organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-(4-Hy­dr­oxy-2-nitro­phen­yl)acetamide

crossmark logo

aDepartment of Environmental Toxicology, College of Agriculture, Southern University and A&M College, Baton Rouge, LA 70813, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: rao_uppu@subr.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 January 2022; accepted 20 February 2022; online 25 February 2022)

The title compound, C8H8N2O4, differs in its degree of planarity from the 3-nitro isomer and also in its hydrogen-bonding pattern. Its NH group forms an intra­molecular hydrogen bond to a nitro oxygen atom, and its OH group forms an inter­molecular hydrogen bond to an amide oxygen atom, generating [10[\overline{1}]] chains in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The putative free-radical products of the per­oxy­nitrite anion (PN)—CO2 reaction (.NO2 and CO3.–) have long been thought to constitute an important source of non-CYP450-mediated oxidative biotransformation of N-(4-hy­droxy­phen­yl)acetamide (4-HPA; acetamino­phen or paracetamol) and other xenobiotics (Babu et al., 2012[Babu, S., Vellore, N. A., Kasibotla, A. V., Dwayne, H. J., Stubblefield, M. A. & Uppu, R. M. (2012). Biochem. Biophys. Res. Commun. 426, 215-220.]; Dou et al., 2017[Dou, X., Li, J. Z., Danelisen, I., Trush, M. A., Misra, H. P., Zhu, H., Jia, Z. & Li, Y. R. (2017). Reactive Oxygen Species 3, 127-134.]; Gernapudi et al., 2009[Gernapudi, R., Babu, S., Raghavamenon, A. C. & Uppu, R. M. (2009). FASEB J, 23 (Suppl. 1), 397. https://faseb.onlinelibrary.wiley.com/doi/10.1096/fasebj.23.1_supplement.LB397]; Rangan et al., 2006[Rangan, V., Perumal, T. E., Sathishkumar, K. & Uppu, R. M. (2006). Toxicologist (supplement to Toxicol. Sci.) 90, 242-243. https://www.toxicology.org/pubs/docs/Tox/2006Tox.pdf]; Uppu et al., 2005[Uppu, R. M., Sathishkumar, K. & Perumal, T. (2005). Free Radic. Biol. Med. 39 (Suppl. 1) 39, 15. https://www.sciencedirect.com/journal/free-radical-biology-and-medicine/vol/39/suppl/S1]). In reactions of 4-HPA/PN/CO2, we find that N-(4-hy­droxy-3-nitro­phen­yl)acetamide is one of the major products formed along with N,N′-(6,6′-dihy­droxy[1,1′-biphen­yl]-3,3′-di­yl)bis­acetamide (dimer of 4-HPA) and a metastable N-acetyl-1,4-benzo­quinone (NBQI; demonstrated through its binding to N-acetyl-L-cysteine; Uppu & Martin, 2005[Uppu, R. M. & Martin, R. J. (2005). Toxicologist (supplement to Toxicol. Sci.), 319. https://www.toxicology.org/pubs/docs/Tox/2005Tox.pdf]; Deere et al., 2022[Deere, C. J., Hines, J. E. III & Uppu, R. M. (2022). Unpublished.]). It was shown that NBQI can react with electrophiles such as the nitrite ion and form yet another nitro product, N-(4-hy­droxy-2-nitro­phen­yl)acetamide (Matsuno et al., 1989[Matsuno, T., Matsukawa, T., Sakuma, Y. & Kunieda, T. (1989). Chem. Pharm. Bull. 37, 1422-1423.]). Although we did not find evidence for the formation of this 2-nitro isomer in 4-HPA/PN/CO2 reactions, we believe that this isomer along with other oxidation products of 4-HPA may play a role in the pharmacology and toxicology of 4-HPA (4-HPA overdose, either unintentional or intentional, is the most common cause of hepatic failure in the USA and elsewhere).

Towards a better understanding of this chemistry, we have synthesized N-(4-hy­droxy-2-nitro­phen­yl)acetamide and N-(4-hy­droxy-3-nitro­phen­yl)acetamide and determined their single-crystal structures. Interestingly, the 2-nitro and 3-nitro isomers have significantly different degrees of mol­ecular planarity in the solid-state and also differ in their hydrogen bonding patterns.

In N-(4-hy­droxy-2-nitro­phen­yl)acetamide, Fig. 1[link], the mol­ecule is nearly planar, with an r.m.s. deviation of 0.035 Å for the non-hydrogen atoms. The acetamido group has the largest deviation, with a 5.1 (2)° twist about its central C7—N2 bond. The N—H group forms an intra­molecular hydrogen bond (Table 1[link]) to O3 (part of the nitro group) having an N⋯O distance of 2.6363 (15) Å and N—H⋯O angle of 139.6 (15)°. The hy­droxy group forms an inter­molecular hydrogen bond to acetamido atom O4 with O⋯O = 2.7183 (14) Å and O—H⋯O = 172.0 (18)°, thereby forming chains propagating in the [10[\overline{1}]] direction (Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O4i 0.84 (2) 1.88 (2) 2.7183 (14) 172.0 (18)
N2—H2N⋯O3 0.883 (19) 1.901 (17) 2.6363 (15) 139.6 (15)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule with 50% displacement ellipsoids.
[Figure 2]
Figure 2
The hydrogen-bonded chain.
[Figure 3]
Figure 3
The unit cell of the title compound.

The crystal structure of N-(4-hy­droxy-3-nitro­phen­yl)acetamide has been reported (Salahifar et al., 2015[Salahifar, E., Nematollahi, D., Bayat, M., Mahyari, A. & Rudbari, H. A. (2015). Org. Lett. 17, 4666-4669.]; Deere et al., 2019[Deere, C. J., Hines, J. E. III, Agu, O. A. & Fronczek, F. R. (2019). CSD Communication (CCDC 1910293). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc223tcd.]). It is significantly less planar than the title compound, with the acetamido group twisted out of the plane of the phenyl group by 9.0 (2)° and the nitro group twisted out of the phenyl plane by 11.8 (2)°. Its hydrogen-bonding pattern also differs, with the N—H group forming an inter­molecular hydrogen bond to the acetamido O atom [N⋯O = 2.9079 (17) Å; N—H⋯O = 176.6 (19)°]. Its OH group forms a bifurcated O—H⋯(O,O) hydrogen bond, with intra­molecular component to the adjacent nitro group [O⋯O = 2.6093 (17) Å] and a longer inter­molecular component to a nitro oxygen atom of an adjacent mol­ecule [O⋯O = 3.1421 (17) Å; Deere et al., 2019[Deere, C. J., Hines, J. E. III, Agu, O. A. & Fronczek, F. R. (2019). CSD Communication (CCDC 1910293). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc223tcd.]].

Synthesis and crystallization

The title compound was synthesized by the acetyl­ation of 4-hy­droxy-2-nitro­aniline using acetic anhydride as described by Naik et al. (2004[Naik, S., Bhattacharjya, G., Kavala, V. R. & Patel, B. K. (2004). Arkivoc, pp. 55-63.]) with some minor modification (Fig. 4[link]). Briefly, 4-hy­droxy-2-nitro­aniline (3.08 g; 20 mmol) in its hydro­chloride form (prepared by addition of a slight molar excess of HCl; 26 mmol) was dissolved in 125 ml of aceto­nitrile/water (1/4, v/v). The solution was cooled in an ice bath, followed by addition of acetic anhydride (2.43 ml; 24 mmol). Then, sodium bicarbonate (3.36–5.04 g; 40–60 mmol) was added to the mixture with the contents being constantly stirred. Care was taken to maintain that the pH of the final reaction mixture was between 5.5 and 6.5. The yellow precipitate of N-(4-hy­droxy-2-nitro­phen­yl)acetamide was separ­ated by filtration and purified by recrystallization twice from aqueous solution. Single crystals were grown from methanol solution.

[Figure 4]
Figure 4
Schematic representation of the synthesis of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H8N2O4
Mr 196.16
Crystal system, space group Monoclinic, C2/c
Temperature (K) 90
a, b, c (Å) 9.6643 (3), 18.5534 (5), 9.3072 (2)
β (°) 95.5075 (14)
V3) 1661.13 (8)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.10
Crystal size (mm) 0.21 × 0.07 × 0.02
 
Data collection
Diffractometer Bruker Kappa APEXII DUO CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.872, 0.978
No. of measured, independent and observed [I > 2σ(I)] reflections 6856, 1543, 1486
Rint 0.028
(sin θ/λ)max−1) 0.607
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.13
No. of reflections 1543
No. of parameters 134
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.24
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]); ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

N-(4-Hydroxy-2-nitrophenyl)acetamide top
Crystal data top
C8H8N2O4F(000) = 816
Mr = 196.16Dx = 1.569 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 9.6643 (3) ÅCell parameters from 5235 reflections
b = 18.5534 (5) Åθ = 4.8–69.3°
c = 9.3072 (2) ŵ = 1.10 mm1
β = 95.5075 (14)°T = 90 K
V = 1661.13 (8) Å3Lath, yellow
Z = 80.21 × 0.07 × 0.02 mm
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
1543 independent reflections
Radiation source: IµS microfocus1486 reflections with I > 2σ(I)
QUAZAR multilayer optics monochromatorRint = 0.028
φ and ω scansθmax = 69.3°, θmin = 4.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 117
Tmin = 0.872, Tmax = 0.978k = 2220
6856 measured reflectionsl = 1110
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0487P)2 + 1.5639P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
1543 reflectionsΔρmax = 0.29 e Å3
134 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were located in difference maps and those on C were thereafter treated as riding in geometrically idealized positions with C—H distances 0.95 Å for phenyl and 0.98 Å for methyl. The coordinates of the N—H and O—H hydrogen atoms were refined. Uiso(H) values were assigned as 1.2Ueq for the attached atom (1.5 for OH and methyl).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.49965 (11)0.11112 (5)0.49610 (11)0.0180 (2)
H1O0.435 (2)0.1126 (10)0.551 (2)0.027*
O20.36347 (11)0.35035 (5)0.64809 (11)0.0240 (3)
O30.47807 (11)0.43019 (5)0.53985 (12)0.0239 (3)
O40.79942 (10)0.37109 (5)0.17917 (10)0.0208 (3)
N10.44852 (12)0.36642 (6)0.56392 (12)0.0163 (3)
N20.65588 (12)0.39184 (6)0.35604 (12)0.0149 (3)
H2N0.6134 (17)0.4246 (10)0.4050 (18)0.018*
C10.53400 (14)0.18008 (7)0.46502 (14)0.0143 (3)
C20.47727 (13)0.23927 (7)0.52723 (13)0.0146 (3)
H20.41130.23270.59550.018*
C30.51647 (13)0.30877 (7)0.49012 (13)0.0138 (3)
C40.61410 (13)0.32179 (7)0.39015 (13)0.0137 (3)
C50.66952 (13)0.26010 (7)0.32904 (13)0.0140 (3)
H50.73560.26590.26060.017*
C60.63082 (13)0.19119 (7)0.36548 (13)0.0143 (3)
H60.67080.15090.32200.017*
C70.74622 (13)0.41291 (7)0.25993 (14)0.0152 (3)
C80.77664 (15)0.49227 (7)0.26014 (16)0.0211 (3)
H8A0.84740.50360.33950.032*
H8B0.69140.51920.27290.032*
H8C0.81090.50580.16810.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0214 (5)0.0120 (5)0.0220 (5)0.0007 (4)0.0096 (4)0.0002 (4)
O20.0279 (6)0.0189 (5)0.0287 (6)0.0003 (4)0.0202 (4)0.0005 (4)
O30.0298 (6)0.0121 (5)0.0327 (6)0.0014 (4)0.0180 (5)0.0002 (4)
O40.0256 (5)0.0158 (5)0.0234 (5)0.0000 (4)0.0141 (4)0.0013 (4)
N10.0175 (6)0.0143 (6)0.0182 (6)0.0003 (4)0.0073 (4)0.0003 (4)
N20.0148 (6)0.0129 (5)0.0179 (6)0.0009 (4)0.0061 (4)0.0006 (4)
C10.0142 (6)0.0132 (6)0.0155 (6)0.0010 (5)0.0005 (5)0.0010 (5)
C20.0143 (6)0.0159 (7)0.0143 (6)0.0002 (5)0.0041 (5)0.0001 (5)
C30.0140 (6)0.0141 (7)0.0136 (6)0.0017 (5)0.0026 (5)0.0019 (5)
C40.0124 (6)0.0153 (6)0.0133 (6)0.0002 (5)0.0004 (5)0.0004 (5)
C50.0122 (6)0.0165 (7)0.0138 (6)0.0003 (5)0.0031 (5)0.0003 (5)
C60.0134 (6)0.0152 (6)0.0145 (6)0.0016 (5)0.0025 (5)0.0013 (5)
C70.0142 (6)0.0143 (6)0.0173 (6)0.0006 (5)0.0028 (5)0.0010 (5)
C80.0245 (7)0.0142 (7)0.0266 (7)0.0006 (5)0.0125 (6)0.0002 (5)
Geometric parameters (Å, º) top
O1—C11.3599 (16)C2—C31.3966 (18)
O1—H1O0.84 (2)C2—H20.9500
O2—N11.2255 (15)C3—C41.4081 (18)
O3—N11.2424 (15)C4—C51.4067 (18)
O4—C71.2270 (17)C5—C61.3835 (18)
N1—C31.4608 (17)C5—H50.9500
N2—C71.3657 (18)C6—H60.9500
N2—C41.4063 (17)C7—C81.5014 (18)
N2—H2N0.883 (19)C8—H8A0.9800
C1—C21.3795 (18)C8—H8B0.9800
C1—C61.3938 (19)C8—H8C0.9800
C1—O1—H1O108.0 (12)N2—C4—C3122.20 (12)
O2—N1—O3121.80 (11)C5—C4—C3115.65 (12)
O2—N1—C3118.79 (11)C6—C5—C4122.03 (12)
O3—N1—C3119.41 (11)C6—C5—H5119.0
C7—N2—C4128.89 (12)C4—C5—H5119.0
C7—N2—H2N119.9 (11)C5—C6—C1120.94 (12)
C4—N2—H2N111.2 (11)C5—C6—H6119.5
O1—C1—C2123.01 (12)C1—C6—H6119.5
O1—C1—C6118.27 (12)O4—C7—N2123.52 (12)
C2—C1—C6118.72 (12)O4—C7—C8121.83 (12)
C1—C2—C3120.20 (12)N2—C7—C8114.66 (11)
C1—C2—H2119.9C7—C8—H8A109.5
C3—C2—H2119.9C7—C8—H8B109.5
C2—C3—C4122.46 (12)H8A—C8—H8B109.5
C2—C3—N1114.51 (11)C7—C8—H8C109.5
C4—C3—N1123.02 (12)H8A—C8—H8C109.5
N2—C4—C5122.14 (12)H8B—C8—H8C109.5
O1—C1—C2—C3179.68 (11)N1—C3—C4—N21.39 (19)
C6—C1—C2—C30.19 (19)C2—C3—C4—C50.31 (18)
C1—C2—C3—C40.29 (19)N1—C3—C4—C5180.00 (11)
C1—C2—C3—N1180.00 (11)N2—C4—C5—C6178.36 (11)
O2—N1—C3—C21.17 (17)C3—C4—C5—C60.25 (18)
O3—N1—C3—C2178.91 (11)C4—C5—C6—C10.18 (19)
O2—N1—C3—C4179.12 (12)O1—C1—C6—C5179.74 (11)
O3—N1—C3—C40.79 (19)C2—C1—C6—C50.13 (19)
C7—N2—C4—C53.1 (2)C4—N2—C7—O45.1 (2)
C7—N2—C4—C3178.38 (12)C4—N2—C7—C8174.86 (12)
C2—C3—C4—N2178.30 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O4i0.84 (2)1.88 (2)2.7183 (14)172.0 (18)
N2—H2N···O30.883 (19)1.901 (17)2.6363 (15)139.6 (15)
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Funding information

The authors acknowledge the support from the National Institutes of Health (NIH) through the National Institute of General Medical Science (NIGMS) grant No. 5 P2O GM103424–17 and the US Department of Education (US DoE; Title III, HBGI Part B grant No. P031B040030). Its contents are solely the responsibility of authors and do not represent the official views of NIH, NIGMS, or US DoE. The upgrade of the diffractometer was made possible by grant No. LEQSF(2011–12)-ENH-TR-01, administered by the Louisiana Board of Regents.

References

First citationBabu, S., Vellore, N. A., Kasibotla, A. V., Dwayne, H. J., Stubblefield, M. A. & Uppu, R. M. (2012). Biochem. Biophys. Res. Commun. 426, 215–220.  CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeere, C. J., Hines, J. E. III, Agu, O. A. & Fronczek, F. R. (2019). CSD Communication (CCDC 1910293). CCDC, Cambridge, England. https://doi.org/10.5517/ccdc.csd.cc223tcd.  Google Scholar
First citationDeere, C. J., Hines, J. E. III & Uppu, R. M. (2022). Unpublished.  Google Scholar
First citationDou, X., Li, J. Z., Danelisen, I., Trush, M. A., Misra, H. P., Zhu, H., Jia, Z. & Li, Y. R. (2017). Reactive Oxygen Species 3, 127–134.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGernapudi, R., Babu, S., Raghavamenon, A. C. & Uppu, R. M. (2009). FASEB J, 23 (Suppl. 1), 397. https://faseb.onlinelibrary.wiley.com/doi/10.1096/fasebj.23.1_supplement.LB397  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatsuno, T., Matsukawa, T., Sakuma, Y. & Kunieda, T. (1989). Chem. Pharm. Bull. 37, 1422–1423.  CrossRef CAS Google Scholar
First citationNaik, S., Bhattacharjya, G., Kavala, V. R. & Patel, B. K. (2004). Arkivoc, pp. 55–63.  CrossRef Google Scholar
First citationRangan, V., Perumal, T. E., Sathishkumar, K. & Uppu, R. M. (2006). Toxicologist (supplement to Toxicol. Sci.) 90, 242–243. https://www.toxicology.org/pubs/docs/Tox/2006Tox.pdf  Google Scholar
First citationSalahifar, E., Nematollahi, D., Bayat, M., Mahyari, A. & Rudbari, H. A. (2015). Org. Lett. 17, 4666–4669.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUppu, R. M. & Martin, R. J. (2005). Toxicologist (supplement to Toxicol. Sci.), 319. https://www.toxicology.org/pubs/docs/Tox/2005Tox.pdf  Google Scholar
First citationUppu, R. M., Sathishkumar, K. & Perumal, T. (2005). Free Radic. Biol. Med. 39 (Suppl. 1) 39, 15. https://www.sciencedirect.com/journal/free-radical-biology-and-medicine/vol/39/suppl/S1  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds