2) | C3—H3A | 0.9900 |
K1—O2Wiv | 2.46 (2) | C3—H3B | 0.9900 |
K1—O1 | 3.289 (6) | C4—C5 | 1.512 (10) |
K1—O2 | 2.729 (6) | C4—H4A | 0.9900 |
K1—O3v | 2.724 (6) | C4—H4B | 0.9900 |
K1—O3vi | 2.751 (6) | C6—H6A | 0.9900 |
K1—O4vii | 2.608 (6) | C6—H6B | 0.9900 |
K1—O1Wviii | 2.84 (3) | C7—C8 | 1.523 (12) |
K1—O3Wiv | 2.848 (17) | C7—H7A | 0.9900 |
K1—O4Wiv | 3.05 (2) | C7—H7B | 0.9900 |
K1—C5 | 3.162 (7) | O1W—O6Wiv | 0.93 (4) |
K1—O5Wiv | 3.26 (2) | O1W—O5Wiv | 1.22 (4) |
K1—O6Wix | 3.30 (4) | O2W—O5W | 1.13 (3) |
S1—C3 | 1.803 (6) | O2W—O3W | 1.19 (3) |
S1—C4 | 1.824 (8) | O2W—O6W | 1.81 (4) |
S2—C7 | 1.808 (8) | O3W—O4W | 1.55 (3) |
S2—C6 | 1.811 (7) | O5W—O6W | 0.94 (4) |
O1—C5 | 1.263 (9) | O5W—O7Wx | 1.66 (6) |
O2—C5 | 1.256 (9) | O7W—O7Wxi | 1.53 (11) |
O3—C8 | 1.262 (9) | ||
O4ii—Ag1—O1i | 90.01 (19) | C7—S2—C6 | 103.3 (4) |
O4ii—Ag1—N1 | 110.25 (18) | C7—S2—Ag1ii | 98.5 (3) |
O1i—Ag1—N1 | 84.78 (17) | C6—S2—Ag1ii | 86.3 (2) |
O4ii—Ag1—S1iii | 96.08 (14) | C5—O1—Ag1iii | 127.6 (5) |
O1i—Ag1—S1iii | 108.15 (12) | C5—O1—K1 | 73.1 (4) |
N1—Ag1—S1iii | 150.87 (13) | Ag1iii—O1—K1 | 90.02 (15) |
O4ii—Ag1—S2ii | 69.66 (14) | C5—O2—K1 | 98.2 (4) |
O1i—Ag1—S2ii | 138.52 (12) | C8—O3—K1v | 113.7 (5) |
N1—Ag1—S2ii | 70.23 (12) | C8—O3—K1xii | 126.4 (5) |
S1iii—Ag1—S2ii | 109.63 (5) | K1v—O3—K1xii | 115.0 (2) |
O4ii—Ag1—S1 | 165.62 (14) | C8—O4—Ag1ii | 124.0 (6) |
O1i—Ag1—S1 | 75.65 (14) | C8—O4—K1xiii | 127.6 (5) |
N1—Ag1—S1 | 70.04 (12) | Ag1ii—O4—K1xiii | 108.3 (2) |
S1iii—Ag1—S1 | 87.60 (4) | C1—N1—C2ii | 119.9 (6) |
S2ii—Ag1—S1 | 122.15 (6) | C1—N1—Ag1 | 120.9 (4) |
O4ii—Ag1—K1i | 37.02 (14) | C2ii—N1—Ag1 | 114.4 (4) |
O1i—Ag1—K1i | 53.08 (13) | N1—C1—C2 | 121.4 (5) |
N1—Ag1—K1i | 105.00 (13) | N1—C1—C3 | 115.9 (6) |
S1iii—Ag1—K1i | 103.54 (5) | C2—C1—C3 | 122.7 (6) |
S2ii—Ag1—K1i | 101.25 (5) | N1ii—C2—C1 | 118.7 (6) |
S1—Ag1—K1i | 128.60 (5) | N1ii—C2—C6 | 115.6 (6) |
Ag1i—S1—Ag1 | 129.26 (7) | C1—C2—C6 | 125.6 (5) |
O2Wiv—K1—O4vii | 169.6 (6) | C1—C3—S1 | 112.2 (4) |
O2Wiv—K1—O3v | 86.3 (6) | C1—C3—H3A | 109.2 |
O4vii—K1—O3v | 94.50 (18) | S1—C3—H3A | 109.2 |
O2Wiv—K1—O2 | 88.2 (6) | C1—C3—H3B | 109.2 |
O4vii—K1—O2 | 89.60 (19) | S1—C3—H3B | 109.2 |
O3v—K1—O2 | 170.9 (2) | H3A—C3—H3B | 107.9 |
O2Wiv—K1—O3vi | 74.4 (6) | C5—C4—S1 | 109.6 (5) |
O4vii—K1—O3vi | 116.0 (2) | C5—C4—H4A | 109.7 |
O3v—K1—O3vi | 86.76 (14) | S1—C4—H4A | 109.7 |
O2—K1—O3vi | 98.72 (18) | C5—C4—H4B | 109.7 |
O2Wiv—K1—O1Wviii | 103.5 (8) | S1—C4—H4B | 109.7 |
O4vii—K1—O1Wviii | 66.6 (6) | H4A—C4—H4B | 108.2 |
O3v—K1—O1Wviii | 79.4 (6) | O2—C5—O1 | 126.8 (7) |
O2—K1—O1Wviii | 94.8 (6) | O2—C5—C4 | 115.7 (7) |
O3vi—K1—O1Wviii | 166.2 (6) | O1—C5—C4 | 117.4 (7) |
O2Wiv—K1—O3Wiv | 24.4 (6) | O2—C5—K1 | 58.7 (4) |
O4vii—K1—O3Wiv | 145.2 (5) | O1—C5—K1 | 84.4 (4) |
O3v—K1—O3Wiv | 91.9 (4) | C4—C5—K1 | 132.6 (5) |
O2—K1—O3Wiv | 80.2 (4) | C2—C6—S2 | 105.7 (5) |
O3vi—K1—O3Wiv | 98.4 (5) | C2—C6—H6A | 110.6 |
O1Wviii—K1—O3Wiv | 81.2 (8) | S2—C6—H6A | 110.6 |
O2Wiv—K1—O4Wiv | 54.0 (7) | C2—C6—H6B | 110.6 |
O4vii—K1—O4Wiv | 115.6 (4) | S2—C6—H6B | 110.6 |
O3v—K1—O4Wiv | 90.3 (5) | H6A—C6—H6B | 108.7 |
O2—K1—O4Wiv | 80.6 (5) | C8—C7—S2 | 117.4 (5) |
O3vi—K1—O4Wiv | 128.4 (4) | C8—C7—H7A | 108.0 |
O1Wviii—K1—O4Wiv | 51.4 (7) | S2—C7—H7A | 108.0 |
O3Wiv—K1—O4Wiv | 30.2 (6) | C8—C7—H7B | 108.0 |
O2Wiv—K1—C5 | 94.6 (6) | S2—C7—H7B | 108.0 |
O4vii—K1—C5 | 87.3 (2) | H7A—C7—H7B | 107.2 |
O3v—K1—C5 | 165.0 (2) | O4—C8—O3 | 124.6 (9) |
O2—K1—C5 | 23.16 (17) | O4—C8—C7 | 120.7 (7) |
O3vi—K1—C5 | 79.11 (18) | O3—C8—C7 | 114.8 (7) |
O1Wviii—K1—C5 | 114.7 (6) | O4—C8—K1v | 117.4 (5) |
O3Wiv—K1—C5 | 95.1 (5) | O3—C8—K1v | 46.6 (4) |
O4Wiv—K1—C5 | 102.4 (5) | C7—C8—K1v | 102.3 (4) |
O2Wiv—K1—O5Wiv | 16.3 (6) | O4—C8—K1xiii | 36.1 (4) |
O4vii—K1—O5Wiv | 169.7 (4) | O3—C8—K1xiii | 92.8 (5) |
O3v—K1—O5Wiv | 95.3 (4) | C7—C8—K1xiii | 147.2 (5) |
O2—K1—O5Wiv | 81.2 (5) | K1v—C8—K1xiii | 83.44 (19) |
O3vi—K1—O5Wiv | 61.4 (4) | O6Wiv—O1W—O5Wiv | 50 (3) |
O1Wviii—K1—O5Wiv | 118.5 (7) | O6Wiv—O1W—K1xiv | 112 (4) |
O3Wiv—K1—O5Wiv | 37.5 (6) | O5Wiv—O1W—K1xiv | 155 (2) |
O4Wiv—K1—O5Wiv | 67.6 (5) | O5W—O2W—O3W | 119 (3) |
C5—K1—O5Wiv | 82.5 (4) | O5W—O2W—O6W | 27 (2) |
O2Wiv—K1—O1 | 112.9 (6) | O3W—O2W—O6W | 143 (2) |
O4vii—K1—O1 | 71.53 (16) | O5W—O2W—K1xv | 126.2 (17) |
O3v—K1—O1 | 146.36 (18) | O3W—O2W—K1xv | 96.4 (16) |
O2—K1—O1 | 42.72 (15) | O6W—O2W—K1xv | 117.0 (16) |
O3vi—K1—O1 | 73.37 (15) | O2W—O3W—O4W | 138 (2) |
O1Wviii—K1—O1 | 119.2 (6) | O2W—O3W—K1xv | 59.1 (13) |
O3Wiv—K1—O1 | 117.2 (5) | O4W—O3W—K1xv | 82.0 (11) |
O4Wiv—K1—O1 | 123.3 (5) | O3W—O4W—K1xv | 67.8 (10) |
C5—K1—O1 | 22.47 (17) | O6W—O5W—O2W | 121 (4) |
O5Wiv—K1—O1 | 98.4 (4) | O6W—O5W—O1Wxv | 49 (3) |
O2Wiv—K1—O6Wix | 95.0 (8) | O2W—O5W—O1Wxv | 131 (2) |
O4vii—K1—O6Wix | 76.0 (7) | O6W—O5W—O7Wx | 111 (4) |
O3v—K1—O6Wix | 66.1 (7) | O2W—O5W—O7Wx | 122 (3) |
O2—K1—O6Wix | 107.3 (7) | O1Wxv—O5W—O7Wx | 101 (3) |
O3vi—K1—O6Wix | 151.6 (7) | O6W—O5W—K1xv | 107 (3) |
O1Wviii—K1—O6Wix | 15.1 (8) | O2W—O5W—K1xv | 37.5 (13) |
O3Wiv—K1—O6Wix | 75.6 (9) | O1Wxv—O5W—K1xv | 95.3 (16) |
O4Wiv—K1—O6Wix | 48.4 (8) | O7Wx—O5W—K1xv | 140 (2) |
C5—K1—O6Wix | 128.6 (7) | O1Wxv—O6W—O5W | 82 (4) |
O5Wiv—K1—O6Wix | 111.1 (7) | O1Wxv—O6W—O2W | 98 (4) |
O1—K1—O6Wix | 134.3 (7) | O5W—O6W—O2W | 32 (2) |
C3—S1—C4 | 99.7 (3) | O1Wxv—O6W—K1xvi | 53 (3) |
C3—S1—Ag1i | 97.3 (2) | O5W—O6W—K1xvi | 131 (4) |
C4—S1—Ag1i | 110.7 (2) | O2W—O6W—K1xvi | 151 (2) |
C3—S1—Ag1 | 92.9 (2) | O7Wxi—O7W—O5Wx | 96 (3) |
C4—S1—Ag1 | 116.3 (3) | ||
C2ii—N1—C1—C2 | 0.9 (10) | K1xii—O3—C8—C7 | 70.3 (8) |
Ag1—N1—C1—C2 | −153.3 (5) | K1xii—O3—C8—K1v | 153.8 (8) |
C2ii—N1—C1—C3 | −175.4 (6) | K1v—O3—C8—K1xiii | 78.2 (4) |
Ag1—N1—C1—C3 | 30.4 (7) | K1xii—O3—C8—K1xiii | −128.0 (4) |
N1—C1—C2—N1ii | −0.9 (10) | S2—C7—C8—O4 | 1.5 (10) |
C3—C1—C2—N1ii | 175.2 (6) | S2—C7—C8—O3 | −178.3 (5) |
N1—C1—C2—C6 | −177.5 (6) | S2—C7—C8—K1v | 134.0 (4) |
C3—C1—C2—C6 | −1.4 (10) | S2—C7—C8—K1xiii | 37.0 (11) |
N1—C1—C3—S1 | −61.4 (7) | O5W—O2W—O3W—O4W | 162 (3) |
C2—C1—C3—S1 | 122.3 (6) | O6W—O2W—O3W—O4W | 179 (3) |
C4—S1—C3—C1 | −66.2 (6) | K1xv—O2W—O3W—O4W | 24 (3) |
Ag1i—S1—C3—C1 | −178.7 (5) | O5W—O2W—O3W—K1xv | 138 (3) |
Ag1—S1—C3—C1 | 51.1 (5) | O6W—O2W—O3W—K1xv | 155 (4) |
C3—S1—C4—C5 | 165.4 (5) | O2W—O3W—O4W—K1xv | −21 (3) |
Ag1i—S1—C4—C5 | −93.0 (5) | O3W—O2W—O5W—O6W | 157 (4) |
Ag1—S1—C4—C5 | 67.3 (5) | K1xv—O2W—O5W—O6W | −78 (4) |
K1—O2—C5—O1 | 53.3 (8) | O3W—O2W—O5W—O1Wxv | −143 (3) |
K1—O2—C5—C4 | −125.8 (5) | O6W—O2W—O5W—O1Wxv | 60 (4) |
Ag1iii—O1—C5—O2 | 33.0 (11) | K1xv—O2W—O5W—O1Wxv | −18 (5) |
K1—O1—C5—O2 | −43.5 (7) | O3W—O2W—O5W—O7Wx | 7 (4) |
Ag1iii—O1—C5—C4 | −147.9 (5) | O6W—O2W—O5W—O7Wx | −150 (6) |
K1—O1—C5—C4 | 135.6 (6) | K1xv—O2W—O5W—O7Wx | 132 (3) |
Ag1iii—O1—C5—K1 | 76.5 (5) | O3W—O2W—O5W—K1xv | −125 (4) |
S1—C4—C5—O2 | −159.1 (5) | O6W—O2W—O5W—K1xv | 78 (4) |
S1—C4—C5—O1 | 21.6 (8) | O2W—O5W—O6W—O1Wxv | 120 (4) |
S1—C4—C5—K1 | 130.8 (5) | O7Wx—O5W—O6W—O1Wxv | −87 (4) |
N1ii—C2—C6—S2 | −70.4 (7) | K1xv—O5W—O6W—O1Wxv | 81 (4) |
C1—C2—C6—S2 | 106.2 (6) | O1Wxv—O5W—O6W—O2W | −120 (4) |
C7—S2—C6—C2 | 165.8 (5) | O7Wx—O5W—O6W—O2W | 153 (5) |
Ag1ii—S2—C6—C2 | 68.0 (4) | K1xv—O5W—O6W—O2W | −39 (2) |
C6—S2—C7—C8 | −69.2 (6) | O2W—O5W—O6W—K1xvi | 142 (3) |
Ag1ii—S2—C7—C8 | 18.9 (6) | O1Wxv—O5W—O6W—K1xvi | 22 (2) |
Ag1ii—O4—C8—O3 | 150.8 (6) | O7Wx—O5W—O6W—K1xvi | −65 (5) |
K1xiii—O4—C8—O3 | −32.5 (10) | K1xv—O5W—O6W—K1xvi | 103 (4) |
Ag1ii—O4—C8—C7 | −29.0 (9) | O5W—O2W—O6W—O1Wxv | −60 (5) |
K1xiii—O4—C8—C7 | 147.7 (6) | O3W—O2W—O6W—O1Wxv | −94 (5) |
Ag1ii—O4—C8—K1v | −154.8 (3) | K1xv—O2W—O6W—O1Wxv | 58 (5) |
K1xiii—O4—C8—K1v | 21.9 (8) | O3W—O2W—O6W—O5W | −34 (6) |
Ag1ii—O4—C8—K1xiii | −176.7 (9) | K1xv—O2W—O6W—O5W | 118 (4) |
K1v—O3—C8—O4 | 96.7 (8) | O5W—O2W—O6W—K1xvi | −72 (5) |
K1xii—O3—C8—O4 | −109.5 (8) | O3W—O2W—O6W—K1xvi | −106 (5) |
K1v—O3—C8—C7 | −83.5 (7) | K1xv—O2W—O6W—K1xvi | 45 (5) |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, −y+1, −z+1; (iii) −x, y−1/2, −z+1/2; (iv) −x+1, y−1/2, −z+1/2; (v) −x+1, −y+1, −z+1; (vi) x, −y+3/2, z−1/2; (vii) x, −y+1/2, z−1/2; (viii) x, y−1, z; (ix) −x+1, y−3/2, −z+1/2; (x) −x+1, −y+1, −z; (xi) −x+1, −y, −z; (xii) x, −y+3/2, z+1/2; (xiii) x, −y+1/2, z+1/2; (xiv) x, y+1, z; (xv) −x+1, y+1/2, −z+1/2; (xvi) −x+1, y+3/2, −z+1/2. |
Acknowledgements
HSE is grateful to the University of Neuchâtel for their support over the years.
Funding information
Funding for this research was provided by: Swiss National Science Foundation; University of Neuchatel.
References
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Li, C., Wang, K., Li, J. & Zhang, Q. (2020). Nanoscale, 12, 7870–7874. Web of Science CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Masci, B., Pasquale, S. & Thuéry, P. (2010). Cryst. Growth Des. 10, 2004–2010. Web of Science CSD CrossRef CAS Google Scholar
Pacifico, J. (2003). PhD thesis, University of Neuchâtel, Switzerland. Google Scholar
Pacifico, J. & Stoeckli-Evans, H. (2021a). Acta Cryst. E77, 480–490. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pacifico, J. & Stoeckli-Evans, H. (2021b). IUCrData, x211295. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.