organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

β-D-Galacto­pyranosyl-(1→4)–2-amino-2-de­­oxy-α-D-gluco­pyran­ose hydro­chloride monohydrate (lactosamine)

crossmark logo

aDepartment of Biochemistry, University of Missouri, Columbia, MO 65211, USA, and bDepartment of Chemistry, University of Missouri, Columbia, MO 65211, USA
*Correspondence e-mail: mossinev@missouri.edu

Edited by J. F. Gallagher, Dublin City University, Ireland (Received 3 November 2021; accepted 17 January 2022; online 28 January 2022)

The title compound, C12H24NO10+·Cl·H2O, (I), crystallizes in the monoclinic space group P21 and exists as a monohydrate of a monosubstituted ammonium chloride salt, with the reducing carbohydrate portion existing exclusively as the α-pyran­ose tautomer. The glycosidic bond geometry in (I) is stabilized by an intra­molecular hydrogen bond and is close to that found in crystalline α-lactose. All heteroatoms except gluco­pyran­ose ring O4 participate in an extensive hydrogen-bonding network, which propagates in all directions in the crystal structure of (I).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Lactosamine is an important endogenous and food-related glycoepitope that provides for recognition of glycoproteins by both plant and animal β-galactoside-specific lectins, such as tomato lectin (Acarin et al., 1994[Acarin, L., Vela, J. M., González, B. & Castellano, B. (1994). J. Histochem. Cytochem. 42, 1033-1041.]) or a family of mammalian galectins (Boscher et al., 2011[Boscher, C., Dennis, J. W. & Nabi, I. R. (2011). Curr. Opin. Cell Biol. 23, 383-392.]; Mossine et al., 2008[Mossine, V. V., Glinsky, V. V. & Mawhinney, T. P. (2008). In Galectins, edited by A. A. Klyosov, D. Platt & Z. J. Witczak, pp. 235-270. John Wiley & Sons.]). In free and oligomeric form, N-acetyl­lactosamine is present in human milk and is believed to participate in the immune protection of infants (Kulinich & Liu, 2016[Kulinich, A. & Liu, L. (2016). Carbohydr. Res. 432, 62-70.]). Therefore, structural aspects of lactosamine inter­action with carbohydrate-recognizing proteins are of significant inter­est to the biomedical glycobiology field (Seetharaman et al., 1998[Seetharaman, J., Kanigsberg, A., Slaaby, R., Leffler, H., Barondes, S. H. & Rini, J. M. (1998). J. Biol. Chem. 273, 13047-13052.]; Guardia et al., 2011[Guardia, C. M. A., Gauto, D. F., Di Lella, S., Rabinovich, G. A., Martí, M. A. & Estrin, D. A. (2011). J. Chem. Inf. Model. 51, 1918-1930.]). As a part of our research program on the structure and anti-tumorigenic potential of amino­glycoconjugates (Glinskii et al., 2012[Glinskii, O. V., Sud, S., Mossine, V. V., Mawhinney, T. P., Anthony, D. C., Glinsky, G. V., Pienta, K. J. & Glinsky, V. V. (2012). Neoplasia, 14, 65-73.]; Mossine et al., 2018[Mossine, V. V., Byrne, T. S., Barnes, C. L. & Mawhinney, T. P. (2018). J. Carbohydr. Chem. 37, 153-162.]), we have prepared a number of 2-amino-2-de­oxy­saccharides, including lactosamine. Although the crystal parameters and hydrogen-bonding geometry of (I) were previously reported in a patent (Dekany et al., 2014[Dekany, G., Ágoston, K., Bajza, I., Bøjstrup, M., Pérez, I. F., Kröger, L. & Röhrig, C. H. (2014). US Patent 8,796,434.]), no other structural data have been provided. Here we report details of the mol­ecular geometry of (I) and compare it to related disaccharide structures.

The mol­ecular structure and atomic numbering for the title compound (I) are shown in Fig. 1[link]. Lactosamine is a disaccharide made of the non-reducing β-D-galactoside unit and the D-glucosa­mine portion, which is a reducing end sugar moiety and thus can exist in several tautomeric forms, such as α- and β-pyran­ose, or α- and β-furan­ose. In the crystalline state of (I), the D-glucosa­mine residue exists exclusively as the α-pyran­ose anomer, which is also a predominant tautomer in aqueous solutions of lactosamine (Dekany et al., 2014[Dekany, G., Ágoston, K., Bajza, I., Bøjstrup, M., Pérez, I. F., Kröger, L. & Röhrig, C. H. (2014). US Patent 8,796,434.]). The amino group in (I) is fully protonated, as would be expected for a hydro­chloride salt. The conformation of the D-glucosa­mine α-pyran­ose ring is a relaxed 4C1 chair, with puckering parameters Q1 = 0.579 (8) Å, θ1 = 1.0 (8)°, and φ1 = 100 (27)°. The D-galactoside β-pyran­ose ring similarly adopts the 4C1 conformation, with puckering parameters Q2 = 0.607 (8) Å, θ2 = 2.0 (8)°, and φ2 = 123 (38)°.

[Figure 1]
Figure 1
Atomic numbering and displacement ellipsoids at the 50% probability level for (I). Hydrogen bonds are shown as dotted lines.

The conformation around the β1→4 glycosidic link in disaccharide (I) is an important structural characteristic and, for the purpose of the structure comparison, can be conventionally described by the valence angle C4—O5—C7 (also referred to as `τ′), torsion angles C4—O5—C7—O10 (`Φ′) and C3—C4—O5—C7 (`Ψ'). As can be seen in Table 1[link], values of these angles are typical for other Gal-β1→4-Glc disaccharides, with α-lactose monohydrate (Smith et al., 2005[Smith, J. H., Dann, S. E., Elsegood, M. R. J., Dale, S. H. & Blatchford, C. G. (2005). Acta Cryst. E61, o2499-o2501.]) being conformationally the closest structure to (I). It is believed that the O10⋯H—O2 intra­molecular hydrogen bond linking the two carbohydrate units is primarily responsible for stabilization of the spatial arrangement around the glycosidic bond, both in the crystal state and in solutions of Gal-β1→4-Glc di- and oligosaccharides (Imberty et al. 1991[Imberty, A., Delage, M. M., Bourne, Y., Cambillau, C. & Perez, S. (1991). Glycoconjugate J. 8, 456-483.]). Moreover, this contact may be further stabilized by its involvement in multicenter hydrogen-bonding patterns. For instance, the H2 proton is involved in bifurcated hydrogen bonding with the O5 and O10 acceptors in (I) and α-lactose (Tables 2[link] and 3[link]), while in N-acetyl­lactosamine (Longchambon et al., 1981[Longchambon, F., Ohanessian, J., Gillier-Pandraud, H., Duchet, D., Jacquinet, J.-C. & Sinaÿ, P. (1981). Acta Cryst. B37, 601-607.]) and N-acetyl­lactosyl­amine (Lakshmanan et al., 2001[Lakshmanan, T., Sriram, D. & Loganathan, D. (2001). Acta Cryst. C57, 825-826.]), additional intra­molecular links between the galacto­pyran­oside and gluco­pyran­ose moieties are represented by the O5⋯H6—O6 and the O9⋯H2—O2 contacts, respectively (Table 2[link]).

Table 1
Conformational features (Å, °) of the glycosidic bond in (I) and related disaccharide structures with the Gal-β1→4-Glc link

Sugar Tautomer, conformation τ Φ Ψ Intra­molecular contacts around glycosidic bond (O⋯H; O⋯O; O⋯H—O)
Gal-β1→4-GlcNH3+Cl·H2O (I)a α-pyran­ose, 4C1 116.0 −95.2 +90.7 O10⋯H—O2 (1.98; 2.743; 159) O5⋯H—O2 (2.64; 2.964; 106)
Gal-β1→4-GlcNHCOCH3·H2O (N-acetyl­lactosamine, LacNAc·H2O)b α-pyran­ose, 4C1b 116.3 −88.1 +97.8 O10⋯H—O2 (1.98; 2.787; 139) O5⋯H—O6 (2.40; 2.868; 122)
LacNAc/ toad galectinc α-pyran­ose, 4C1 118.2; 113.6 −66.9; −67.8 +132.4; +132.6 Not reported
LacNAc calculationsd α-pyran­ose, 4C1d 117.1 −75 +135 O10⋯H—O2
Gal-β1→4-Glc·H2O (α-lactose)e α-pyran­ose, 4C1 116.9 −93.4 +95.9 O10⋯H—O2 (2.02; 2.819; 159) O5⋯H—O2 (2.65; 2.992; 106)
Gal-β1→4-Glc (β-lactose)f β-pyran­ose, 4C1 116.5 −76.3 +106.4 O10⋯H—O2 (n.d.; 2.707; 101)
Gal-β1→4-GlcNHCOCH3·2H2O (N-acetyl­lactosyl­amine)g β-pyran­ose, 4C1 117.4 −89.3 +81.5 O10⋯H—O2 (2.06; 2.767; 144) O9⋯H—O2 (2.45; 3.126; 141)
Notes: (a) This work; (b) Longchambon et al. (1981[Longchambon, F., Ohanessian, J., Gillier-Pandraud, H., Duchet, D., Jacquinet, J.-C. & Sinaÿ, P. (1981). Acta Cryst. B37, 601-607.]); (c) Bianchet et al. (2000[Bianchet, M. A., Ahmed, H., Vasta, G. R. & Amzel, L. M. (2000). Proteins, 40, 378-388.]); (d) Imberty et al. (1991[Imberty, A., Delage, M. M., Bourne, Y., Cambillau, C. & Perez, S. (1991). Glycoconjugate J. 8, 456-483.]); (e) Smith et al. (2005[Smith, J. H., Dann, S. E., Elsegood, M. R. J., Dale, S. H. & Blatchford, C. G. (2005). Acta Cryst. E61, o2499-o2501.]); (f) Hirotsu & Shimada (1974[Hirotsu, K. & Shimada, A. (1974). Bull. Chem. Soc. Jpn, 47, 1872-1879.]); (g) Lakshmanan et al. (2001[Lakshmanan, T., Sriram, D. & Loganathan, D. (2001). Acta Cryst. C57, 825-826.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1 0.83 (5) 2.28 (6) 3.075 (6) 163 (9)
O2—H2⋯O10 0.80 (5) 1.98 (6) 2.743 (7) 159 (8)
O3—H3⋯Cl1i 0.82 (5) 2.31 (6) 3.130 (7) 172 (9)
O6—H6⋯O9ii 0.82 (5) 1.84 (6) 2.654 (8) 171 (9)
O7—H7⋯O2iii 0.81 (5) 1.92 (6) 2.697 (8) 158 (9)
O8—H8⋯Cl1iv 0.78 (5) 2.32 (6) 3.080 (5) 166 (8)
O9—H9⋯O6v 0.83 (5) 1.88 (5) 2.707 (8) 178 (9)
N1—H1A⋯O1W 0.90 (4) 1.96 (5) 2.819 (9) 159 (7)
N1—H1B⋯O7vi 0.90 (4) 2.26 (7) 2.862 (8) 124 (6)
N1—H1B⋯O8vi 0.90 (4) 2.16 (6) 2.922 (8) 142 (7)
N1—H1C⋯O1 0.91 (4) 2.34 (8) 2.787 (9) 110 (6)
N1—H1C⋯O1Wvii 0.91 (4) 2.35 (6) 3.162 (11) 149 (7)
O1W—H1WA⋯O3viii 0.90 (6) 1.85 (7) 2.746 (8) 170 (10)
O1W—H1WB⋯Cl1ix 0.89 (6) 2.50 (7) 3.335 (7) 156 (9)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z]; (iii) [-x+1, y-{\script{1\over 2}}, -z]; (iv) [x, y, z-1]; (v) [-x+1, y+{\script{1\over 2}}, -z]; (vi) [-x, y+{\script{1\over 2}}, -z]; (vii) [x-1, y, z]; (viii) [-x+1, y+{\script{1\over 2}}, -z+1]; (ix) [-x, y+{\script{1\over 2}}, -z+1].

Table 3
Additional D—H⋯A contacts (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O5 0.80 (7) 2.64 (8) 2.964 (8) 106 (6)
N1—H1B⋯O2 0.90 (6) 2.55 (7) 2.855 (9) 101 (5)
O7—H7⋯O6 0.81 (8) 2.63 (8) 2.847 (8) 97 (8)
C2—H2A⋯O1i 0.98 2.34 3.199 (10) 146
C9—H9A⋯O8i 0.98 2.58 3.309 (9) 132
C10—H10⋯Cl1ii 0.98 2.82 3.741 (9) 157
Symmetry codes: (i) x + 1, y, z; (ii) x + 1, y, z − 1.

The mol­ecular packing of (I) features an extensive inter­molecular hydrogen-bonding network (Table 2[link]), which propagates in all directions (Fig. 2[link]). The ammonium groups, chloride ions, and water mol­ecules serve as the hydrogen-bonding network `hubs', each being in short, H-mediated, contact with four or five heteroatoms. For the ammonium group, these are O1, O7, O8, and two different O1W; the chloride ions are in contact with O1, O3, O8, and O1W; the water mol­ecules are involved in the network by serving as both donors (to Cl1 and O3) and acceptors (to two different H1A—N1—H1C groups) of strong hydrogen bonding (Table 2[link]). In this way, each mol­ecule of lactosamine is surrounded by four hydrogen-bonded mol­ecules of lactosamine, three water mol­ecules, and three chloride ions (Fig. 3[link]); each water mol­ecule coordinates three lactosamines and one chloride (Fig. 4[link]); every chloride is hydrogen-bonded to three lactosamines and one water as well (Fig. 2[link]).

[Figure 2]
Figure 2
The mol­ecular packing in (I) as viewed along the c axis. Hydrogen bonds are shown as cyan dotted lines.
[Figure 3]
Figure 3
Hydrogen-bonded lactosamine mol­ecular ions, chloride ions, and water mol­ecules surrounding the central lactosamine mol­ecular ion in the crystal structure of (I).
[Figure 4]
Figure 4
Hydrogen-bonded coordination sphere around the water mol­ecule in the crystal structure of (I)

Synthesis and crystallization

The synthesis of (I) was performed following a Heyns rearrangement protocol described previously by Wrodnigg & Stütz (1999[Wrodnigg, T. M. & Stütz, A. E. (1999). Angew. Chem. Int. Ed. 38, 827-828.]). A mixture of 34.2 g (100 mmoles) of D-lactulose and 75 ml (700 mmoles) of benzyl­amine was stirred for 18 h in a screw-capped glass flask at 318 K. The reaction progress was followed by TLC. The excess of benzyl­amine was removed by four successive extractions with benzene (2 L total), the residue was dissolved in 500 ml MeOH containing 20 ml of glacial acetic acid and left for 18 h at room temperature. The reaction mixture was then hydrogenated in the presence of 2.0 g of 10% Pd/C and 5 ml of 80% formic acid, until the reaction was judged complete by TLC. After filtration, the solvents were removed under reduced pressure, a syrupy residue was dissolved in 1.5 L of water and passed through a column charged with 250 ml of ion-exchange resin Amberlite IRN-77 (H+-form). The column was washed with water and eluted with 0.2 M ammonium acetate. The eluate fractions containing lactosamine were pooled, evaporated to a syrup, re-dissolved in 0.5 L of water and passed through a column filled with 1L of Amberlite IRN-78 (Cl). The eluate fractions containing (I) were pooled, evaporated to a syrup, and the syrup was kept at 277 K to produce crystalline material suitable for the X-ray diffraction studies.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The Flack absolute structure parameter determined [0.02 (11) for 729 quotients (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])] is consistent with the (3S,4R,5R,7S,8R,9S,10S,11R) configuration, which was assigned for this system on the basis of the known configuration for the starting material D-lactulose (McNaught, 1996[McNaught, A. D. (1996). Pure Appl. Chem. 68, 1919-2008.]). Data were collected out to 0.80 Å; however, because of the small size of the crystal, most of the high-angle diffraction peaks are effectively indistinguishable from the noise. The inclusion of this high-angle data results in a high value for Rint, and the precision of the bond distances is low (ca 0.01 Å) because most of the high-angle data are not usable for refinement.

Table 4
Experimental details

Crystal data
Chemical formula C12H24NO10+·Cl·H2O
Mr 395.79
Crystal system, space group Monoclinic, P21
Temperature (K) 273
a, b, c (Å) 4.785 (4), 13.523 (11), 13.254 (11)
β (°) 93.940 (9)
V3) 855.5 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.08 × 0.05 × 0.01
 
Data collection
Diffractometer Bruker APEXII area detector
Absorption correction Multi-scan (AXScale; Bruker, 2016[Bruker (2016). APEX, SAINT and AXScale. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.483, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 11475, 3787, 2216
Rint 0.133
(sin θ/λ)max−1) 0.643
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.131, 1.01
No. of reflections 3787
No. of parameters 262
No. of restraints 26
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.37
Absolute structure Flack x determined using 729 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.02 (11)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX, SAINT and AXScale. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 and SAINT (Bruker, 2016); data reduction: APEX3 and SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

β-D-Galactopyranosyl-(14)–2-amino-2-deoxy-α-D-glucopyranose hydrochloride monohydrate top
Crystal data top
C12H24NO10+·Cl·H2OF(000) = 420
Mr = 395.79Dx = 1.536 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 4.785 (4) ÅCell parameters from 1276 reflections
b = 13.523 (11) Åθ = 3.0–20.6°
c = 13.254 (11) ŵ = 0.28 mm1
β = 93.940 (9)°T = 273 K
V = 855.5 (12) Å3Plate, colourless
Z = 20.08 × 0.05 × 0.01 mm
Data collection top
Bruker APEXII area detector
diffractometer
2216 reflections with I > 2σ(I)
Radiation source: Sealed Source Mo with TRIUMPH opticsRint = 0.133
ω and phi scansθmax = 27.2°, θmin = 1.5°
Absorption correction: multi-scan
(AXScale; Bruker, 2016)
h = 66
Tmin = 0.483, Tmax = 0.746k = 1717
11475 measured reflectionsl = 1716
3787 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0475P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3787 reflectionsΔρmax = 0.44 e Å3
262 parametersΔρmin = 0.37 e Å3
26 restraintsAbsolute structure: Flack x determined using 729 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydroxy and nitrogen-bound H atoms were located in difference-Fourier analyses and were allowed to refine fully. Other H atoms were placed at calculated positions and treated as riding. All chemically equivalent N—H and O—H bond distances were restrained to be equal within 0.05 Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.3280 (4)0.75359 (14)0.61589 (14)0.0286 (5)
O10.1394 (11)0.7867 (4)0.4014 (4)0.0272 (13)
H10.195 (16)0.765 (7)0.455 (5)0.041*
O1W0.6240 (15)1.0329 (4)0.4269 (5)0.0462 (19)
H1WA0.71 (2)1.021 (8)0.488 (6)0.069*
H1WB0.58 (2)1.096 (5)0.433 (8)0.069*
O20.2355 (12)0.8551 (4)0.1351 (4)0.0260 (14)
H20.186 (17)0.830 (6)0.082 (5)0.039*
O30.1487 (12)0.4761 (4)0.3861 (4)0.0341 (14)
H30.18 (2)0.416 (4)0.387 (7)0.051*
O40.2482 (10)0.6815 (4)0.3919 (4)0.0253 (13)
O50.1019 (10)0.6413 (4)0.1208 (4)0.0223 (12)
O60.3161 (10)0.4684 (4)0.0307 (4)0.0263 (12)
H60.175 (14)0.446 (6)0.055 (6)0.039*
O70.3237 (11)0.4742 (4)0.1838 (4)0.0266 (13)
H70.431 (16)0.434 (5)0.157 (6)0.040*
O80.0409 (10)0.6292 (4)0.2120 (4)0.0229 (12)
H80.091 (17)0.658 (6)0.261 (5)0.034*
O90.1635 (11)0.9157 (4)0.1046 (4)0.0255 (13)
H90.321 (13)0.933 (6)0.082 (6)0.038*
O100.1420 (10)0.7280 (3)0.0250 (4)0.0226 (13)
N10.1495 (15)0.9460 (5)0.3249 (5)0.0267 (17)
H1A0.270 (14)0.978 (6)0.369 (5)0.040*
H1B0.104 (16)0.980 (6)0.268 (4)0.040*
H1C0.023 (11)0.946 (6)0.350 (6)0.040*
C10.1489 (16)0.7791 (5)0.4024 (6)0.0250 (18)
H1D0.2318170.8070160.4657970.030*
C20.2409 (16)0.8418 (5)0.3134 (6)0.0227 (18)
H2A0.4459830.8408930.3154330.027*
C30.1292 (16)0.7968 (5)0.2135 (6)0.0228 (18)
H3A0.0760340.7990220.2083500.027*
C40.2270 (15)0.6906 (6)0.2095 (6)0.0224 (18)
H40.4313710.6892820.2076870.027*
C50.1419 (16)0.6315 (6)0.3013 (5)0.0226 (17)
H50.0627650.6274810.3000310.027*
C60.2641 (17)0.5292 (6)0.3051 (6)0.030 (2)
H6A0.2192390.4954360.2414830.036*
H6B0.4663720.5327360.3162910.036*
C70.2534 (15)0.6458 (6)0.0341 (5)0.0222 (17)
H7A0.4532200.6557040.0527710.027*
C80.2081 (16)0.5518 (5)0.0258 (6)0.0217 (17)
H8A0.0072350.5424720.0427070.026*
C90.3596 (16)0.5604 (5)0.1230 (5)0.0204 (17)
H9A0.5599910.5703690.1055950.024*
C100.2464 (15)0.6483 (6)0.1834 (6)0.0213 (17)
H100.3503400.6562340.2441110.026*
C110.2853 (15)0.7402 (6)0.1168 (5)0.0220 (17)
H110.4855540.7504770.0994070.026*
C120.1643 (16)0.8313 (5)0.1692 (6)0.0241 (18)
H12A0.2723840.8465040.2265250.029*
H12B0.0263100.8174330.1948790.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0323 (11)0.0230 (11)0.0302 (10)0.0014 (9)0.0006 (8)0.0045 (10)
O10.027 (3)0.023 (3)0.032 (4)0.002 (2)0.004 (3)0.004 (3)
O1W0.075 (5)0.027 (4)0.034 (4)0.003 (3)0.012 (3)0.002 (3)
O20.035 (3)0.021 (3)0.022 (3)0.010 (2)0.001 (3)0.001 (2)
O30.056 (4)0.016 (3)0.030 (3)0.003 (3)0.004 (3)0.007 (3)
O40.033 (3)0.017 (3)0.026 (3)0.002 (2)0.001 (3)0.000 (2)
O50.027 (3)0.021 (3)0.020 (3)0.005 (2)0.002 (2)0.001 (2)
O60.025 (3)0.021 (3)0.033 (3)0.001 (3)0.005 (2)0.006 (3)
O70.032 (3)0.016 (3)0.031 (3)0.005 (2)0.001 (2)0.001 (3)
O80.025 (3)0.019 (3)0.024 (3)0.001 (2)0.001 (2)0.004 (2)
O90.026 (3)0.019 (3)0.032 (3)0.000 (2)0.001 (3)0.003 (3)
O100.024 (3)0.017 (3)0.026 (3)0.003 (2)0.003 (2)0.003 (2)
N10.035 (4)0.021 (4)0.023 (4)0.005 (3)0.006 (3)0.004 (3)
C10.030 (5)0.018 (4)0.026 (4)0.002 (3)0.001 (3)0.003 (3)
C20.025 (4)0.016 (4)0.026 (5)0.003 (3)0.001 (4)0.004 (3)
C30.023 (4)0.021 (4)0.024 (4)0.002 (3)0.002 (3)0.008 (3)
C40.020 (4)0.019 (4)0.029 (5)0.004 (3)0.000 (3)0.000 (4)
C50.029 (4)0.016 (4)0.023 (4)0.009 (3)0.001 (3)0.002 (3)
C60.037 (5)0.023 (5)0.028 (5)0.003 (4)0.000 (4)0.003 (4)
C70.023 (4)0.021 (4)0.023 (4)0.001 (3)0.002 (3)0.004 (4)
C80.024 (4)0.015 (4)0.026 (5)0.003 (3)0.002 (3)0.005 (3)
C90.021 (4)0.016 (4)0.024 (4)0.002 (3)0.002 (3)0.001 (4)
C100.020 (4)0.019 (4)0.025 (4)0.002 (3)0.004 (3)0.003 (3)
C110.021 (4)0.020 (4)0.027 (4)0.001 (3)0.007 (3)0.002 (4)
C120.026 (4)0.014 (4)0.032 (5)0.001 (3)0.004 (4)0.000 (4)
Geometric parameters (Å, º) top
O1—C11.382 (9)N1—H1C0.91 (4)
O1—H10.83 (5)C1—C21.541 (10)
O1W—H1WA0.90 (6)C1—H1D0.9800
O1W—H1WB0.89 (6)C2—C31.521 (10)
O2—C31.426 (9)C2—H2A0.9800
O2—H20.80 (5)C3—C41.512 (10)
O3—C61.434 (10)C3—H3A0.9800
O3—H30.82 (5)C4—C51.533 (10)
O4—C11.414 (9)C4—H40.9800
O4—C51.440 (8)C5—C61.502 (11)
O5—C71.402 (9)C5—H50.9800
O5—C41.445 (9)C6—H6A0.9700
O6—C81.431 (9)C6—H6B0.9700
O6—H60.82 (5)C7—C81.507 (10)
O7—C91.420 (9)C7—H7A0.9800
O7—H70.81 (5)C8—C91.526 (10)
O8—C101.424 (9)C8—H8A0.9800
O8—H80.78 (5)C9—C101.513 (10)
O9—C121.426 (9)C9—H9A0.9800
O9—H90.83 (5)C10—C111.528 (10)
O10—C71.441 (8)C10—H100.9800
O10—C111.447 (8)C11—C121.510 (10)
N1—C21.486 (10)C11—H110.9800
N1—H1A0.90 (4)C12—H12A0.9700
N1—H1B0.90 (4)C12—H12B0.9700
C1—O1—H1110 (6)C6—C5—H5109.6
H1WA—O1W—H1WB101 (9)C4—C5—H5109.6
C3—O2—H2108 (6)O3—C6—C5108.5 (7)
C6—O3—H3115 (7)O3—C6—H6A110.0
C1—O4—C5114.7 (5)C5—C6—H6A110.0
C7—O5—C4116.0 (5)O3—C6—H6B110.0
C8—O6—H6102 (6)C5—C6—H6B110.0
C9—O7—H7105 (6)H6A—C6—H6B108.4
C10—O8—H8112 (6)O5—C7—O10106.7 (5)
C12—O9—H9114 (6)O5—C7—C8109.3 (6)
C7—O10—C11111.5 (5)O10—C7—C8109.3 (5)
C2—N1—H1A110 (5)O5—C7—H7A110.5
C2—N1—H1B117 (5)O10—C7—H7A110.5
H1A—N1—H1B114 (7)C8—C7—H7A110.5
C2—N1—H1C109 (6)O6—C8—C7110.8 (6)
H1A—N1—H1C109 (8)O6—C8—C9109.1 (6)
H1B—N1—H1C97 (7)C7—C8—C9108.7 (6)
O1—C1—O4114.2 (6)O6—C8—H8A109.4
O1—C1—C2106.8 (6)C7—C8—H8A109.4
O4—C1—C2108.8 (6)C9—C8—H8A109.4
O1—C1—H1D109.0O7—C9—C10108.6 (6)
O4—C1—H1D109.0O7—C9—C8111.8 (6)
C2—C1—H1D109.0C10—C9—C8109.5 (6)
N1—C2—C3112.4 (6)O7—C9—H9A109.0
N1—C2—C1109.9 (6)C10—C9—H9A109.0
C3—C2—C1110.2 (6)C8—C9—H9A109.0
N1—C2—H2A108.1O8—C10—C9107.6 (6)
C3—C2—H2A108.1O8—C10—C11112.3 (6)
C1—C2—H2A108.1C9—C10—C11107.9 (6)
O2—C3—C4111.9 (7)O8—C10—H10109.7
O2—C3—C2106.9 (6)C9—C10—H10109.7
C4—C3—C2108.6 (6)C11—C10—H10109.7
O2—C3—H3A109.8O10—C11—C12106.9 (6)
C4—C3—H3A109.8O10—C11—C10110.3 (6)
C2—C3—H3A109.8C12—C11—C10111.7 (6)
O5—C4—C3110.8 (6)O10—C11—H11109.3
O5—C4—C5106.7 (6)C12—C11—H11109.3
C3—C4—C5111.6 (6)C10—C11—H11109.3
O5—C4—H4109.3O9—C12—C11113.2 (6)
C3—C4—H4109.3O9—C12—H12A108.9
C5—C4—H4109.3C11—C12—H12A108.9
O4—C5—C6106.8 (6)O9—C12—H12B108.9
O4—C5—C4108.6 (6)C11—C12—H12B108.9
C6—C5—C4112.5 (7)H12A—C12—H12B107.7
O4—C5—H5109.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl10.83 (5)2.28 (6)3.075 (6)163 (9)
O2—H2···O100.80 (5)1.98 (6)2.743 (7)159 (8)
O3—H3···Cl1i0.82 (5)2.31 (6)3.130 (7)172 (9)
O6—H6···O9ii0.82 (5)1.84 (6)2.654 (8)171 (9)
O7—H7···O2iii0.81 (5)1.92 (6)2.697 (8)158 (9)
O8—H8···Cl1iv0.78 (5)2.32 (6)3.080 (5)166 (8)
O9—H9···O6v0.83 (5)1.88 (5)2.707 (8)178 (9)
N1—H1A···O1W0.90 (4)1.96 (5)2.819 (9)159 (7)
N1—H1B···O7vi0.90 (4)2.26 (7)2.862 (8)124 (6)
N1—H1B···O8vi0.90 (4)2.16 (6)2.922 (8)142 (7)
N1—H1C···O10.91 (4)2.34 (8)2.787 (9)110 (6)
N1—H1C···O1Wvii0.91 (4)2.35 (6)3.162 (11)149 (7)
O1W—H1WA···O3viii0.90 (6)1.85 (7)2.746 (8)170 (10)
O1W—H1WB···Cl1ix0.89 (6)2.50 (7)3.335 (7)156 (9)
Symmetry codes: (i) x, y1/2, z+1; (ii) x, y1/2, z; (iii) x+1, y1/2, z; (iv) x, y, z1; (v) x+1, y+1/2, z; (vi) x, y+1/2, z; (vii) x1, y, z; (viii) x+1, y+1/2, z+1; (ix) x, y+1/2, z+1.
Conformational features (Å, °) of the glycosidic bond in (I) and related disaccharide structures with the Gal-β14-Glc link top
SugarTautomer, conformationτΦΨIntramolecular contacts around glycosidic bond (O···H; O···O; O···H—O)
Gal-β14-GlcNH3+Cl-·H2O (I)aα-pyranose, 4C1116.0-95.2+90.7O10···H—O2 (1.98; 2.743; 159) O5···H-O2 (2.64; 2.964; 106)
Gal-β14-GlcNHCOCH3·H2O (N-acetyllactosamine, LacNAc·H2O)bα-pyranose, 4C1b116.3-88.1+97.8O10···H-O2 (1.98; 2.787; 139) O5···H—O6 (2.40; 2.868; 122)
LacNAc/ toad galectincα-pyranose, 4C1118.2; 113.6-66.9; -67.8+132.4; +132.6Not reported
LacNAc calculationsdα-pyranose, 4C1d117.1-75+135O10···H—O2
Gal-β14-Glc·H2O (α-lactose)eα-pyranose, 4C1116.9-93.4+95.9O10···H—O2 (2.02; 2.819; 159) O5···H—O2 (2.65; 2.992; 106)
Gal-β14-Glc (β-lactose)fβ-pyranose, 4C1116.5-76.3+106.4O10···H—O2 (n.d.; 2.707; 101)
Gal-β14-GlcNHCOCH3·2H2O (N-acetyllactosylamine)gβ-pyranose, 4C1117.4-89.3+81.5O10···H—O2 (2.06; 2.767; 144) O9···H—O2 (2.45; 3.126; 141)
Notes: (a) This work; (b) Longchambon et al. (1981); (c) Bianchet et al. (2000); (d) Imberty et al. (1991); (e) Smith et al. (2005); (f) Hirotsu & Shimada (1974); (g) Lakshmanan et al. (2001).
Additional D—H···A contacts (Å, °) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O50.80 (7)2.64 (8)2.964 (8)106 (6)
N1—H1B···O20.90 (6)2.55 (7)2.855 (9)101 (5)
O7—H7···O60.81 (8)2.63 (8)2.847 (8)97 (8)
C2—H2A···O1i0.982.343.199 (10)146
C9—H9A···O8i0.982.583.309 (9)132
C10—H10···Cl1ii0.982.823.741 (9)157
Symmetry codes: (i) x + 1, y, z; (ii) x + 1, y, z - 1.
 

Funding information

Funding for this research was provided by: University of Missouri, Agriculture Experiment Station Chemical Laboratories; National Institute of Food and Agriculture (grant No. Hatch 1023929).

References

First citationAcarin, L., Vela, J. M., González, B. & Castellano, B. (1994). J. Histochem. Cytochem. 42, 1033–1041.  CrossRef CAS PubMed Google Scholar
First citationBianchet, M. A., Ahmed, H., Vasta, G. R. & Amzel, L. M. (2000). Proteins, 40, 378–388.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBoscher, C., Dennis, J. W. & Nabi, I. R. (2011). Curr. Opin. Cell Biol. 23, 383–392.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX, SAINT and AXScale. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDekany, G., Ágoston, K., Bajza, I., Bøjstrup, M., Pérez, I. F., Kröger, L. & Röhrig, C. H. (2014). US Patent 8,796,434.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGlinskii, O. V., Sud, S., Mossine, V. V., Mawhinney, T. P., Anthony, D. C., Glinsky, G. V., Pienta, K. J. & Glinsky, V. V. (2012). Neoplasia, 14, 65–73.  CrossRef CAS PubMed Google Scholar
First citationGuardia, C. M. A., Gauto, D. F., Di Lella, S., Rabinovich, G. A., Martí, M. A. & Estrin, D. A. (2011). J. Chem. Inf. Model. 51, 1918–1930.  CrossRef CAS PubMed Google Scholar
First citationHirotsu, K. & Shimada, A. (1974). Bull. Chem. Soc. Jpn, 47, 1872–1879.  CSD CrossRef CAS Web of Science Google Scholar
First citationImberty, A., Delage, M. M., Bourne, Y., Cambillau, C. & Perez, S. (1991). Glycoconjugate J. 8, 456–483.  CrossRef CAS Google Scholar
First citationKulinich, A. & Liu, L. (2016). Carbohydr. Res. 432, 62–70.  CrossRef CAS PubMed Google Scholar
First citationLakshmanan, T., Sriram, D. & Loganathan, D. (2001). Acta Cryst. C57, 825–826.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLongchambon, F., Ohanessian, J., Gillier-Pandraud, H., Duchet, D., Jacquinet, J.-C. & Sinaÿ, P. (1981). Acta Cryst. B37, 601–607.  CrossRef CAS IUCr Journals Google Scholar
First citationMcNaught, A. D. (1996). Pure Appl. Chem. 68, 1919–2008.  CrossRef CAS Web of Science Google Scholar
First citationMossine, V. V., Byrne, T. S., Barnes, C. L. & Mawhinney, T. P. (2018). J. Carbohydr. Chem. 37, 153–162.  CrossRef CAS Google Scholar
First citationMossine, V. V., Glinsky, V. V. & Mawhinney, T. P. (2008). In Galectins, edited by A. A. Klyosov, D. Platt & Z. J. Witczak, pp. 235-270. John Wiley & Sons.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSeetharaman, J., Kanigsberg, A., Slaaby, R., Leffler, H., Barondes, S. H. & Rini, J. M. (1998). J. Biol. Chem. 273, 13047–13052.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, J. H., Dann, S. E., Elsegood, M. R. J., Dale, S. H. & Blatchford, C. G. (2005). Acta Cryst. E61, o2499–o2501.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWrodnigg, T. M. & Stütz, A. E. (1999). Angew. Chem. Int. Ed. 38, 827–828.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds