organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[Sulfonyl­bis­­(bromo­methyl­ene)]di­benzene

crossmark logo

aDepartment of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
*Correspondence e-mail: pcorfield@fordham.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 November 2021; accepted 21 December 2021; online 7 January 2022)

The title compound, C14H12Br2O2S, crystallizes as the meso isomer of a diastereoisomeric pair. This structure determination was key to determining that the 1,3 elimination of bromine by tri­phenyl­phosphine occurs with inversion of the configuration at each of the two chiral carbon atoms. In the crystal, the molecules are linked by weak C—H⋯O and C—H⋯Br hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

This structure determination was undertaken because of the high inter­est in the stereochemistry of 1,3 elimination reactions, particularly in the formation of α-sulfonyl carbanions (Cram et al., 1966[Cram, D. J., Trepka, R. D. & Janiak, P. St. (1966). J. Am. Chem. Soc. 88, 2749-2759.]; Bordwell et al., 1968a[Bordwell, F. G., Phillips, D. D. & William, J. M. Jr (1968a). J. Am. Chem. Soc. 90, 426-428.]). Two diastereoisomers, 1 and 2, of PhCHBr·SO2·CHBrPh (Fig. 1[link]) react stereospecifically with tri­phenyl­phosphine leading to 1,3 elimination of bromine followed by loss of sulfur dioxide to give stilbene, PhCH=CHPh, with 1 giving almost exclusively trans stilbene and 2 giving cis stilbene. Determination that the title compound 2 was the meso isomer was key to showing that the elimination occurred with double inversion of chirality at the C atoms (Bordwell et al., 1968b[Bordwell, F. G., Jarvis, B. B. & Corfield, P. W. R. (1968b). J. Am. Chem. Soc. 90, 5298-5299.]).

[Figure 1]
Figure 1
The two diastereoisomers, 1 and 2, of PhCHBr·SO2·CHBrPh.

Bond lengths and angles in the mol­ecular structure of 2 appear normal. As can be seen in Fig. 2[link], the chirality at C1 is R while that at C9 is S, indicating that this compound is the meso isomer. All mol­ecules in this centrosymmetric crystal will be the same meso isomer, although of course half will have opposite chiralities at C1 and C9. The C1—Br1 entity is gauche with respect to S—C2, whereas C2—Br2 is trans to S—C1, with conformational angles of −58.3 (5) and 171.3 (4)°, respectively.

[Figure 2]
Figure 2
View of the title mol­ecule showing the atomic numbering and displacement ellipsoids at the 50% probability level.

The packing diagram (Fig. 3[link]) shows the sulfone O atoms and the Br atoms projecting into hydro­phobic areas of the crystal. A number of putative C—H⋯O and C—H⋯Br inter­molecular hydrogen-bonding contacts are given in Table 1[link]. The C⋯O distances range from 3.46 (2) to 3.55 (2) Å while angles at the H atom are in the general range of 120–130°. The three C⋯Br distances listed are longer, with a range of 3.74 (2) to 3.79 (2) Å and there is more variation in the angles at the H atoms. Inter­molecular H⋯H contacts are all greater than 2.5 Å except for H6⋯H10(x − [{1\over 2}], y, [{3\over 2}] − z), which is 2.36 Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.92 3.523 (14) 123
C7—H7⋯O1i 0.93 2.80 3.462 (13) 129
C11—H11⋯O1ii 0.93 2.92 3.486 (14) 120
C12—H12⋯O2iii 0.93 2.89 3.545 (15) 128
C14—H14⋯O1iv 0.93 2.86 3.539 (17) 131
C14—H14⋯O2iv 0.93 2.86 3.548 (14) 132
C7—H7⋯Br1v 0.93 3.18 3.777 (14) 124
C8—H8⋯Br2ii 0.93 2.88 3.789 (15) 166
C13—H13⋯Br2iv 0.93 3.12 3.741 (19) 126
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [-x+1, -y+1, -z+1].
[Figure 3]
Figure 3
Projection of the crystal structure of 2 down the b axis. An arbitrary sphere size is given for C and H atoms, and a 50% probability level for the displacement ellipsoids of Br, S and O atoms. The reference mol­ecule has Br and S atoms identified.

Synthesis and crystallization

Details of the synthesis of the title compound are not given in the Bordwell papers, but details of two methods of preparing the compound are given in Carpino et al. (1971[Carpino, L. A., McAdams, L. V. III, Rynbrandt, R. H. & Spiewak, J. W. (1971). J. Am. Chem. Soc. 93, 476-484.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H12Br2O2S
Mr 404.12
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 295
a, b, c (Å) 16.53 (10), 12.81 (5), 13.46 (7)
V3) 2850 (25)
Z 8
Radiation type Mo Kα
μ (mm−1) 5.83
Crystal size (mm) 0.60 × 0.50 × 0.40
 
Data collection
Diffractometer Picker, punched card control
Absorption correction Empirical (using intensity measurements) four-dimensional tensor analysis (Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.])
Tmin, Tmax 0.148, 0.226
No. of measured, independent and observed [I > 2σ(I)] reflections 1334, 1334, 1059
Rint 0
θmax (°) 20.0
(sin θ/λ)max−1) 0.482
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.105, 1.10
No. of reflections 1334
No. of parameters 148
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.42
Computer programs: PICK (local program by J. A. Ibers), PICKOUT (local program by R. J. Doedens), FORDAP (local version), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-III (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

In 1967, when this dataset was collected, mechanical failures were frequent enough that minimum redundancy was sought. This accounts for the low resolution of the data and the lack of symmetry-equivalents. An empirical absorption correction involving a 24-parameter fit was made with XABS2 (Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.]), which led to a much smoother difference-Fourier map. The H atoms attached to chiral C1 and C2 atoms were located as the two highest peaks on a difference map calculated without their contributions.

In the final refinements, the phenyl ring carbon atoms were refined as rigid groups in order to keep a reasonable ratio of observations to refined parameters. The C—C distance in the phenyl rings was set at 1.372 Å to minimize the weighted R factor. Although this distance is a little less than the average 1.39 Å usually found, a number of well-refined sulfone structures in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) have C—C distances less than 1.39 Å, see: TUXFIC02 (Eccles et al., 2011[Eccles, K. S., Stokes, S. P., Daly, C. A., Barry, N. M., McSweeney, S. P., O'Neill, D. J., Kelly, D. M., Jennings, W. B., Ní Dhubhghaill, O. M., Moynihan, H. A., Maguire, A. R. & Lawrence, S. E. (2011). J. Appl. Cryst. 44, 213-215.]), BECRAE (Malwal & Chakrapani, 2015[Malwal, S. R. & Chakrapani, H. (2015). Org. Biomol. Chem. 13, 2399-2406.]), GIPQON (Periasamy et al., 2013[Periasamy, M., Gurubrahamam, R. & Muthukumaragopal, G. P. (2013). Tetrahedron Asymmetry, 24, 568-574.]), HEXLOO (Matsumoto et al., 2018[Matsumoto, Y., Nakatake, D., Yazaki, R. & Ohshima, T. (2018). Chem. Eur. J. 24, 6062-6066.]). The phenyl and H atoms attached to chiral C atoms all were constrained to lie in their expected positions, with C—H distances of 0.93 and 0.98 Å respectively, and displacement parameters set at 1.2Ueq for the adjoining carbon atoms.

Structural data


Computing details top

Data collection: PICK (local program by J. A. Ibers); cell refinement: PICK (local program by J. A. Ibers); data reduction: PICKOUT (local program by R. J. Doedens); program(s) used to solve structure: FORDAP (local version); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: ORTEP-III (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

[Sulfonylbis(bromomethylene)]dibenzene top
Crystal data top
C14H12Br2O2SDx = 1.884 Mg m3
Dm = 1.86 (1) Mg m3
Dm measured by flotation in CH3I/CCl4
Mr = 404.12Mo Kα radiation, λ = 0.7107 Å
Orthorhombic, PbcaCell parameters from 10 reflections
a = 16.53 (10) Åθ = 3.1–16.1°
b = 12.81 (5) ŵ = 5.83 mm1
c = 13.46 (7) ÅT = 295 K
V = 2850 (25) Å3Block, colorless
Z = 80.60 × 0.50 × 0.40 mm
F(000) = 1584
Data collection top
Picker, punched card control
diffractometer
Rint = 0
Radiation source: sealed X-ray tubeθmax = 20.0°, θmin = 2.5°
θ/2θ scansh = 015
Absorption correction: empirical (using intensity measurements)
four-dimensional tensor analysis (Parkin et al., 1995)
k = 012
Tmin = 0.148, Tmax = 0.226l = 012
1334 measured reflections3 standard reflections every 200 reflections
1334 independent reflections intensity decay: 0(1)
1059 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.105H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
1334 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.42 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. After the empirical absorption correction with XABS2, a difference map based upon all of the atoms except H1 and H2 clearly revealed H1 and H2 as the two highest peaks.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.53460 (5)0.75393 (8)0.42515 (7)0.0479 (4)
Br20.81089 (6)0.86936 (8)0.53831 (8)0.0592 (4)
S0.66395 (13)0.74518 (19)0.58854 (17)0.0397 (7)
O10.6327 (4)0.8427 (5)0.6245 (5)0.0514 (18)
O20.7024 (4)0.6746 (5)0.6565 (4)0.0522 (18)
C10.5828 (5)0.6707 (6)0.5315 (6)0.035 (2)
H10.6057580.6071830.5024000.042*
C20.7319 (5)0.7715 (6)0.4857 (6)0.039 (2)
H20.7011150.8071030.4334860.047*
C30.5219 (3)0.6398 (5)0.6091 (4)0.034 (2)
C40.4714 (4)0.7116 (4)0.6524 (5)0.046 (3)
H40.4740130.7813390.6335570.055*
C50.4171 (4)0.6804 (6)0.7235 (5)0.055 (3)
H50.3828250.7290530.7528420.066*
C60.4132 (3)0.5774 (7)0.7513 (4)0.062 (3)
H60.3763820.5563270.7994510.074*
C70.4637 (4)0.5057 (4)0.7079 (5)0.062 (3)
H70.4611270.4358850.7267760.075*
C80.5181 (4)0.5368 (5)0.6369 (5)0.048 (3)
H80.5523160.4881690.6074900.058*
C90.7698 (4)0.6757 (4)0.4412 (5)0.044 (3)
C100.8307 (4)0.6217 (5)0.4877 (4)0.041 (2)
H100.8489850.6430290.5497940.050*
C110.8646 (3)0.5363 (5)0.4425 (6)0.059 (3)
H110.9059200.4996710.4739640.071*
C120.8377 (4)0.5049 (4)0.3508 (6)0.057 (3)
H120.8606970.4469340.3202110.069*
C130.7768 (4)0.5589 (6)0.3044 (4)0.054 (3)
H130.7585390.5375550.2422870.064*
C140.7429 (3)0.6443 (5)0.3496 (5)0.043 (3)
H140.7016030.6809140.3181160.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0465 (6)0.0488 (7)0.0482 (6)0.0038 (5)0.0090 (5)0.0088 (5)
Br20.0507 (7)0.0452 (7)0.0817 (8)0.0152 (5)0.0008 (6)0.0116 (6)
S0.0405 (14)0.0389 (15)0.0397 (15)0.0038 (13)0.0045 (12)0.0029 (13)
O10.056 (4)0.043 (4)0.055 (4)0.001 (3)0.000 (3)0.018 (4)
O20.049 (4)0.066 (4)0.042 (4)0.005 (4)0.010 (3)0.014 (4)
C10.032 (5)0.027 (5)0.046 (6)0.002 (4)0.005 (5)0.001 (5)
C20.040 (6)0.042 (7)0.035 (5)0.009 (5)0.007 (5)0.011 (5)
C30.040 (6)0.024 (6)0.038 (6)0.000 (5)0.004 (5)0.005 (5)
C40.047 (7)0.050 (7)0.041 (6)0.006 (6)0.001 (5)0.006 (5)
C50.049 (7)0.057 (8)0.058 (8)0.010 (6)0.001 (6)0.016 (6)
C60.056 (8)0.086 (9)0.043 (6)0.019 (7)0.004 (6)0.014 (7)
C70.080 (8)0.037 (7)0.070 (8)0.015 (7)0.011 (6)0.006 (6)
C80.058 (8)0.035 (7)0.052 (7)0.000 (5)0.014 (6)0.011 (5)
C90.043 (6)0.031 (6)0.056 (8)0.005 (5)0.003 (5)0.015 (6)
C100.049 (7)0.039 (6)0.036 (6)0.003 (5)0.007 (5)0.006 (6)
C110.067 (8)0.037 (7)0.073 (9)0.004 (6)0.004 (7)0.002 (6)
C120.068 (8)0.034 (6)0.069 (9)0.007 (6)0.027 (6)0.005 (6)
C130.063 (8)0.053 (8)0.046 (7)0.011 (6)0.006 (6)0.004 (6)
C140.049 (6)0.034 (7)0.047 (7)0.002 (5)0.009 (6)0.008 (5)
Geometric parameters (Å, º) top
Br1—C11.954 (10)C6—C71.3720
Br2—C21.943 (10)C6—H60.9300
S—O21.435 (7)C7—C81.3720
S—O11.436 (7)C7—H70.9300
S—C11.817 (10)C8—H80.9300
S—C21.815 (11)C9—C101.3720
C1—C31.503 (11)C9—C141.3720
C1—H10.9800C10—C111.3720
C2—C91.502 (10)C10—H100.9300
C2—H20.9800C11—C121.3720
C3—C41.3720C11—H110.9300
C3—C81.3720C12—C131.3720
C4—C51.3720C12—H120.9300
C4—H40.9300C13—C141.3720
C5—C61.3720C13—H130.9300
C5—H50.9300C14—H140.9300
O2—S—O1119.5 (5)C7—C6—C5120.0
O2—S—C1105.4 (5)C7—C6—H6120.0
O1—S—C1109.5 (5)C5—C6—H6120.0
O2—S—C2109.2 (5)C6—C7—C8120.0
O1—S—C2108.5 (4)C6—C7—H7120.0
C1—S—C2103.4 (5)C8—C7—H7120.0
C3—C1—S109.8 (7)C7—C8—C3120.0
C3—C1—Br1112.4 (6)C7—C8—H8120.0
S—C1—Br1108.9 (5)C3—C8—H8120.0
C3—C1—H1108.6C10—C9—C14120.0
S—C1—H1108.6C10—C9—C2122.4 (6)
Br1—C1—H1108.6C14—C9—C2117.5 (6)
C9—C2—S114.2 (5)C11—C10—C9120.0
C9—C2—Br2113.1 (6)C11—C10—H10120.0
S—C2—Br2104.9 (5)C9—C10—H10120.0
C9—C2—H2108.1C10—C11—C12120.0
S—C2—H2108.1C10—C11—H11120.0
Br2—C2—H2108.1C12—C11—H11120.0
C4—C3—C8120.0C13—C12—C11120.0
C4—C3—C1121.7 (6)C13—C12—H12120.0
C8—C3—C1118.3 (6)C11—C12—H12120.0
C5—C4—C3120.0C12—C13—C14120.0
C5—C4—H4120.0C12—C13—H13120.0
C3—C4—H4120.0C14—C13—H13120.0
C4—C5—C6120.0C13—C14—C9120.0
C4—C5—H5120.0C13—C14—H14120.0
C6—C5—H5120.0C9—C14—H14120.0
O2—S—C1—C363.6 (6)C3—C4—C5—C60.0
O1—S—C1—C366.2 (6)C4—C5—C6—C70.0
C2—S—C1—C3178.3 (5)C5—C6—C7—C80.0
O2—S—C1—Br1172.9 (4)C6—C7—C8—C30.0
O1—S—C1—Br157.3 (5)C4—C3—C8—C70.0
C2—S—C1—Br158.3 (5)C1—C3—C8—C7179.5 (6)
O2—S—C2—C947.6 (7)S—C2—C9—C1074.4 (7)
O1—S—C2—C9179.5 (6)Br2—C2—C9—C1045.5 (7)
C1—S—C2—C964.3 (7)S—C2—C9—C14107.3 (6)
O2—S—C2—Br276.8 (6)Br2—C2—C9—C14132.8 (4)
O1—S—C2—Br255.1 (5)C14—C9—C10—C110.0
C1—S—C2—Br2171.3 (4)C2—C9—C10—C11178.2 (6)
S—C1—C3—C471.0 (6)C9—C10—C11—C120.0
Br1—C1—C3—C450.4 (7)C10—C11—C12—C130.0
S—C1—C3—C8108.5 (5)C11—C12—C13—C140.0
Br1—C1—C3—C8130.1 (4)C12—C13—C14—C90.0
C8—C3—C4—C50.0C10—C9—C14—C130.0
C1—C3—C4—C5179.5 (6)C2—C9—C14—C13178.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.932.923.523 (14)123
C7—H7···O1i0.932.803.462 (13)129
C11—H11···O1ii0.932.923.486 (14)120
C12—H12···O2iii0.932.893.545 (15)128
C14—H14···O1iv0.932.863.539 (17)131
C14—H14···O2iv0.932.863.548 (14)132
C7—H7···Br1v0.933.183.777 (14)124
C8—H8···Br2ii0.932.883.789 (15)166
C13—H13···Br2iv0.933.123.741 (19)126
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+3/2, y1/2, z; (iii) x+3/2, y+1, z1/2; (iv) x, y+3/2, z1/2; (v) x+1, y+1, z+1.
 

Acknowledgements

The author gratefully acknowledges the permission of J. A. Ibers to use the Picker diffractometer at Northwestern University.

References

First citationBordwell, F. G., Jarvis, B. B. & Corfield, P. W. R. (1968b). J. Am. Chem. Soc. 90, 5298–5299.  CrossRef CAS Web of Science Google Scholar
First citationBordwell, F. G., Phillips, D. D. & William, J. M. Jr (1968a). J. Am. Chem. Soc. 90, 426–428.  CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCarpino, L. A., McAdams, L. V. III, Rynbrandt, R. H. & Spiewak, J. W. (1971). J. Am. Chem. Soc. 93, 476–484.  CrossRef CAS Web of Science Google Scholar
First citationCram, D. J., Trepka, R. D. & Janiak, P. St. (1966). J. Am. Chem. Soc. 88, 2749–2759.  CrossRef CAS Web of Science Google Scholar
First citationEccles, K. S., Stokes, S. P., Daly, C. A., Barry, N. M., McSweeney, S. P., O'Neill, D. J., Kelly, D. M., Jennings, W. B., Ní Dhubhghaill, O. M., Moynihan, H. A., Maguire, A. R. & Lawrence, S. E. (2011). J. Appl. Cryst. 44, 213–215.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMalwal, S. R. & Chakrapani, H. (2015). Org. Biomol. Chem. 13, 2399–2406.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMatsumoto, Y., Nakatake, D., Yazaki, R. & Ohshima, T. (2018). Chem. Eur. J. 24, 6062–6066.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPeriasamy, M., Gurubrahamam, R. & Muthukumaragopal, G. P. (2013). Tetrahedron Asymmetry, 24, 568–574.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds