metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[1,2-bis­­(4-chloro­phen­yl)­ethyl­ene-1,2-di­thiol­ato(1–)]nickel(II)

crossmark logo

aDepartment of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA
*Correspondence e-mail: donahue@tulane.edu

Edited by J. F. Gallagher, Dublin City University, Ireland (Received 29 December 2021; accepted 7 February 2022; online 17 February 2022)

The title compound, [Ni(S2C2(C6H4-p-Cl)2)2] or [Ni(C14H8Cl2S2)2], crystallizes in the triclinic space group P[\overline{1}] as pairs of mol­ecules disposed about an inversion center at the bc face of the cell. Close inter­molecular C—H⋯S (2.884 Å) and C—H⋯Ni (3.032 Å) contacts that are less than the sum of the van der Waals radii appear to induce slight bowing of the mol­ecular planes toward one another. The angles at which the four p-ClC6H4- rings join the NiS2C2 chelate rings [39.37 (9)– 53.41 (6)°] are similarly influenced by these inter­molecular contacts. In the larger packing arrangement, sheets of mol­ecules extend in the direction of the ac face diagonal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As seen from a survey of the Cambridge Structural Database, nickel has enjoyed the most extensive development of its coordination chemistry with di­thiol­ene ligands that bear aryl substituents. One reason for the attention given to these nickel complexes is the application they have found as reversibly bleachable Q-switching dyes for near infrared lasers (Mueller-Westerhoff et al., 1991[Mueller-Westerhoff, U. T., Vance, B. & Yoon, D. I. (1991). Tetrahedron, 47, 909-932.]). Their photochemical, thermal, and chemical stability, in conjunction with the relative ease with which they are synthesized, has made such nickel bis­(di­thiol­ene) complexes impactful enough that a variety are now sold commercially. Charge-neutral, aryl-substituted nickel di­thiol­ene complexes, [(R2C2S2)2Ni], that have been structurally characterized include the complexes where R = Ph (Megnamisi-Belombe & Nuber, 1989[Megnamisi-Belombe, M. & Nuber, B. (1989). Bull. Chem. Soc. Jpn, 62, 4092-4094.]; Kuramoto & Asao, 1990[Kuramoto, N. & Asao, K. (1990). Dyes Pigments, 12, 65-76.]), p-CH3C6H4– (Miao et al., 2011[Miao, Q., Gao, J., Wang, Z., Yu, H., Luo, Y. & Ma, T. (2011). Inorg. Chim. Acta, 376, 619-627.]), p-CH3OC6H4– (Arumugam et al., 2007[Arumugam, K., Bollinger, J. E., Fink, M. & Donahue, J. P. (2007). Inorg. Chem. 46, 3283-3288.]), p-nBuOC6H4– (Perochon et al., 2009[Perochon, R., Piekara-Sady, L., Jurga, W., Clérac, R. & Fourmigué, M. (2009). Dalton Trans. pp. 3052-3061.]), p-CH3(CH2)11C6H4– (Perochon et al., 2009[Perochon, R., Piekara-Sady, L., Jurga, W., Clérac, R. & Fourmigué, M. (2009). Dalton Trans. pp. 3052-3061.]), and 3,5-(CH3O)2-4-nBuOC6H2– (Nakazumi et al., 1992[Nakazumi, H., Takamura, R., Kitao, T. & Adachi, T. (1992). Dyes Pigments, 18, 1-9.]).

Compounds of this type are electrochemically rich and typically support two successive ligand-based one-electron reductions that correspond to the transformations depicted as (a) → (b) and (b) → (c) in Fig. 1[link]. The redox-active mol­ecular orbital has rather modest metal character and is best described as being delocalized among both di­thiol­ene ligands, which individually may be regarded as radical monoanions but which collectively have their spins paired such that the charge-neutral state is diamagnetic. In structure (c), both di­thiol­ene ligands are in a fully reduced ene-1,2-di­thiol­ate dianionic state. The potentials at which these reductions occur are quite sensitive to the nature and placement of ring substituents. As part of an effort to more fully map the potential range in which the electron transfers in these complexes occur, we have undertaken the synthesis and characterization of aryl-substituted nickel(II) bis(di­thiol­ene) complexes bearing electron-withdrawing groups. Although a known compound, the nickel(II) bis­(di­thiol­ene) variant with p-ClC6H4– substituents has not been the subject of an X-ray diffraction study, nor has a coordination compound of this ligand with any other metal. We briefly relate here the structural and crystal packing features of [((p-ClC6H4)2C2S2)2Ni].

[Figure 1]
Figure 1
(a)–(c) Di­thiol­ene-based electron-transfer reactions within nickel(II) bis­(di­thiol­ene) complexes whereby the ligands are transformed from radical monoanions to fully reduced ene-1,2-di­thiol­ate dianions. (d)–(e) Resonance forms within the di­thiol­ene radical monoanion.

Bis[1,2-bis­(4-chloro­phen­yl)­ethyl­ene-1,2-dithiol­ato(1−)]nickel(II) crystallizes upon a general position in triclinic space group P[\overline{1}] (Fig. 2[link]). Its idealized point-group symmetry is D2h if the phenyl groups are either perfectly perpendicular to, or fully planar with, the Ni(S2C2)2 core. However, the four arene rings are canted from the NiS2C2 chelate ring to which they are attached by values ranging from 38.39 (9)– 53.41 (6)°, the average being 44.87°. A similar description is pertinent to the compounds featuring phenyl, p-CH3C6H4–, and p-CH3OC6H4– substituents. The averaged S—C bond length in [(p-ClC6H4)2C2S2)2Ni] is 1.707 (1) Å. This inter­mediate value between S—C thione (1.63 Å, Rindorf & Carlsen, 1979[Rindorf, G. & Carlsen, L. (1979). Acta Cryst. B35, 1179-1182.]; Fu et al., 1997a[Fu, T. Y., Leibovitch, M., Scheffer, J. R. & Trotter, J. (1997a). Acta Cryst. C53, 1255-1256.],b[Fu, T. Y., Scheffer, J. R. & Trotter, J. (1997b). Acta Cryst. C53, 1257-1259.], 1998[Fu, T. Y., Scheffer, J. R. & Trotter, J. (1998). Acta Cryst. C54, 496-497.]) and vinyl thio­ether (1.74 Å; Tian et al., 1995[Tian, Z.-Q., Donahue, J. P. & Holm, R. H. (1995). Inorg. Chem. 34, 5567-5572.]; Yu et al., 2011[Yu, C.-X., Zhu, Y.-L., Chen, Z.-X., Lu, M.-Z. & Wang, K. (2011). Acta Cryst. E67, o821.]) bond lengths is due to the presence of some thione character to the bond order in the radical monoanion arising from resonance form (e) (Fig. 1[link]), even as the ligands are coordinating to the metal. Similarly, the C—Cchelate bond lengths are between the 1.54 and 1.34 Å values that are typical of carbon–carbon sp3sp3 single and sp2sp2 double bonds, respectively (Carey & Sundberg, 2000[Carey, F. A. & Sundberg, R. J. (2000). Advanced Organic Chemistry Part A: Structure and Mechanisms, 4th ed., p. 13. New York: Kluwer Academic/Plenum Publishers.]), further indicating the participation of both resonance forms (d) and (e) in the electronic structure of bis[1,2-bis­(4-chloro­phen­yl)­ethyl­ene-1,2-dithiol­ato(1−)]nickel(II).

[Figure 2]
Figure 2
Displacement ellipsoid plot (50% probability level) for bis[1,2-bis­(4-chloro­phen­yl)­ethyl­ene-1,2-dithiol­ato(1−)]nickel(II) with complete atom labeling.

The packing arrangement for bis[1,2-bis­(4-chloro­phen­yl)­ethyl­ene-1,2-dithiol­ato(1−)]nickel(II) is such that mol­ecules occur in centrosymmetric pairs around the inversion centers that occur at each bc face of the cell (Fig. 3[link]). These pairwise associations juxtapose two mol­ecules in a nearly parallel planar fashion but with an offset that places the phenyl groups of one ligand over the relatively open NiS4 inter­ior of its partner mol­ecule. Relatively close inter­molecular C—H⋯S (2.884 Å) and C—H⋯Ni (3.032 Å) contacts are made (Fig. 4[link]), two each that are related by the inversion symmetry. The C—H⋯S and C—N⋯Ni close contacts are less than the sum of the hydrogen–sulfur and hydrogen–nickel van der Waals radii (Batsanov, 2001[Batsanov, S. S. (2001). Inorg. Mater. 37, 871-885.]) and appear to be favorable inter­actions that induce a slight but discernible concave bowing of the mol­ecules toward one another (Fig. 4[link]). This curvature, defined as the angle between the seven-atom mean planes given by each NiS2C2 chelate and the first carbon atom of each aryl ring, is 11.87 (5)°. It is likely that the angled disposition of some of the aryl substituents with respect to the NiS2C2 chelate have their origin in these inter­molecular inter­actions. The larger packing arrangement is best described as translations of these centrosymmetric pairs along the a axis, the upshot of which is that extended mol­ecular sheets are formed that are oriented in the direction of the ac face diagonal (Fig. 5[link]).

[Figure 3]
Figure 3
Packing arrangement of mol­ecules of bis[1,2-bis­(4-chloro­phen­yl)­ethyl­ene-1,2-dithiol­ato(1−)]nickel(II) in the unit cell. Ellipsoids are shown at the 50% probability level, and all H atoms are omitted for clarity. Pairs of mol­ecules are related by inversion across the center of symmetry at the center of the bc face.
[Figure 4]
Figure 4
Illustration of the C—H⋯S and C—H⋯Ni contacts that occur between closest pairs of bis[1,2-bis­(4-chloro­phen­yl)­ethyl­ene-1,2-dithiol­ato(1−)]nickel(II) mol­ecules. Ellipsoids are presented at the 50% probability level. Symmetry operation: −x, 1 − y, 1 − z.
[Figure 5]
Figure 5
Packing diagram for bis[1,2-bis­(4-chloro­phen­yl)­ethyl­ene-1,2-dithiol­ato(1−)]nickel(II) showing the parallel arrangement of mol­ecules in the direction of the ac face diagonal. Displacement ellipsoids are depicted at the 50% probability level.

Synthesis and crystallization

The title compound was prepared from 4,4′-di­chloro­benzil, P4S10, and NiCl2·6H2O according to the literature procedure (Schrauzer & Mayweg, 1965[Schrauzer, G. N. & Mayweg, V. P. (1965). J. Am. Chem. Soc. 87, 1483-1489.]). Yield: 50%. Intense green column-shaped crystals were grown by the diffusion of tert-butyl methyl ether vapor into a solution of the title compound in 1,2-dichloro­ethane.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. One reflection affected by the beamstop was omitted from the final refinement.

Table 1
Experimental details

Crystal data
Chemical formula [Ni(C14H8Cl2S2)2]
Mr 681.16
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 170
a, b, c (Å) 9.5487 (4), 11.4141 (4), 15.0254 (6)
α, β, γ (°) 107.486 (2), 94.791 (2), 111.423 (2)
V3) 1419.16 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.37
Crystal size (mm) 0.27 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.76, 0.88
No. of measured, independent and observed [I > 2σ(I)] reflections 89629, 8009, 5941
Rint 0.056
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.03
No. of reflections 8009
No. of parameters 334
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.78, −0.45
Computer programs: APEX3 and SAINT (Bruker, 2020[Bruker (2020). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2020); cell refinement: SAINT (Bruker, 2020); data reduction: SAINT (Bruker, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis[1,2-bis(4-chlorophenyl)-2-sulfanylideneethane-1-thiolato]nickel(II) top
Crystal data top
[Ni(C14H8Cl2S2)2]Z = 2
Mr = 681.16F(000) = 688
Triclinic, P1Dx = 1.594 Mg m3
a = 9.5487 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4141 (4) ÅCell parameters from 9023 reflections
c = 15.0254 (6) Åθ = 2.4–29.5°
α = 107.486 (2)°µ = 1.37 mm1
β = 94.791 (2)°T = 170 K
γ = 111.423 (2)°Column, intense green
V = 1419.16 (10) Å30.27 × 0.15 × 0.10 mm
Data collection top
Bruker D8 QUEST PHOTON 3
diffractometer
8009 independent reflections
Radiation source: fine-focus sealed tube5941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 7.3910 pixels mm-1θmax = 29.7°, θmin = 2.4°
φ and ω scansh = 1313
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 1515
Tmin = 0.76, Tmax = 0.88l = 2020
89629 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0524P)2 + 1.0724P]
where P = (Fo2 + 2Fc2)/3
8009 reflections(Δ/σ)max = 0.001
334 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.45 e Å3
Special details top

Experimental. The diffraction data were obtained from sets 11 of frames, each of width 0.5° in ω or φ, collected with scan parameters determined by the "strategy" routine in APEX3. The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å). All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.35173 (3)0.63386 (3)0.56629 (2)0.03136 (9)
Cl11.01198 (10)0.89129 (9)1.11457 (5)0.0646 (2)
Cl20.44766 (10)0.05522 (7)0.82193 (5)0.05315 (18)
Cl30.27660 (10)0.36001 (13)0.00470 (6)0.0866 (3)
Cl40.00224 (9)1.14473 (7)0.34765 (5)0.05241 (18)
S10.51018 (7)0.75530 (5)0.69986 (4)0.03387 (13)
S20.35562 (7)0.45659 (5)0.58196 (4)0.03250 (13)
S30.19444 (7)0.50969 (5)0.43335 (4)0.03449 (13)
S40.32801 (6)0.80720 (5)0.55486 (4)0.03159 (12)
C10.6573 (3)0.7049 (2)0.83698 (16)0.0316 (4)
C20.6637 (3)0.8171 (2)0.91031 (18)0.0402 (5)
H20.5913920.8541760.9020390.048*
C30.7730 (3)0.8754 (3)0.99479 (19)0.0458 (6)
H30.7765860.9524161.0439370.055*
C40.8768 (3)0.8206 (3)1.00694 (18)0.0423 (6)
C50.8749 (3)0.7106 (3)0.9358 (2)0.0460 (6)
H50.9477980.6744050.9448450.055*
C60.7664 (3)0.6533 (3)0.85115 (18)0.0392 (5)
H60.7656550.5778250.8018090.047*
C70.5440 (3)0.6456 (2)0.74536 (16)0.0307 (4)
C80.4672 (3)0.5076 (2)0.69248 (16)0.0314 (4)
C90.4672 (2)0.3986 (2)0.72654 (16)0.0296 (4)
C100.4301 (3)0.3963 (2)0.81393 (16)0.0334 (5)
H100.4103170.4680580.8537270.040*
C110.4218 (3)0.2903 (2)0.84348 (17)0.0353 (5)
H110.3944130.2881010.9024880.042*
C120.4541 (3)0.1880 (2)0.78565 (17)0.0343 (5)
C130.4911 (3)0.1876 (2)0.69874 (17)0.0349 (5)
H130.5125440.1162880.6598640.042*
C140.4966 (3)0.2923 (2)0.66892 (17)0.0325 (5)
H140.5205690.2920320.6087830.039*
C150.0353 (3)0.5525 (2)0.29789 (17)0.0330 (5)
C160.0885 (3)0.4265 (3)0.27169 (19)0.0409 (5)
H160.1068810.3813480.3161520.049*
C170.1839 (3)0.3672 (3)0.1819 (2)0.0527 (7)
H170.2681220.2818520.1644210.063*
C180.1553 (3)0.4339 (3)0.11759 (19)0.0512 (7)
C190.0334 (3)0.5563 (3)0.14068 (19)0.0475 (6)
H190.0150780.6000080.0954170.057*
C200.0625 (3)0.6152 (3)0.23024 (18)0.0395 (5)
H200.1479570.6993440.2462130.047*
C210.1388 (2)0.6145 (2)0.39363 (16)0.0308 (4)
C220.1954 (2)0.7506 (2)0.45073 (16)0.0304 (4)
C230.1474 (2)0.8490 (2)0.42788 (15)0.0295 (4)
C240.0076 (3)0.8158 (2)0.39296 (17)0.0343 (5)
H240.0829640.7297870.3859170.041*
C250.0535 (3)0.9061 (2)0.36839 (17)0.0353 (5)
H250.1591360.8821270.3440000.042*
C260.0569 (3)1.0315 (2)0.37998 (17)0.0349 (5)
C270.2113 (3)1.0700 (2)0.41777 (18)0.0349 (5)
H270.2854231.1577010.4274170.042*
C280.2555 (3)0.9781 (2)0.44116 (17)0.0319 (4)
H280.3609931.0033210.4666670.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03557 (16)0.02817 (15)0.03695 (16)0.01568 (12)0.01086 (12)0.01650 (12)
Cl10.0720 (5)0.0606 (5)0.0441 (4)0.0149 (4)0.0060 (3)0.0158 (3)
Cl20.0827 (5)0.0370 (3)0.0519 (4)0.0335 (3)0.0112 (3)0.0221 (3)
Cl30.0569 (5)0.1278 (9)0.0417 (4)0.0310 (5)0.0044 (3)0.0022 (5)
Cl40.0681 (4)0.0482 (4)0.0639 (4)0.0402 (3)0.0187 (3)0.0293 (3)
S10.0401 (3)0.0266 (3)0.0392 (3)0.0155 (2)0.0100 (2)0.0150 (2)
S20.0382 (3)0.0270 (3)0.0364 (3)0.0152 (2)0.0095 (2)0.0143 (2)
S30.0407 (3)0.0255 (3)0.0398 (3)0.0148 (2)0.0085 (2)0.0136 (2)
S40.0346 (3)0.0263 (3)0.0358 (3)0.0140 (2)0.0065 (2)0.0121 (2)
C10.0365 (11)0.0275 (10)0.0344 (11)0.0145 (9)0.0131 (9)0.0126 (9)
C20.0494 (14)0.0340 (12)0.0426 (13)0.0231 (11)0.0139 (11)0.0126 (10)
C30.0614 (17)0.0352 (13)0.0393 (13)0.0203 (12)0.0158 (12)0.0095 (11)
C40.0470 (14)0.0411 (13)0.0370 (12)0.0132 (11)0.0078 (11)0.0183 (11)
C50.0453 (14)0.0478 (15)0.0491 (15)0.0244 (12)0.0081 (12)0.0169 (12)
C60.0429 (13)0.0389 (13)0.0388 (12)0.0226 (11)0.0115 (10)0.0100 (10)
C70.0331 (11)0.0318 (11)0.0379 (11)0.0182 (9)0.0162 (9)0.0186 (9)
C80.0366 (11)0.0325 (11)0.0360 (11)0.0201 (9)0.0160 (9)0.0171 (9)
C90.0310 (10)0.0260 (10)0.0358 (11)0.0143 (8)0.0100 (9)0.0125 (9)
C100.0403 (12)0.0303 (11)0.0365 (11)0.0199 (10)0.0137 (9)0.0131 (9)
C110.0448 (13)0.0326 (11)0.0346 (11)0.0197 (10)0.0103 (10)0.0151 (9)
C120.0384 (12)0.0292 (11)0.0386 (12)0.0163 (9)0.0027 (9)0.0149 (9)
C130.0378 (12)0.0283 (11)0.0408 (12)0.0180 (9)0.0081 (10)0.0099 (9)
C140.0341 (11)0.0297 (11)0.0369 (11)0.0159 (9)0.0122 (9)0.0117 (9)
C150.0331 (11)0.0297 (11)0.0371 (12)0.0164 (9)0.0089 (9)0.0082 (9)
C160.0363 (12)0.0365 (12)0.0449 (14)0.0140 (10)0.0136 (10)0.0079 (11)
C170.0325 (13)0.0517 (16)0.0531 (16)0.0120 (12)0.0110 (12)0.0032 (13)
C180.0410 (14)0.0702 (19)0.0369 (13)0.0308 (14)0.0056 (11)0.0028 (13)
C190.0536 (16)0.0589 (17)0.0385 (13)0.0344 (14)0.0107 (12)0.0145 (12)
C200.0444 (13)0.0385 (13)0.0404 (13)0.0219 (11)0.0105 (10)0.0139 (10)
C210.0303 (10)0.0281 (10)0.0397 (12)0.0141 (9)0.0116 (9)0.0161 (9)
C220.0286 (10)0.0309 (11)0.0385 (11)0.0149 (9)0.0119 (9)0.0170 (9)
C230.0318 (11)0.0277 (10)0.0327 (11)0.0142 (9)0.0107 (9)0.0121 (9)
C240.0307 (11)0.0293 (11)0.0458 (13)0.0127 (9)0.0127 (10)0.0157 (10)
C250.0307 (11)0.0374 (12)0.0408 (12)0.0177 (9)0.0073 (9)0.0132 (10)
C260.0466 (13)0.0349 (12)0.0363 (12)0.0270 (10)0.0141 (10)0.0161 (10)
C270.0372 (12)0.0255 (10)0.0453 (13)0.0128 (9)0.0168 (10)0.0152 (9)
C280.0301 (10)0.0278 (10)0.0393 (12)0.0131 (9)0.0106 (9)0.0117 (9)
Geometric parameters (Å, º) top
Ni1—S22.1192 (6)C11—C121.383 (3)
Ni1—S32.1207 (7)C11—H110.9500
Ni1—S42.1261 (6)C12—C131.380 (3)
Ni1—S12.1277 (7)C13—C141.382 (3)
Cl1—C41.743 (3)C13—H130.9500
Cl2—C121.741 (2)C14—H140.9500
Cl3—C181.740 (3)C15—C201.400 (3)
Cl4—C261.733 (2)C15—C161.400 (3)
S1—C71.706 (2)C15—C211.479 (3)
S2—C81.704 (2)C16—C171.380 (4)
S3—C211.706 (2)C16—H160.9500
S4—C221.713 (2)C17—C181.387 (5)
C1—C21.393 (3)C17—H170.9500
C1—C61.402 (3)C18—C191.371 (4)
C1—C71.477 (3)C19—C201.379 (4)
C2—C31.381 (4)C19—H190.9500
C2—H20.9500C20—H200.9500
C3—C41.378 (4)C21—C221.397 (3)
C3—H30.9500C22—C231.473 (3)
C4—C51.376 (4)C23—C241.397 (3)
C5—C61.379 (4)C23—C281.398 (3)
C5—H50.9500C24—C251.386 (3)
C6—H60.9500C24—H240.9500
C7—C81.399 (3)C25—C261.381 (3)
C8—C91.480 (3)C25—H250.9500
C9—C101.394 (3)C26—C271.388 (3)
C9—C141.400 (3)C27—C281.386 (3)
C10—C111.387 (3)C27—H270.9500
C10—H100.9500C28—H280.9500
S2—Ni1—S387.80 (2)C12—C13—H13120.4
S2—Ni1—S4174.64 (3)C14—C13—H13120.4
S3—Ni1—S491.24 (2)C13—C14—C9120.6 (2)
S2—Ni1—S191.15 (2)C13—C14—H14119.7
S3—Ni1—S1178.94 (2)C9—C14—H14119.7
S4—Ni1—S189.82 (2)C20—C15—C16118.6 (2)
C7—S1—Ni1105.72 (8)C20—C15—C21121.0 (2)
C8—S2—Ni1105.67 (8)C16—C15—C21120.4 (2)
C21—S3—Ni1105.66 (8)C17—C16—C15120.6 (3)
C22—S4—Ni1105.76 (8)C17—C16—H16119.7
C2—C1—C6117.9 (2)C15—C16—H16119.7
C2—C1—C7121.3 (2)C16—C17—C18119.1 (3)
C6—C1—C7120.7 (2)C16—C17—H17120.5
C3—C2—C1121.3 (2)C18—C17—H17120.5
C3—C2—H2119.3C19—C18—C17121.6 (3)
C1—C2—H2119.3C19—C18—Cl3119.3 (2)
C4—C3—C2119.2 (2)C17—C18—Cl3119.1 (2)
C4—C3—H3120.4C18—C19—C20119.3 (3)
C2—C3—H3120.4C18—C19—H19120.3
C5—C4—C3121.1 (2)C20—C19—H19120.3
C5—C4—Cl1119.5 (2)C19—C20—C15120.8 (3)
C3—C4—Cl1119.4 (2)C19—C20—H20119.6
C4—C5—C6119.6 (2)C15—C20—H20119.6
C4—C5—H5120.2C22—C21—C15124.79 (19)
C6—C5—H5120.2C22—C21—S3119.14 (17)
C5—C6—C1120.9 (2)C15—C21—S3116.05 (16)
C5—C6—H6119.6C21—C22—C23124.3 (2)
C1—C6—H6119.6C21—C22—S4118.07 (16)
C8—C7—C1124.84 (19)C23—C22—S4117.60 (17)
C8—C7—S1118.29 (17)C24—C23—C28118.3 (2)
C1—C7—S1116.84 (16)C24—C23—C22120.7 (2)
C7—C8—C9125.3 (2)C28—C23—C22120.95 (19)
C7—C8—S2118.86 (16)C25—C24—C23121.3 (2)
C9—C8—S2115.76 (17)C25—C24—H24119.4
C10—C9—C14118.9 (2)C23—C24—H24119.4
C10—C9—C8120.74 (19)C26—C25—C24118.9 (2)
C14—C9—C8120.3 (2)C26—C25—H25120.6
C11—C10—C9120.8 (2)C24—C25—H25120.6
C11—C10—H10119.6C25—C26—C27121.5 (2)
C9—C10—H10119.6C25—C26—Cl4119.58 (18)
C12—C11—C10118.9 (2)C27—C26—Cl4118.88 (18)
C12—C11—H11120.5C28—C27—C26118.8 (2)
C10—C11—H11120.5C28—C27—H27120.6
C13—C12—C11121.6 (2)C26—C27—H27120.6
C13—C12—Cl2118.56 (18)C27—C28—C23121.1 (2)
C11—C12—Cl2119.87 (18)C27—C28—H28119.4
C12—C13—C14119.3 (2)C23—C28—H28119.4
C6—C1—C2—C30.5 (4)C20—C15—C16—C171.7 (4)
C7—C1—C2—C3177.8 (2)C21—C15—C16—C17179.0 (2)
C1—C2—C3—C40.6 (4)C15—C16—C17—C180.3 (4)
C2—C3—C4—C51.2 (4)C16—C17—C18—C190.9 (4)
C2—C3—C4—Cl1178.4 (2)C16—C17—C18—Cl3179.4 (2)
C3—C4—C5—C60.6 (4)C17—C18—C19—C200.6 (4)
Cl1—C4—C5—C6179.0 (2)Cl3—C18—C19—C20179.73 (19)
C4—C5—C6—C10.5 (4)C18—C19—C20—C150.9 (4)
C2—C1—C6—C51.1 (4)C16—C15—C20—C192.0 (3)
C7—C1—C6—C5178.4 (2)C21—C15—C20—C19179.3 (2)
C2—C1—C7—C8142.3 (2)C20—C15—C21—C2244.4 (3)
C6—C1—C7—C840.5 (3)C16—C15—C21—C22138.4 (2)
C2—C1—C7—S139.8 (3)C20—C15—C21—S3133.8 (2)
C6—C1—C7—S1137.4 (2)C16—C15—C21—S343.5 (3)
Ni1—S1—C7—C80.78 (19)Ni1—S3—C21—C222.11 (19)
Ni1—S1—C7—C1177.20 (14)Ni1—S3—C21—C15176.18 (15)
C1—C7—C8—C910.5 (3)C15—C21—C22—C236.6 (3)
S1—C7—C8—C9171.64 (17)S3—C21—C22—C23175.30 (17)
C1—C7—C8—S2172.99 (17)C15—C21—C22—S4174.10 (17)
S1—C7—C8—S24.8 (3)S3—C21—C22—S44.0 (3)
Ni1—S2—C8—C76.26 (19)Ni1—S4—C22—C213.77 (19)
Ni1—S2—C8—C9170.53 (14)Ni1—S4—C22—C23175.60 (14)
C7—C8—C9—C1051.3 (3)C21—C22—C23—C2442.9 (3)
S2—C8—C9—C10125.3 (2)S4—C22—C23—C24136.43 (19)
C7—C8—C9—C14132.1 (2)C21—C22—C23—C28137.6 (2)
S2—C8—C9—C1451.3 (3)S4—C22—C23—C2843.1 (3)
C14—C9—C10—C110.2 (3)C28—C23—C24—C252.5 (3)
C8—C9—C10—C11176.4 (2)C22—C23—C24—C25178.0 (2)
C9—C10—C11—C121.3 (4)C23—C24—C25—C260.7 (4)
C10—C11—C12—C131.3 (4)C24—C25—C26—C271.7 (4)
C10—C11—C12—Cl2178.92 (18)C24—C25—C26—Cl4178.84 (18)
C11—C12—C13—C140.2 (4)C25—C26—C27—C282.2 (4)
Cl2—C12—C13—C14179.98 (18)Cl4—C26—C27—C28178.26 (18)
C12—C13—C14—C90.9 (3)C26—C27—C28—C230.4 (3)
C10—C9—C14—C130.9 (3)C24—C23—C28—C271.9 (3)
C8—C9—C14—C13177.6 (2)C22—C23—C28—C27178.5 (2)
 

Acknowledgements

Tulane University is acknowledged for its ongoing support with operational costs for the diffraction facility and for publication costs.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. 1836589).

References

First citationArumugam, K., Bollinger, J. E., Fink, M. & Donahue, J. P. (2007). Inorg. Chem. 46, 3283–3288.  CSD CrossRef PubMed CAS Google Scholar
First citationBatsanov, S. S. (2001). Inorg. Mater. 37, 871–885.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2020). APEX3 and SAINT. Bruker AXS LLC, Madison, Wisconsin, USA.  Google Scholar
First citationCarey, F. A. & Sundberg, R. J. (2000). Advanced Organic Chemistry Part A: Structure and Mechanisms, 4th ed., p. 13. New York: Kluwer Academic/Plenum Publishers.  Google Scholar
First citationFu, T. Y., Leibovitch, M., Scheffer, J. R. & Trotter, J. (1997a). Acta Cryst. C53, 1255–1256.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFu, T. Y., Scheffer, J. R. & Trotter, J. (1997b). Acta Cryst. C53, 1257–1259.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFu, T. Y., Scheffer, J. R. & Trotter, J. (1998). Acta Cryst. C54, 496–497.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKuramoto, N. & Asao, K. (1990). Dyes Pigments, 12, 65–76.  CSD CrossRef CAS Google Scholar
First citationMegnamisi-Belombe, M. & Nuber, B. (1989). Bull. Chem. Soc. Jpn, 62, 4092–4094.  CAS Google Scholar
First citationMiao, Q., Gao, J., Wang, Z., Yu, H., Luo, Y. & Ma, T. (2011). Inorg. Chim. Acta, 376, 619–627.  CSD CrossRef CAS Google Scholar
First citationMueller-Westerhoff, U. T., Vance, B. & Yoon, D. I. (1991). Tetrahedron, 47, 909–932.  CAS Google Scholar
First citationNakazumi, H., Takamura, R., Kitao, T. & Adachi, T. (1992). Dyes Pigments, 18, 1–9.  CSD CrossRef CAS Google Scholar
First citationPerochon, R., Piekara-Sady, L., Jurga, W., Clérac, R. & Fourmigué, M. (2009). Dalton Trans. pp. 3052–3061.  CSD CrossRef Google Scholar
First citationRindorf, G. & Carlsen, L. (1979). Acta Cryst. B35, 1179–1182.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSchrauzer, G. N. & Mayweg, V. P. (1965). J. Am. Chem. Soc. 87, 1483–1489.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTian, Z.-Q., Donahue, J. P. & Holm, R. H. (1995). Inorg. Chem. 34, 5567–5572.  CSD CrossRef CAS Google Scholar
First citationYu, C.-X., Zhu, Y.-L., Chen, Z.-X., Lu, M.-Z. & Wang, K. (2011). Acta Cryst. E67, o821.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds