metal-organic compounds
Bis[1,2-bis(4-chlorophenyl)ethylene-1,2-dithiolato(1–)]nickel(II)
aDepartment of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA
*Correspondence e-mail: donahue@tulane.edu
The title compound, [Ni(S2C2(C6H4-p-Cl)2)2] or [Ni(C14H8Cl2S2)2], crystallizes in the triclinic P as pairs of molecules disposed about an inversion center at the bc face of the cell. Close intermolecular C—H⋯S (2.884 Å) and C—H⋯Ni (3.032 Å) contacts that are less than the sum of the van der Waals radii appear to induce slight bowing of the molecular planes toward one another. The angles at which the four p-ClC6H4- rings join the NiS2C2 chelate rings [39.37 (9)– 53.41 (6)°] are similarly influenced by these intermolecular contacts. In the larger packing arrangement, sheets of molecules extend in the direction of the ac face diagonal.
CCDC reference: 2150616
Structure description
As seen from a survey of the Cambridge Structural Database, nickel has enjoyed the most extensive development of its coordination chemistry with dithiolene ligands that bear aryl substituents. One reason for the attention given to these nickel complexes is the application they have found as reversibly bleachable Q-switching dyes for near infrared lasers (Mueller-Westerhoff et al., 1991). Their photochemical, thermal, and chemical stability, in conjunction with the relative ease with which they are synthesized, has made such nickel bis(dithiolene) complexes impactful enough that a variety are now sold commercially. Charge-neutral, aryl-substituted nickel dithiolene complexes, [(R2C2S2)2Ni], that have been structurally characterized include the complexes where R = Ph (Megnamisi-Belombe & Nuber, 1989; Kuramoto & Asao, 1990), p-CH3C6H4– (Miao et al., 2011), p-CH3OC6H4– (Arumugam et al., 2007), p-nBuOC6H4– (Perochon et al., 2009), p-CH3(CH2)11C6H4– (Perochon et al., 2009), and 3,5-(CH3O)2-4-nBuOC6H2– (Nakazumi et al., 1992).
Compounds of this type are electrochemically rich and typically support two successive ligand-based one-electron reductions that correspond to the transformations depicted as (a) → (b) and (b) → (c) in Fig. 1. The redox-active molecular orbital has rather modest metal character and is best described as being delocalized among both dithiolene ligands, which individually may be regarded as radical monoanions but which collectively have their spins paired such that the charge-neutral state is diamagnetic. In structure (c), both dithiolene ligands are in a fully reduced ene-1,2-dithiolate dianionic state. The potentials at which these reductions occur are quite sensitive to the nature and placement of ring substituents. As part of an effort to more fully map the potential range in which the electron transfers in these complexes occur, we have undertaken the synthesis and characterization of aryl-substituted nickel(II) bis(dithiolene) complexes bearing electron-withdrawing groups. Although a known compound, the nickel(II) bis(dithiolene) variant with p-ClC6H4– substituents has not been the subject of an X-ray diffraction study, nor has a coordination compound of this ligand with any other metal. We briefly relate here the structural and crystal packing features of [((p-ClC6H4)2C2S2)2Ni].
Bis[1,2-bis(4-chlorophenyl)ethylene-1,2-dithiolato(1−)]nickel(II) crystallizes upon a general position in triclinic P (Fig. 2). Its idealized point-group symmetry is D2h if the phenyl groups are either perfectly perpendicular to, or fully planar with, the Ni(S2C2)2 core. However, the four arene rings are canted from the NiS2C2 chelate ring to which they are attached by values ranging from 38.39 (9)– 53.41 (6)°, the average being 44.87°. A similar description is pertinent to the compounds featuring phenyl, p-CH3C6H4–, and p-CH3OC6H4– substituents. The averaged S—C bond length in [(p-ClC6H4)2C2S2)2Ni] is 1.707 (1) Å. This intermediate value between S—C thione (1.63 Å, Rindorf & Carlsen, 1979; Fu et al., 1997a,b, 1998) and vinyl thioether (1.74 Å; Tian et al., 1995; Yu et al., 2011) bond lengths is due to the presence of some thione character to the bond order in the radical monoanion arising from resonance form (e) (Fig. 1), even as the ligands are coordinating to the metal. Similarly, the C—Cchelate bond lengths are between the 1.54 and 1.34 Å values that are typical of carbon–carbon sp3–sp3 single and sp2–sp2 double bonds, respectively (Carey & Sundberg, 2000), further indicating the participation of both resonance forms (d) and (e) in the electronic structure of bis[1,2-bis(4-chlorophenyl)ethylene-1,2-dithiolato(1−)]nickel(II).
The packing arrangement for bis[1,2-bis(4-chlorophenyl)ethylene-1,2-dithiolato(1−)]nickel(II) is such that molecules occur in centrosymmetric pairs around the inversion centers that occur at each bc face of the cell (Fig. 3). These pairwise associations juxtapose two molecules in a nearly parallel planar fashion but with an offset that places the phenyl groups of one ligand over the relatively open NiS4 interior of its partner molecule. Relatively close intermolecular C—H⋯S (2.884 Å) and C—H⋯Ni (3.032 Å) contacts are made (Fig. 4), two each that are related by the inversion symmetry. The C—H⋯S and C—N⋯Ni close contacts are less than the sum of the hydrogen–sulfur and hydrogen–nickel van der Waals radii (Batsanov, 2001) and appear to be favorable interactions that induce a slight but discernible concave bowing of the molecules toward one another (Fig. 4). This curvature, defined as the angle between the seven-atom mean planes given by each NiS2C2 chelate and the first carbon atom of each aryl ring, is 11.87 (5)°. It is likely that the angled disposition of some of the aryl substituents with respect to the NiS2C2 chelate have their origin in these intermolecular interactions. The larger packing arrangement is best described as translations of these centrosymmetric pairs along the a axis, the upshot of which is that extended molecular sheets are formed that are oriented in the direction of the ac face diagonal (Fig. 5).
Synthesis and crystallization
The title compound was prepared from 4,4′-dichlorobenzil, P4S10, and NiCl2·6H2O according to the literature procedure (Schrauzer & Mayweg, 1965). Yield: 50%. Intense green column-shaped crystals were grown by the diffusion of tert-butyl methyl ether vapor into a solution of the title compound in 1,2-dichloroethane.
Refinement
Crystal data, data collection and structure . One reflection affected by the beamstop was omitted from the final refinement.
details are summarized in Table 1Structural data
CCDC reference: 2150616
https://doi.org/10.1107/S2414314622001481/gg4008sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622001481/gg4008Isup2.hkl
Data collection: APEX3 (Bruker, 2020); cell
SAINT (Bruker, 2020); data reduction: SAINT (Bruker, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ni(C14H8Cl2S2)2] | Z = 2 |
Mr = 681.16 | F(000) = 688 |
Triclinic, P1 | Dx = 1.594 Mg m−3 |
a = 9.5487 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.4141 (4) Å | Cell parameters from 9023 reflections |
c = 15.0254 (6) Å | θ = 2.4–29.5° |
α = 107.486 (2)° | µ = 1.37 mm−1 |
β = 94.791 (2)° | T = 170 K |
γ = 111.423 (2)° | Column, intense green |
V = 1419.16 (10) Å3 | 0.27 × 0.15 × 0.10 mm |
Bruker D8 QUEST PHOTON 3 diffractometer | 8009 independent reflections |
Radiation source: fine-focus sealed tube | 5941 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.056 |
Detector resolution: 7.3910 pixels mm-1 | θmax = 29.7°, θmin = 2.4° |
φ and ω scans | h = −13→13 |
Absorption correction: numerical (SADABS; Krause et al., 2015) | k = −15→15 |
Tmin = 0.76, Tmax = 0.88 | l = −20→20 |
89629 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0524P)2 + 1.0724P] where P = (Fo2 + 2Fc2)/3 |
8009 reflections | (Δ/σ)max = 0.001 |
334 parameters | Δρmax = 0.78 e Å−3 |
0 restraints | Δρmin = −0.45 e Å−3 |
Experimental. The diffraction data were obtained from sets 11 of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX3. The scan time was 15 sec/frame. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å). All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.35173 (3) | 0.63386 (3) | 0.56629 (2) | 0.03136 (9) | |
Cl1 | 1.01198 (10) | 0.89129 (9) | 1.11457 (5) | 0.0646 (2) | |
Cl2 | 0.44766 (10) | 0.05522 (7) | 0.82193 (5) | 0.05315 (18) | |
Cl3 | −0.27660 (10) | 0.36001 (13) | 0.00470 (6) | 0.0866 (3) | |
Cl4 | 0.00224 (9) | 1.14473 (7) | 0.34765 (5) | 0.05241 (18) | |
S1 | 0.51018 (7) | 0.75530 (5) | 0.69986 (4) | 0.03387 (13) | |
S2 | 0.35562 (7) | 0.45659 (5) | 0.58196 (4) | 0.03250 (13) | |
S3 | 0.19444 (7) | 0.50969 (5) | 0.43335 (4) | 0.03449 (13) | |
S4 | 0.32801 (6) | 0.80720 (5) | 0.55486 (4) | 0.03159 (12) | |
C1 | 0.6573 (3) | 0.7049 (2) | 0.83698 (16) | 0.0316 (4) | |
C2 | 0.6637 (3) | 0.8171 (2) | 0.91031 (18) | 0.0402 (5) | |
H2 | 0.591392 | 0.854176 | 0.902039 | 0.048* | |
C3 | 0.7730 (3) | 0.8754 (3) | 0.99479 (19) | 0.0458 (6) | |
H3 | 0.776586 | 0.952416 | 1.043937 | 0.055* | |
C4 | 0.8768 (3) | 0.8206 (3) | 1.00694 (18) | 0.0423 (6) | |
C5 | 0.8749 (3) | 0.7106 (3) | 0.9358 (2) | 0.0460 (6) | |
H5 | 0.947798 | 0.674405 | 0.944845 | 0.055* | |
C6 | 0.7664 (3) | 0.6533 (3) | 0.85115 (18) | 0.0392 (5) | |
H6 | 0.765655 | 0.577825 | 0.801809 | 0.047* | |
C7 | 0.5440 (3) | 0.6456 (2) | 0.74536 (16) | 0.0307 (4) | |
C8 | 0.4672 (3) | 0.5076 (2) | 0.69248 (16) | 0.0314 (4) | |
C9 | 0.4672 (2) | 0.3986 (2) | 0.72654 (16) | 0.0296 (4) | |
C10 | 0.4301 (3) | 0.3963 (2) | 0.81393 (16) | 0.0334 (5) | |
H10 | 0.410317 | 0.468058 | 0.853727 | 0.040* | |
C11 | 0.4218 (3) | 0.2903 (2) | 0.84348 (17) | 0.0353 (5) | |
H11 | 0.394413 | 0.288101 | 0.902488 | 0.042* | |
C12 | 0.4541 (3) | 0.1880 (2) | 0.78565 (17) | 0.0343 (5) | |
C13 | 0.4911 (3) | 0.1876 (2) | 0.69874 (17) | 0.0349 (5) | |
H13 | 0.512544 | 0.116288 | 0.659864 | 0.042* | |
C14 | 0.4966 (3) | 0.2923 (2) | 0.66892 (17) | 0.0325 (5) | |
H14 | 0.520569 | 0.292032 | 0.608783 | 0.039* | |
C15 | 0.0353 (3) | 0.5525 (2) | 0.29789 (17) | 0.0330 (5) | |
C16 | −0.0885 (3) | 0.4265 (3) | 0.27169 (19) | 0.0409 (5) | |
H16 | −0.106881 | 0.381348 | 0.316152 | 0.049* | |
C17 | −0.1839 (3) | 0.3672 (3) | 0.1819 (2) | 0.0527 (7) | |
H17 | −0.268122 | 0.281852 | 0.164421 | 0.063* | |
C18 | −0.1553 (3) | 0.4339 (3) | 0.11759 (19) | 0.0512 (7) | |
C19 | −0.0334 (3) | 0.5563 (3) | 0.14068 (19) | 0.0475 (6) | |
H19 | −0.015078 | 0.600008 | 0.095417 | 0.057* | |
C20 | 0.0625 (3) | 0.6152 (3) | 0.23024 (18) | 0.0395 (5) | |
H20 | 0.147957 | 0.699344 | 0.246213 | 0.047* | |
C21 | 0.1388 (2) | 0.6145 (2) | 0.39363 (16) | 0.0308 (4) | |
C22 | 0.1954 (2) | 0.7506 (2) | 0.45073 (16) | 0.0304 (4) | |
C23 | 0.1474 (2) | 0.8490 (2) | 0.42788 (15) | 0.0295 (4) | |
C24 | −0.0076 (3) | 0.8158 (2) | 0.39296 (17) | 0.0343 (5) | |
H24 | −0.082964 | 0.729787 | 0.385917 | 0.041* | |
C25 | −0.0535 (3) | 0.9061 (2) | 0.36839 (17) | 0.0353 (5) | |
H25 | −0.159136 | 0.882127 | 0.344000 | 0.042* | |
C26 | 0.0569 (3) | 1.0315 (2) | 0.37998 (17) | 0.0349 (5) | |
C27 | 0.2113 (3) | 1.0700 (2) | 0.41777 (18) | 0.0349 (5) | |
H27 | 0.285423 | 1.157701 | 0.427417 | 0.042* | |
C28 | 0.2555 (3) | 0.9781 (2) | 0.44116 (17) | 0.0319 (4) | |
H28 | 0.360993 | 1.003321 | 0.466667 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.03557 (16) | 0.02817 (15) | 0.03695 (16) | 0.01568 (12) | 0.01086 (12) | 0.01650 (12) |
Cl1 | 0.0720 (5) | 0.0606 (5) | 0.0441 (4) | 0.0149 (4) | −0.0060 (3) | 0.0158 (3) |
Cl2 | 0.0827 (5) | 0.0370 (3) | 0.0519 (4) | 0.0335 (3) | 0.0112 (3) | 0.0221 (3) |
Cl3 | 0.0569 (5) | 0.1278 (9) | 0.0417 (4) | 0.0310 (5) | −0.0044 (3) | −0.0022 (5) |
Cl4 | 0.0681 (4) | 0.0482 (4) | 0.0639 (4) | 0.0402 (3) | 0.0187 (3) | 0.0293 (3) |
S1 | 0.0401 (3) | 0.0266 (3) | 0.0392 (3) | 0.0155 (2) | 0.0100 (2) | 0.0150 (2) |
S2 | 0.0382 (3) | 0.0270 (3) | 0.0364 (3) | 0.0152 (2) | 0.0095 (2) | 0.0143 (2) |
S3 | 0.0407 (3) | 0.0255 (3) | 0.0398 (3) | 0.0148 (2) | 0.0085 (2) | 0.0136 (2) |
S4 | 0.0346 (3) | 0.0263 (3) | 0.0358 (3) | 0.0140 (2) | 0.0065 (2) | 0.0121 (2) |
C1 | 0.0365 (11) | 0.0275 (10) | 0.0344 (11) | 0.0145 (9) | 0.0131 (9) | 0.0126 (9) |
C2 | 0.0494 (14) | 0.0340 (12) | 0.0426 (13) | 0.0231 (11) | 0.0139 (11) | 0.0126 (10) |
C3 | 0.0614 (17) | 0.0352 (13) | 0.0393 (13) | 0.0203 (12) | 0.0158 (12) | 0.0095 (11) |
C4 | 0.0470 (14) | 0.0411 (13) | 0.0370 (12) | 0.0132 (11) | 0.0078 (11) | 0.0183 (11) |
C5 | 0.0453 (14) | 0.0478 (15) | 0.0491 (15) | 0.0244 (12) | 0.0081 (12) | 0.0169 (12) |
C6 | 0.0429 (13) | 0.0389 (13) | 0.0388 (12) | 0.0226 (11) | 0.0115 (10) | 0.0100 (10) |
C7 | 0.0331 (11) | 0.0318 (11) | 0.0379 (11) | 0.0182 (9) | 0.0162 (9) | 0.0186 (9) |
C8 | 0.0366 (11) | 0.0325 (11) | 0.0360 (11) | 0.0201 (9) | 0.0160 (9) | 0.0171 (9) |
C9 | 0.0310 (10) | 0.0260 (10) | 0.0358 (11) | 0.0143 (8) | 0.0100 (9) | 0.0125 (9) |
C10 | 0.0403 (12) | 0.0303 (11) | 0.0365 (11) | 0.0199 (10) | 0.0137 (9) | 0.0131 (9) |
C11 | 0.0448 (13) | 0.0326 (11) | 0.0346 (11) | 0.0197 (10) | 0.0103 (10) | 0.0151 (9) |
C12 | 0.0384 (12) | 0.0292 (11) | 0.0386 (12) | 0.0163 (9) | 0.0027 (9) | 0.0149 (9) |
C13 | 0.0378 (12) | 0.0283 (11) | 0.0408 (12) | 0.0180 (9) | 0.0081 (10) | 0.0099 (9) |
C14 | 0.0341 (11) | 0.0297 (11) | 0.0369 (11) | 0.0159 (9) | 0.0122 (9) | 0.0117 (9) |
C15 | 0.0331 (11) | 0.0297 (11) | 0.0371 (12) | 0.0164 (9) | 0.0089 (9) | 0.0082 (9) |
C16 | 0.0363 (12) | 0.0365 (12) | 0.0449 (14) | 0.0140 (10) | 0.0136 (10) | 0.0079 (11) |
C17 | 0.0325 (13) | 0.0517 (16) | 0.0531 (16) | 0.0120 (12) | 0.0110 (12) | −0.0032 (13) |
C18 | 0.0410 (14) | 0.0702 (19) | 0.0369 (13) | 0.0308 (14) | 0.0056 (11) | 0.0028 (13) |
C19 | 0.0536 (16) | 0.0589 (17) | 0.0385 (13) | 0.0344 (14) | 0.0107 (12) | 0.0145 (12) |
C20 | 0.0444 (13) | 0.0385 (13) | 0.0404 (13) | 0.0219 (11) | 0.0105 (10) | 0.0139 (10) |
C21 | 0.0303 (10) | 0.0281 (10) | 0.0397 (12) | 0.0141 (9) | 0.0116 (9) | 0.0161 (9) |
C22 | 0.0286 (10) | 0.0309 (11) | 0.0385 (11) | 0.0149 (9) | 0.0119 (9) | 0.0170 (9) |
C23 | 0.0318 (11) | 0.0277 (10) | 0.0327 (11) | 0.0142 (9) | 0.0107 (9) | 0.0121 (9) |
C24 | 0.0307 (11) | 0.0293 (11) | 0.0458 (13) | 0.0127 (9) | 0.0127 (10) | 0.0157 (10) |
C25 | 0.0307 (11) | 0.0374 (12) | 0.0408 (12) | 0.0177 (9) | 0.0073 (9) | 0.0132 (10) |
C26 | 0.0466 (13) | 0.0349 (12) | 0.0363 (12) | 0.0270 (10) | 0.0141 (10) | 0.0161 (10) |
C27 | 0.0372 (12) | 0.0255 (10) | 0.0453 (13) | 0.0128 (9) | 0.0168 (10) | 0.0152 (9) |
C28 | 0.0301 (10) | 0.0278 (10) | 0.0393 (12) | 0.0131 (9) | 0.0106 (9) | 0.0117 (9) |
Ni1—S2 | 2.1192 (6) | C11—C12 | 1.383 (3) |
Ni1—S3 | 2.1207 (7) | C11—H11 | 0.9500 |
Ni1—S4 | 2.1261 (6) | C12—C13 | 1.380 (3) |
Ni1—S1 | 2.1277 (7) | C13—C14 | 1.382 (3) |
Cl1—C4 | 1.743 (3) | C13—H13 | 0.9500 |
Cl2—C12 | 1.741 (2) | C14—H14 | 0.9500 |
Cl3—C18 | 1.740 (3) | C15—C20 | 1.400 (3) |
Cl4—C26 | 1.733 (2) | C15—C16 | 1.400 (3) |
S1—C7 | 1.706 (2) | C15—C21 | 1.479 (3) |
S2—C8 | 1.704 (2) | C16—C17 | 1.380 (4) |
S3—C21 | 1.706 (2) | C16—H16 | 0.9500 |
S4—C22 | 1.713 (2) | C17—C18 | 1.387 (5) |
C1—C2 | 1.393 (3) | C17—H17 | 0.9500 |
C1—C6 | 1.402 (3) | C18—C19 | 1.371 (4) |
C1—C7 | 1.477 (3) | C19—C20 | 1.379 (4) |
C2—C3 | 1.381 (4) | C19—H19 | 0.9500 |
C2—H2 | 0.9500 | C20—H20 | 0.9500 |
C3—C4 | 1.378 (4) | C21—C22 | 1.397 (3) |
C3—H3 | 0.9500 | C22—C23 | 1.473 (3) |
C4—C5 | 1.376 (4) | C23—C24 | 1.397 (3) |
C5—C6 | 1.379 (4) | C23—C28 | 1.398 (3) |
C5—H5 | 0.9500 | C24—C25 | 1.386 (3) |
C6—H6 | 0.9500 | C24—H24 | 0.9500 |
C7—C8 | 1.399 (3) | C25—C26 | 1.381 (3) |
C8—C9 | 1.480 (3) | C25—H25 | 0.9500 |
C9—C10 | 1.394 (3) | C26—C27 | 1.388 (3) |
C9—C14 | 1.400 (3) | C27—C28 | 1.386 (3) |
C10—C11 | 1.387 (3) | C27—H27 | 0.9500 |
C10—H10 | 0.9500 | C28—H28 | 0.9500 |
S2—Ni1—S3 | 87.80 (2) | C12—C13—H13 | 120.4 |
S2—Ni1—S4 | 174.64 (3) | C14—C13—H13 | 120.4 |
S3—Ni1—S4 | 91.24 (2) | C13—C14—C9 | 120.6 (2) |
S2—Ni1—S1 | 91.15 (2) | C13—C14—H14 | 119.7 |
S3—Ni1—S1 | 178.94 (2) | C9—C14—H14 | 119.7 |
S4—Ni1—S1 | 89.82 (2) | C20—C15—C16 | 118.6 (2) |
C7—S1—Ni1 | 105.72 (8) | C20—C15—C21 | 121.0 (2) |
C8—S2—Ni1 | 105.67 (8) | C16—C15—C21 | 120.4 (2) |
C21—S3—Ni1 | 105.66 (8) | C17—C16—C15 | 120.6 (3) |
C22—S4—Ni1 | 105.76 (8) | C17—C16—H16 | 119.7 |
C2—C1—C6 | 117.9 (2) | C15—C16—H16 | 119.7 |
C2—C1—C7 | 121.3 (2) | C16—C17—C18 | 119.1 (3) |
C6—C1—C7 | 120.7 (2) | C16—C17—H17 | 120.5 |
C3—C2—C1 | 121.3 (2) | C18—C17—H17 | 120.5 |
C3—C2—H2 | 119.3 | C19—C18—C17 | 121.6 (3) |
C1—C2—H2 | 119.3 | C19—C18—Cl3 | 119.3 (2) |
C4—C3—C2 | 119.2 (2) | C17—C18—Cl3 | 119.1 (2) |
C4—C3—H3 | 120.4 | C18—C19—C20 | 119.3 (3) |
C2—C3—H3 | 120.4 | C18—C19—H19 | 120.3 |
C5—C4—C3 | 121.1 (2) | C20—C19—H19 | 120.3 |
C5—C4—Cl1 | 119.5 (2) | C19—C20—C15 | 120.8 (3) |
C3—C4—Cl1 | 119.4 (2) | C19—C20—H20 | 119.6 |
C4—C5—C6 | 119.6 (2) | C15—C20—H20 | 119.6 |
C4—C5—H5 | 120.2 | C22—C21—C15 | 124.79 (19) |
C6—C5—H5 | 120.2 | C22—C21—S3 | 119.14 (17) |
C5—C6—C1 | 120.9 (2) | C15—C21—S3 | 116.05 (16) |
C5—C6—H6 | 119.6 | C21—C22—C23 | 124.3 (2) |
C1—C6—H6 | 119.6 | C21—C22—S4 | 118.07 (16) |
C8—C7—C1 | 124.84 (19) | C23—C22—S4 | 117.60 (17) |
C8—C7—S1 | 118.29 (17) | C24—C23—C28 | 118.3 (2) |
C1—C7—S1 | 116.84 (16) | C24—C23—C22 | 120.7 (2) |
C7—C8—C9 | 125.3 (2) | C28—C23—C22 | 120.95 (19) |
C7—C8—S2 | 118.86 (16) | C25—C24—C23 | 121.3 (2) |
C9—C8—S2 | 115.76 (17) | C25—C24—H24 | 119.4 |
C10—C9—C14 | 118.9 (2) | C23—C24—H24 | 119.4 |
C10—C9—C8 | 120.74 (19) | C26—C25—C24 | 118.9 (2) |
C14—C9—C8 | 120.3 (2) | C26—C25—H25 | 120.6 |
C11—C10—C9 | 120.8 (2) | C24—C25—H25 | 120.6 |
C11—C10—H10 | 119.6 | C25—C26—C27 | 121.5 (2) |
C9—C10—H10 | 119.6 | C25—C26—Cl4 | 119.58 (18) |
C12—C11—C10 | 118.9 (2) | C27—C26—Cl4 | 118.88 (18) |
C12—C11—H11 | 120.5 | C28—C27—C26 | 118.8 (2) |
C10—C11—H11 | 120.5 | C28—C27—H27 | 120.6 |
C13—C12—C11 | 121.6 (2) | C26—C27—H27 | 120.6 |
C13—C12—Cl2 | 118.56 (18) | C27—C28—C23 | 121.1 (2) |
C11—C12—Cl2 | 119.87 (18) | C27—C28—H28 | 119.4 |
C12—C13—C14 | 119.3 (2) | C23—C28—H28 | 119.4 |
C6—C1—C2—C3 | −0.5 (4) | C20—C15—C16—C17 | −1.7 (4) |
C7—C1—C2—C3 | −177.8 (2) | C21—C15—C16—C17 | −179.0 (2) |
C1—C2—C3—C4 | −0.6 (4) | C15—C16—C17—C18 | 0.3 (4) |
C2—C3—C4—C5 | 1.2 (4) | C16—C17—C18—C19 | 0.9 (4) |
C2—C3—C4—Cl1 | −178.4 (2) | C16—C17—C18—Cl3 | −179.4 (2) |
C3—C4—C5—C6 | −0.6 (4) | C17—C18—C19—C20 | −0.6 (4) |
Cl1—C4—C5—C6 | 179.0 (2) | Cl3—C18—C19—C20 | 179.73 (19) |
C4—C5—C6—C1 | −0.5 (4) | C18—C19—C20—C15 | −0.9 (4) |
C2—C1—C6—C5 | 1.1 (4) | C16—C15—C20—C19 | 2.0 (3) |
C7—C1—C6—C5 | 178.4 (2) | C21—C15—C20—C19 | 179.3 (2) |
C2—C1—C7—C8 | −142.3 (2) | C20—C15—C21—C22 | 44.4 (3) |
C6—C1—C7—C8 | 40.5 (3) | C16—C15—C21—C22 | −138.4 (2) |
C2—C1—C7—S1 | 39.8 (3) | C20—C15—C21—S3 | −133.8 (2) |
C6—C1—C7—S1 | −137.4 (2) | C16—C15—C21—S3 | 43.5 (3) |
Ni1—S1—C7—C8 | −0.78 (19) | Ni1—S3—C21—C22 | −2.11 (19) |
Ni1—S1—C7—C1 | 177.20 (14) | Ni1—S3—C21—C15 | 176.18 (15) |
C1—C7—C8—C9 | 10.5 (3) | C15—C21—C22—C23 | 6.6 (3) |
S1—C7—C8—C9 | −171.64 (17) | S3—C21—C22—C23 | −175.30 (17) |
C1—C7—C8—S2 | −172.99 (17) | C15—C21—C22—S4 | −174.10 (17) |
S1—C7—C8—S2 | 4.8 (3) | S3—C21—C22—S4 | 4.0 (3) |
Ni1—S2—C8—C7 | −6.26 (19) | Ni1—S4—C22—C21 | −3.77 (19) |
Ni1—S2—C8—C9 | 170.53 (14) | Ni1—S4—C22—C23 | 175.60 (14) |
C7—C8—C9—C10 | 51.3 (3) | C21—C22—C23—C24 | 42.9 (3) |
S2—C8—C9—C10 | −125.3 (2) | S4—C22—C23—C24 | −136.43 (19) |
C7—C8—C9—C14 | −132.1 (2) | C21—C22—C23—C28 | −137.6 (2) |
S2—C8—C9—C14 | 51.3 (3) | S4—C22—C23—C28 | 43.1 (3) |
C14—C9—C10—C11 | −0.2 (3) | C28—C23—C24—C25 | 2.5 (3) |
C8—C9—C10—C11 | 176.4 (2) | C22—C23—C24—C25 | −178.0 (2) |
C9—C10—C11—C12 | 1.3 (4) | C23—C24—C25—C26 | −0.7 (4) |
C10—C11—C12—C13 | −1.3 (4) | C24—C25—C26—C27 | −1.7 (4) |
C10—C11—C12—Cl2 | 178.92 (18) | C24—C25—C26—Cl4 | 178.84 (18) |
C11—C12—C13—C14 | 0.2 (4) | C25—C26—C27—C28 | 2.2 (4) |
Cl2—C12—C13—C14 | 179.98 (18) | Cl4—C26—C27—C28 | −178.26 (18) |
C12—C13—C14—C9 | 0.9 (3) | C26—C27—C28—C23 | −0.4 (3) |
C10—C9—C14—C13 | −0.9 (3) | C24—C23—C28—C27 | −1.9 (3) |
C8—C9—C14—C13 | −177.6 (2) | C22—C23—C28—C27 | 178.5 (2) |
Acknowledgements
Tulane University is acknowledged for its ongoing support with operational costs for the diffraction facility and for publication costs.
Funding information
Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. 1836589).
References
Arumugam, K., Bollinger, J. E., Fink, M. & Donahue, J. P. (2007). Inorg. Chem. 46, 3283–3288. CSD CrossRef PubMed CAS Google Scholar
Batsanov, S. S. (2001). Inorg. Mater. 37, 871–885. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2020). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA. Google Scholar
Carey, F. A. & Sundberg, R. J. (2000). Advanced Organic Chemistry Part A: Structure and Mechanisms, 4th ed., p. 13. New York: Kluwer Academic/Plenum Publishers. Google Scholar
Fu, T. Y., Leibovitch, M., Scheffer, J. R. & Trotter, J. (1997a). Acta Cryst. C53, 1255–1256. CSD CrossRef CAS IUCr Journals Google Scholar
Fu, T. Y., Scheffer, J. R. & Trotter, J. (1997b). Acta Cryst. C53, 1257–1259. CSD CrossRef CAS IUCr Journals Google Scholar
Fu, T. Y., Scheffer, J. R. & Trotter, J. (1998). Acta Cryst. C54, 496–497. CSD CrossRef CAS IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kuramoto, N. & Asao, K. (1990). Dyes Pigments, 12, 65–76. CSD CrossRef CAS Google Scholar
Megnamisi-Belombe, M. & Nuber, B. (1989). Bull. Chem. Soc. Jpn, 62, 4092–4094. CAS Google Scholar
Miao, Q., Gao, J., Wang, Z., Yu, H., Luo, Y. & Ma, T. (2011). Inorg. Chim. Acta, 376, 619–627. CSD CrossRef CAS Google Scholar
Mueller-Westerhoff, U. T., Vance, B. & Yoon, D. I. (1991). Tetrahedron, 47, 909–932. CAS Google Scholar
Nakazumi, H., Takamura, R., Kitao, T. & Adachi, T. (1992). Dyes Pigments, 18, 1–9. CSD CrossRef CAS Google Scholar
Perochon, R., Piekara-Sady, L., Jurga, W., Clérac, R. & Fourmigué, M. (2009). Dalton Trans. pp. 3052–3061. CSD CrossRef Google Scholar
Rindorf, G. & Carlsen, L. (1979). Acta Cryst. B35, 1179–1182. CSD CrossRef CAS IUCr Journals Google Scholar
Schrauzer, G. N. & Mayweg, V. P. (1965). J. Am. Chem. Soc. 87, 1483–1489. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tian, Z.-Q., Donahue, J. P. & Holm, R. H. (1995). Inorg. Chem. 34, 5567–5572. CSD CrossRef CAS Google Scholar
Yu, C.-X., Zhu, Y.-L., Chen, Z.-X., Lu, M.-Z. & Wang, K. (2011). Acta Cryst. E67, o821. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.