organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(2-amino­benzimidazolium) sulfate monohydrate

crossmark logo

aDepartamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 14-740, Ciudad de Mexico, CP 07000, Mexico, and bFacultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km 33.5, Tablaje Catastral 13615, Chuburna de Hidalgo Inn, Mérida, Yucatan, C.P 97203, Mexico
*Correspondence e-mail: aflores@cinvestav.mx

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 December 2021; accepted 14 February 2022; online 22 February 2022)

In the title hydrated mol­ecular salt, 2C7H8N3+·SO42−·H2O, the components are linked by numerous N—H⋯O and O—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

2-Amino­benzimidazole has been used for the synthesis of a series of sulfur heterocycles such as 9H-3-thia-1,4a,9-tri­aza-fluorene-2,4-di­thione (1): its potassium thiol­ate salt was used to prepare metal coordination compounds (Peña-Hueso et al., 2008[Peña-Hueso, A., Esparza-Ruiz, A., Ramos-García, I., Flores-Parra, A. & Contreras, R. (2008). J. Organomet. Chem. 693, 492-504.]), and is the precursor of the title compound. When compound 1 is dissolved in dimethyl sulfoxide and strong acids are added, instead of producing the protonated derivative, the thia­diazine ring breaks down, producing 2-amino­benzimidazolium sulfate (2): its crystal structural features are the subject of the present paper.

Compound 2 is formed by the transfer of two protons from sulfuric acid to the heterocycle: the crystal has two 2-amino­benzimidazolium cations, one sulfate anion and one water mol­ecule in its asymmetric unit (Fig. 1[link]). There is a small asymmetry in the S—O bond lengths of the SO42– ion from 1.4596 (16) to 1.4723 (15) Å, probably caused by the hydrogen bonds around the anion (Gagné & Hawthorne, 2018[Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 79-96.]). Two benzimidazolium cations are stacked in a head-to-tail way, with a distance between C9 of one mol­ecule and C18 of another of 3.441 (3) Å.

[Figure 1]
Figure 1
The mol­ecular structure of 2 showing displacement ellipsoids drawn at the 50% probability level

The sulfate ion accepts seven N—H⋯O hydrogen bonds from four adjacent benzimidazolium cations and one O—H⋯O link from a water mol­ecule (Table 1[link], Fig. 2[link]). The water mol­ecule accepts one N—H⋯O hydrogen bond and forms two O—H⋯O links to two SO42– ions (Fig. 3[link]). In the extended structure, the benzimidazolium cations form parallel ribbons propagating in the [010] direction (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O25i 0.81 (4) 2.25 (3) 2.946 (3) 144 (3)
N3—H3⋯O22ii 0.83 (3) 1.93 (3) 2.749 (3) 172 (3)
N11—H11⋯O23 0.85 (4) 1.96 (4) 2.786 (4) 166 (3)
N13—H13⋯O24iii 0.83 (4) 1.91 (4) 2.720 (3) 165 (3)
N10—H101⋯O23i 0.87 (4) 2.03 (4) 2.894 (5) 169 (3)
N10—H102⋯O25ii 0.89 (3) 2.00 (3) 2.890 (3) 175 (3)
N20—H201⋯O26iii 0.84 (3) 2.04 (3) 2.853 (4) 165 (3)
N20—H202⋯O22iii 0.93 (4) 2.09 (4) 2.973 (4) 157 (3)
O26—H261⋯O24iv 0.80 (7) 2.22 (7) 2.983 (4) 160 (7)
O26—H262⋯O24v 0.80 (7) 2.14 (7) 2.860 (4) 150 (6)
C17—H17⋯O22 0.95 2.56 3.272 (3) 132
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Hydrogen-bond environment around the sulfate anion.
[Figure 3]
Figure 3
Network of hydrogen bonds (dashed lines) involving the water mol­ecules and sulfate ions.
[Figure 4]
Figure 4
The unit-cell packing showing [010] ribbons of cations linked by sulfate anions.

The first crystal structure of a 2-amino­benzimidazolium salt was reported with the nitrate anion (Bats et al., 1999[Bats, J. W., Gördes, D. & Schmalz, H.-G. (1999). Acta Cryst. C55, 1325-1328.]) and a related structure with hydrogen sulfate as the counter-ion is also known (You et al., 2009[You, W., Fan, Y., Qian, H.-F., Yao, C. & Huang, W. (2009). Acta Cryst. E65, o115.]).

Synthesis and crystallization

The decomposition of 9H-3-thia-1,4a,9-tri­aza-fluorene-2,4-di­thione with dilute aqueous H2SO4 in DMSO afforded the title compound 2, m.p. 287–289°C. IR (KBr), ν (cm−1): 3285 (N—H), 1682 (C=N), 1520 (C=C), 1478 (C—N). NMR (DMSO-d6, p.p.m.) δ 1H: 7.27 (H4, H7); 7.09 (H5, H6); 13.18 (N1—H, N3—H); 8.70 (NH2). δ 13C: 152.1 (C2); 111.8 (C4, C7); 123.4 (C5, C6); 130.4 (C8, C9). δ 15N: −257.1 (N1, N3); −312.9 (N10). Analysis calculated (%) for C16H16N6SO5: C, 43.97; H, 4.74; N, 21.98. Found: C, 43.50; H, 4.80; N, 21.80. The chemical shifts of C2 (152.1 p.p.m.), C8 and C9 (130.4 p.p.m.) in the 13C NMR spectrum indicate that the endocyclic nitro­gen atoms are protonated, in agreement with the crystal structure.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula 2C7H8N3+·SO42−·H2O
Mr 382.4
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 12.1115 (2), 10.6282 (2), 17.4772 (3)
β (°) 127.723 (1)
V3) 1779.48 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.25 × 0.25 × 0.17
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 3.0σ(I)] reflections 9132, 4563, 2429
Rint 0.04
(sin θ/λ)max−1) 0.675
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.050, 1.03
No. of reflections 2429
No. of parameters 265
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.31
Computer programs: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press. https://doi.org/10.1016/S0076-6879(97)76066-X]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. W. (1996). CRYSTALS. Chemical Crystallography Laboratory, University of Oxford, England.]).

Structural data


Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Bis(2-aminobenzimidazolium) sulfate monohydrate top
Crystal data top
2C7H8N3+·SO42·H2OF(000) = 800
Mr = 382.4Dx = 1.427 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4784 reflections
a = 12.1115 (2) Åθ = 1–29°
b = 10.6282 (2) ŵ = 0.22 mm1
c = 17.4772 (3) ÅT = 293 K
β = 127.723 (1)°Prism, colourless
V = 1779.48 (6) Å30.25 × 0.25 × 0.17 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2429 reflections with I > 3.0σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.04
Graphite monochromatorθmax = 28.7°, θmin = 2.1°
Detector resolution: 9 pixels mm-1h = 1516
φ & ω scansk = 1414
9132 measured reflectionsl = 2323
4563 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.03 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.914 0.838 0.564 0.170 0.849E-01
2429 reflections(Δ/σ)max = 0.0002
265 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The positions of all NH and OH hydrogen atoms were refined, and all CH were placed at ideal positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.5660 (3)0.1533 (2)0.12552 (17)0.0484
C40.5449 (3)0.1836 (2)0.0688 (2)0.0626
C50.6271 (4)0.1200 (3)0.1556 (2)0.0725
C60.7293 (3)0.0372 (3)0.1756 (2)0.0728
C70.7524 (3)0.0132 (3)0.1090 (2)0.0682
C80.6705 (3)0.0761 (2)0.02241 (18)0.0503
C90.5691 (2)0.1616 (2)0.00250 (16)0.047
C120.9604 (2)0.2887 (2)0.21087 (16)0.047
C140.8306 (3)0.3839 (3)0.0275 (2)0.0719
C150.7199 (4)0.4642 (3)0.0859 (2)0.0819
C160.6467 (4)0.5164 (3)0.0557 (2)0.0786
C170.6837 (3)0.4930 (3)0.03457 (18)0.0617
C180.7951 (2)0.4131 (2)0.09334 (16)0.0479
C190.8659 (3)0.3583 (2)0.06268 (17)0.0521
H10.700 (3)0.023 (3)0.073 (2)0.0781*
H30.440 (3)0.256 (3)0.122 (2)0.0603*
H40.4760.23960.05530.0818*
H50.61340.13330.20130.0945*
H60.78190.00410.23430.0851*
H70.820.04250.12150.0843*
H110.830 (3)0.384 (3)0.220 (2)0.0595*
H131.021 (3)0.235 (3)0.136 (2)0.0682*
H140.87970.34820.04630.0925*
H150.69430.48490.14620.0986*
H160.56790.5680.09920.0857*
H170.63670.53090.05690.0697*
H1010.580 (3)0.137 (3)0.227 (2)0.0811*
H1020.472 (3)0.237 (3)0.247 (2)0.0806*
H2011.041 (3)0.247 (3)0.339 (2)0.07*
H2021.115 (3)0.183 (3)0.301 (2)0.0698*
H2610.979 (7)0.918 (6)0.069 (5)0.1811*
H2620.925 (6)0.838 (6)0.005 (5)0.1804*
N10.6657 (2)0.0745 (2)0.05947 (16)0.0562
N30.5078 (2)0.20819 (19)0.08953 (14)0.0477
N100.5301 (3)0.1737 (2)0.21296 (17)0.0601
N110.85749 (19)0.3685 (2)0.18649 (14)0.0479
N130.9688 (2)0.2826 (2)0.13810 (14)0.0539
N201.0417 (2)0.2263 (2)0.29315 (16)0.0582
O220.72767 (16)0.64914 (16)0.21275 (11)0.0506
O230.72874 (19)0.44104 (15)0.26788 (13)0.0584
O240.8960 (2)0.5933 (2)0.37860 (12)0.0746
O250.6554 (2)0.61476 (17)0.31313 (14)0.0657
O260.9603 (4)0.8443 (3)0.06107 (18)0.1136
S210.75054 (6)0.57563 (5)0.29273 (4)0.0431
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0604 (14)0.0435 (12)0.0537 (13)0.0027 (10)0.0411 (12)0.0021 (10)
C40.0850 (19)0.0550 (15)0.0668 (16)0.0109 (13)0.0563 (16)0.0013 (12)
C50.109 (2)0.0657 (17)0.0641 (17)0.0001 (17)0.0640 (18)0.0001 (14)
C60.087 (2)0.0733 (18)0.0555 (15)0.0049 (16)0.0420 (16)0.0142 (14)
C70.0703 (17)0.0651 (17)0.0705 (17)0.0194 (14)0.0436 (15)0.0185 (14)
C80.0577 (14)0.0464 (12)0.0551 (14)0.0060 (11)0.0388 (12)0.0017 (11)
C90.0580 (13)0.0411 (11)0.0484 (12)0.0015 (10)0.0358 (11)0.0010 (10)
C120.0421 (11)0.0541 (13)0.0449 (12)0.0005 (10)0.0266 (11)0.0062 (11)
C140.086 (2)0.087 (2)0.0555 (16)0.0163 (16)0.0498 (16)0.0027 (14)
C150.107 (3)0.085 (2)0.0498 (15)0.0272 (19)0.0461 (17)0.0063 (14)
C160.090 (2)0.0757 (19)0.0485 (15)0.0291 (17)0.0315 (15)0.0001 (14)
C170.0615 (15)0.0649 (16)0.0475 (14)0.0171 (13)0.0277 (12)0.0065 (12)
C180.0467 (12)0.0520 (13)0.0425 (12)0.0014 (10)0.0261 (11)0.0085 (10)
C190.0542 (14)0.0561 (14)0.0480 (13)0.0051 (11)0.0322 (12)0.0054 (11)
N10.0716 (14)0.0522 (12)0.0658 (13)0.0182 (11)0.0527 (12)0.0089 (10)
N30.0555 (11)0.0470 (10)0.0480 (11)0.0102 (9)0.0356 (10)0.0018 (9)
N100.0807 (16)0.0608 (13)0.0583 (13)0.0140 (11)0.0525 (13)0.0042 (10)
N110.0440 (10)0.0592 (12)0.0450 (10)0.0050 (9)0.0296 (9)0.0045 (9)
N130.0522 (12)0.0660 (13)0.0499 (11)0.0139 (10)0.0345 (10)0.0004 (10)
N200.0551 (12)0.0685 (14)0.0502 (12)0.0098 (11)0.0318 (11)0.0020 (11)
O220.0481 (9)0.0669 (10)0.0421 (8)0.0040 (7)0.0302 (8)0.0120 (7)
O230.0752 (12)0.0507 (9)0.0791 (12)0.0031 (8)0.0624 (11)0.0046 (8)
O240.0619 (11)0.1028 (15)0.0410 (9)0.0251 (11)0.0223 (9)0.0111 (9)
O250.0948 (14)0.0562 (10)0.0907 (13)0.0093 (9)0.0796 (12)0.0092 (9)
O260.144 (2)0.148 (3)0.0652 (14)0.069 (2)0.0725 (17)0.0286 (16)
S210.0483 (3)0.0508 (3)0.0396 (3)0.0046 (3)0.0317 (3)0.0008 (2)
Geometric parameters (Å, º) top
C2—N11.336 (3)C15—H150.925
C2—N31.333 (3)C16—C171.374 (4)
C2—N101.326 (3)C16—H160.95
C4—C51.380 (4)C17—C181.379 (3)
C4—C91.377 (3)C17—H170.955
C4—H40.931C18—C191.387 (3)
C5—C61.379 (4)C18—N111.393 (3)
C5—H50.92C19—N131.389 (3)
C6—C71.378 (4)H1—N10.80 (3)
C6—H60.922H3—N30.83 (3)
C7—C81.373 (4)H11—N110.85 (3)
C7—H70.921H13—N130.83 (3)
C8—C91.390 (3)H101—N100.87 (3)
C8—N11.396 (3)H102—N100.89 (3)
C9—N31.386 (3)H201—N200.83 (3)
C12—N111.343 (3)H202—N200.93 (3)
C12—N131.338 (3)H261—O260.81 (6)
C12—N201.321 (3)H262—O260.79 (6)
C14—C151.376 (4)O22—S211.4723 (15)
C14—C191.385 (4)O23—S211.4711 (18)
C14—H140.919O24—S211.4680 (19)
C15—C161.394 (4)O25—S211.4596 (16)
N1—C2—N3109.0 (2)C16—C17—H17122.5
N1—C2—N10125.7 (2)C18—C17—H17120.8
N3—C2—N10125.2 (2)C17—C18—C19121.7 (2)
C5—C4—C9117.5 (2)C17—C18—N11131.6 (2)
C5—C4—H4121.5C19—C18—N11106.7 (2)
C9—C4—H4121C18—C19—C14121.6 (2)
C4—C5—C6121.5 (3)C18—C19—N13106.5 (2)
C4—C5—H5119.2C14—C19—N13131.8 (2)
C6—C5—H5119.3C8—N1—C2109.08 (19)
C5—C6—C7121.3 (3)C8—N1—H1127 (2)
C5—C6—H6119.3C2—N1—H1122 (2)
C7—C6—H6119.4C9—N3—C2109.2 (2)
C6—C7—C8117.2 (3)C9—N3—H3128.6 (19)
C6—C7—H7122C2—N3—H3121.9 (19)
C8—C7—H7120.8H102—N10—C2117 (2)
C7—C8—C9121.8 (2)H102—N10—H101124 (3)
C7—C8—N1132.3 (2)C2—N10—H101117 (2)
C9—C8—N1106.0 (2)C18—N11—C12108.65 (18)
C8—C9—C4120.7 (2)C18—N11—H11125.7 (19)
C8—C9—N3106.76 (19)C12—N11—H11125.5 (19)
C4—C9—N3132.5 (2)C19—N13—C12109.13 (19)
N11—C12—N13109.0 (2)C19—N13—H13125 (2)
N11—C12—N20126.2 (2)C12—N13—H13126 (2)
N13—C12—N20124.8 (2)H202—N20—C12114.7 (18)
C15—C14—C19116.6 (2)H202—N20—H201124 (3)
C15—C14—H14122.8C12—N20—H201118 (2)
C19—C14—H14120.7H261—O26—H262100 (6)
C14—C15—C16121.6 (3)O22—S21—O23109.89 (10)
C14—C15—H15119.2O22—S21—O24108.29 (10)
C16—C15—H15119.3O23—S21—O24108.23 (12)
C15—C16—C17121.7 (3)O22—S21—O25111.26 (10)
C15—C16—H16119.2O23—S21—O25108.86 (10)
C17—C16—H16119.1O24—S21—O25110.26 (13)
C16—C17—C18116.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O25i0.81 (4)2.25 (3)2.946 (3)144 (3)
N3—H3···O22ii0.83 (3)1.93 (3)2.749 (3)172 (3)
N11—H11···O230.85 (4)1.96 (4)2.786 (4)166 (3)
N13—H13···O24iii0.83 (4)1.91 (4)2.720 (3)165 (3)
N10—H101···O23i0.87 (4)2.03 (4)2.894 (5)169 (3)
N10—H102···O25ii0.89 (3)2.00 (3)2.890 (3)175 (3)
N20—H201···O26iii0.84 (3)2.04 (3)2.853 (4)165 (3)
N20—H202···O22iii0.93 (4)2.09 (4)2.973 (4)157 (3)
O26—H261···O24iv0.80 (7)2.22 (7)2.983 (4)160 (7)
O26—H262···O24v0.80 (7)2.14 (7)2.860 (4)150 (6)
C17—H17···O220.952.563.272 (3)132
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z; (iii) x+2, y1/2, z+1/2; (iv) x+2, y+1/2, z+1/2; (v) x, y+3/2, z1/2.
 

Funding information

The authors thank Cinvestav for financial support.

References

First citationBats, J. W., Gördes, D. & Schmalz, H.-G. (1999). Acta Cryst. C55, 1325–1328.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 79–96.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. https://doi.org/10.1016/S0076-6879(97)76066-X  Google Scholar
First citationPeña-Hueso, A., Esparza-Ruiz, A., Ramos-García, I., Flores-Parra, A. & Contreras, R. (2008). J. Organomet. Chem. 693, 492–504.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. W. (1996). CRYSTALS. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationYou, W., Fan, Y., Qian, H.-F., Yao, C. & Huang, W. (2009). Acta Cryst. E65, o115.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds