organic compounds
β-D-Galactopyranosyl-(1→4)–2-amino-2-deoxy-α-D-glucopyranose hydrochloride monohydrate (lactosamine)
aDepartment of Biochemistry, University of Missouri, Columbia, MO 65211, USA, and bDepartment of Chemistry, University of Missouri, Columbia, MO 65211, USA
*Correspondence e-mail: mossinev@missouri.edu
The title compound, C12H24NO10+·Cl−·H2O, (I), crystallizes in the monoclinic P21 and exists as a monohydrate of a monosubstituted ammonium chloride salt, with the reducing carbohydrate portion existing exclusively as the α-pyranose tautomer. The glycosidic bond geometry in (I) is stabilized by an intramolecular hydrogen bond and is close to that found in crystalline α-lactose. All heteroatoms except glucopyranose ring O4 participate in an extensive hydrogen-bonding network, which propagates in all directions in the of (I).
CCDC reference: 2119923
Structure description
Lactosamine is an important endogenous and food-related glycoepitope that provides for recognition of β-galactoside-specific such as tomato lectin (Acarin et al., 1994) or a family of mammalian galectins (Boscher et al., 2011; Mossine et al., 2008). In free and oligomeric form, N-acetyllactosamine is present in human milk and is believed to participate in the immune protection of infants (Kulinich & Liu, 2016). Therefore, structural aspects of lactosamine interaction with carbohydrate-recognizing proteins are of significant interest to the biomedical glycobiology field (Seetharaman et al., 1998; Guardia et al., 2011). As a part of our research program on the structure and anti-tumorigenic potential of aminoglycoconjugates (Glinskii et al., 2012; Mossine et al., 2018), we have prepared a number of 2-amino-2-deoxysaccharides, including lactosamine. Although the crystal parameters and hydrogen-bonding geometry of (I) were previously reported in a patent (Dekany et al., 2014), no other structural data have been provided. Here we report details of the molecular geometry of (I) and compare it to related disaccharide structures.
by both plant and animalThe molecular structure and atomic numbering for the title compound (I) are shown in Fig. 1. Lactosamine is a disaccharide made of the non-reducing β-D-galactoside unit and the D-glucosamine portion, which is a reducing end sugar moiety and thus can exist in several tautomeric forms, such as α- and β-pyranose, or α- and β-furanose. In the crystalline state of (I), the D-glucosamine residue exists exclusively as the α-pyranose anomer, which is also a predominant tautomer in aqueous solutions of lactosamine (Dekany et al., 2014). The amino group in (I) is fully protonated, as would be expected for a hydrochloride salt. The conformation of the D-glucosamine α-pyranose ring is a relaxed 4C1 chair, with puckering parameters Q1 = 0.579 (8) Å, θ1 = 1.0 (8)°, and φ1 = 100 (27)°. The D-galactoside β-pyranose ring similarly adopts the 4C1 conformation, with puckering parameters Q2 = 0.607 (8) Å, θ2 = 2.0 (8)°, and φ2 = 123 (38)°.
The conformation around the β1→4 glycosidic link in disaccharide (I) is an important structural characteristic and, for the purpose of the structure comparison, can be conventionally described by the valence angle C4—O5—C7 (also referred to as `τ′), torsion angles C4—O5—C7—O10 (`Φ′) and C3—C4—O5—C7 (`Ψ'). As can be seen in Table 1, values of these angles are typical for other Gal-β1→4-Glc with α-lactose monohydrate (Smith et al., 2005) being conformationally the closest structure to (I). It is believed that the O10⋯H—O2 intramolecular hydrogen bond linking the two carbohydrate units is primarily responsible for stabilization of the spatial arrangement around the glycosidic bond, both in the crystal state and in solutions of Gal-β1→4-Glc di- and (Imberty et al. 1991). Moreover, this contact may be further stabilized by its involvement in multicenter hydrogen-bonding patterns. For instance, the H2 proton is involved in bifurcated hydrogen bonding with the O5 and O10 acceptors in (I) and α-lactose (Tables 2 and 3), while in N-acetyllactosamine (Longchambon et al., 1981) and N-acetyllactosylamine (Lakshmanan et al., 2001), additional intramolecular links between the galactopyranoside and glucopyranose moieties are represented by the O5⋯H6—O6 and the O9⋯H2—O2 contacts, respectively (Table 2).
|
|
The molecular packing of (I) features an extensive intermolecular hydrogen-bonding network (Table 2), which propagates in all directions (Fig. 2). The ammonium groups, chloride ions, and water molecules serve as the hydrogen-bonding network `hubs', each being in short, H-mediated, contact with four or five heteroatoms. For the ammonium group, these are O1, O7, O8, and two different O1W; the chloride ions are in contact with O1, O3, O8, and O1W; the water molecules are involved in the network by serving as both donors (to Cl1 and O3) and acceptors (to two different H1A—N1—H1C groups) of strong hydrogen bonding (Table 2). In this way, each molecule of lactosamine is surrounded by four hydrogen-bonded molecules of lactosamine, three water molecules, and three chloride ions (Fig. 3); each water molecule coordinates three lactosamines and one chloride (Fig. 4); every chloride is hydrogen-bonded to three lactosamines and one water as well (Fig. 2).
Synthesis and crystallization
The synthesis of (I) was performed following a Heyns rearrangement protocol described previously by Wrodnigg & Stütz (1999). A mixture of 34.2 g (100 mmoles) of D-lactulose and 75 ml (700 mmoles) of benzylamine was stirred for 18 h in a screw-capped glass flask at 318 K. The reaction progress was followed by TLC. The excess of benzylamine was removed by four successive extractions with benzene (2 L total), the residue was dissolved in 500 ml MeOH containing 20 ml of glacial acetic acid and left for 18 h at room temperature. The reaction mixture was then hydrogenated in the presence of 2.0 g of 10% Pd/C and 5 ml of 80% formic acid, until the reaction was judged complete by TLC. After filtration, the solvents were removed under reduced pressure, a syrupy residue was dissolved in 1.5 L of water and passed through a column charged with 250 ml of ion-exchange resin Amberlite IRN-77 (H+-form). The column was washed with water and eluted with 0.2 M ammonium acetate. The fractions containing lactosamine were pooled, evaporated to a syrup, re-dissolved in 0.5 L of water and passed through a column filled with 1L of Amberlite IRN-78 (Cl−). The fractions containing (I) were pooled, evaporated to a syrup, and the syrup was kept at 277 K to produce crystalline material suitable for the X-ray diffraction studies.
Refinement
Crystal data, data collection and structure . The Flack parameter determined [0.02 (11) for 729 quotients (Parsons et al., 2013)] is consistent with the (3S,4R,5R,7S,8R,9S,10S,11R) configuration, which was assigned for this system on the basis of the known configuration for the starting material D-lactulose (McNaught, 1996). Data were collected out to 0.80 Å; however, because of the small size of the crystal, most of the high-angle diffraction peaks are effectively indistinguishable from the noise. The inclusion of this high-angle data results in a high value for Rint, and the precision of the bond distances is low (ca 0.01 Å) because most of the high-angle data are not usable for refinement.
details are summarized in Table 4
|
Structural data
CCDC reference: 2119923
https://doi.org/10.1107/S241431462200061X/gg4007sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431462200061X/gg4007Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
APEX3 and SAINT (Bruker, 2016); data reduction: APEX3 and SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017/1 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C12H24NO10+·Cl−·H2O | F(000) = 420 |
Mr = 395.79 | Dx = 1.536 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.785 (4) Å | Cell parameters from 1276 reflections |
b = 13.523 (11) Å | θ = 3.0–20.6° |
c = 13.254 (11) Å | µ = 0.28 mm−1 |
β = 93.940 (9)° | T = 273 K |
V = 855.5 (12) Å3 | Plate, colourless |
Z = 2 | 0.08 × 0.05 × 0.01 mm |
Bruker APEXII area detector diffractometer | 2216 reflections with I > 2σ(I) |
Radiation source: Sealed Source Mo with TRIUMPH optics | Rint = 0.133 |
ω and phi scans | θmax = 27.2°, θmin = 1.5° |
Absorption correction: multi-scan (AXScale; Bruker, 2016) | h = −6→6 |
Tmin = 0.483, Tmax = 0.746 | k = −17→17 |
11475 measured reflections | l = −17→16 |
3787 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.066 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.131 | w = 1/[σ2(Fo2) + (0.0475P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
3787 reflections | Δρmax = 0.44 e Å−3 |
262 parameters | Δρmin = −0.37 e Å−3 |
26 restraints | Absolute structure: Flack x determined using 729 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.02 (11) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Hydroxy and nitrogen-bound H atoms were located in difference-Fourier analyses and were allowed to refine fully. Other H atoms were placed at calculated positions and treated as riding. All chemically equivalent N—H and O—H bond distances were restrained to be equal within 0.05 Å. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.3280 (4) | 0.75359 (14) | 0.61589 (14) | 0.0286 (5) | |
O1 | −0.1394 (11) | 0.7867 (4) | 0.4014 (4) | 0.0272 (13) | |
H1 | −0.195 (16) | 0.765 (7) | 0.455 (5) | 0.041* | |
O1W | 0.6240 (15) | 1.0329 (4) | 0.4269 (5) | 0.0462 (19) | |
H1WA | 0.71 (2) | 1.021 (8) | 0.488 (6) | 0.069* | |
H1WB | 0.58 (2) | 1.096 (5) | 0.433 (8) | 0.069* | |
O2 | 0.2355 (12) | 0.8551 (4) | 0.1351 (4) | 0.0260 (14) | |
H2 | 0.186 (17) | 0.830 (6) | 0.082 (5) | 0.039* | |
O3 | 0.1487 (12) | 0.4761 (4) | 0.3861 (4) | 0.0341 (14) | |
H3 | 0.18 (2) | 0.416 (4) | 0.387 (7) | 0.051* | |
O4 | 0.2482 (10) | 0.6815 (4) | 0.3919 (4) | 0.0253 (13) | |
O5 | 0.1019 (10) | 0.6413 (4) | 0.1208 (4) | 0.0223 (12) | |
O6 | 0.3161 (10) | 0.4684 (4) | 0.0307 (4) | 0.0263 (12) | |
H6 | 0.175 (14) | 0.446 (6) | 0.055 (6) | 0.039* | |
O7 | 0.3237 (11) | 0.4742 (4) | −0.1838 (4) | 0.0266 (13) | |
H7 | 0.431 (16) | 0.434 (5) | −0.157 (6) | 0.040* | |
O8 | −0.0409 (10) | 0.6292 (4) | −0.2120 (4) | 0.0229 (12) | |
H8 | −0.091 (17) | 0.658 (6) | −0.261 (5) | 0.034* | |
O9 | 0.1635 (11) | 0.9157 (4) | −0.1046 (4) | 0.0255 (13) | |
H9 | 0.321 (13) | 0.933 (6) | −0.082 (6) | 0.038* | |
O10 | 0.1420 (10) | 0.7280 (3) | −0.0250 (4) | 0.0226 (13) | |
N1 | 0.1495 (15) | 0.9460 (5) | 0.3249 (5) | 0.0267 (17) | |
H1A | 0.270 (14) | 0.978 (6) | 0.369 (5) | 0.040* | |
H1B | 0.104 (16) | 0.980 (6) | 0.268 (4) | 0.040* | |
H1C | −0.023 (11) | 0.946 (6) | 0.350 (6) | 0.040* | |
C1 | 0.1489 (16) | 0.7791 (5) | 0.4024 (6) | 0.0250 (18) | |
H1D | 0.231817 | 0.807016 | 0.465797 | 0.030* | |
C2 | 0.2409 (16) | 0.8418 (5) | 0.3134 (6) | 0.0227 (18) | |
H2A | 0.445983 | 0.840893 | 0.315433 | 0.027* | |
C3 | 0.1292 (16) | 0.7968 (5) | 0.2135 (6) | 0.0228 (18) | |
H3A | −0.076034 | 0.799022 | 0.208350 | 0.027* | |
C4 | 0.2270 (15) | 0.6906 (6) | 0.2095 (6) | 0.0224 (18) | |
H4 | 0.431371 | 0.689282 | 0.207687 | 0.027* | |
C5 | 0.1419 (16) | 0.6315 (6) | 0.3013 (5) | 0.0226 (17) | |
H5 | −0.062765 | 0.627481 | 0.300031 | 0.027* | |
C6 | 0.2641 (17) | 0.5292 (6) | 0.3051 (6) | 0.030 (2) | |
H6A | 0.219239 | 0.495436 | 0.241483 | 0.036* | |
H6B | 0.466372 | 0.532736 | 0.316291 | 0.036* | |
C7 | 0.2534 (15) | 0.6458 (6) | 0.0341 (5) | 0.0222 (17) | |
H7A | 0.453220 | 0.655704 | 0.052771 | 0.027* | |
C8 | 0.2081 (16) | 0.5518 (5) | −0.0258 (6) | 0.0217 (17) | |
H8A | 0.007235 | 0.542472 | −0.042707 | 0.026* | |
C9 | 0.3596 (16) | 0.5604 (5) | −0.1230 (5) | 0.0204 (17) | |
H9A | 0.559991 | 0.570369 | −0.105595 | 0.024* | |
C10 | 0.2464 (15) | 0.6483 (6) | −0.1834 (6) | 0.0213 (17) | |
H10 | 0.350340 | 0.656234 | −0.244111 | 0.026* | |
C11 | 0.2853 (15) | 0.7402 (6) | −0.1168 (5) | 0.0220 (17) | |
H11 | 0.485554 | 0.750477 | −0.099407 | 0.026* | |
C12 | 0.1643 (16) | 0.8313 (5) | −0.1692 (6) | 0.0241 (18) | |
H12A | 0.272384 | 0.846504 | −0.226525 | 0.029* | |
H12B | −0.026310 | 0.817433 | −0.194879 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0323 (11) | 0.0230 (11) | 0.0302 (10) | −0.0014 (9) | −0.0006 (8) | 0.0045 (10) |
O1 | 0.027 (3) | 0.023 (3) | 0.032 (4) | 0.002 (2) | 0.004 (3) | 0.004 (3) |
O1W | 0.075 (5) | 0.027 (4) | 0.034 (4) | −0.003 (3) | −0.012 (3) | −0.002 (3) |
O2 | 0.035 (3) | 0.021 (3) | 0.022 (3) | −0.010 (2) | −0.001 (3) | 0.001 (2) |
O3 | 0.056 (4) | 0.016 (3) | 0.030 (3) | −0.003 (3) | 0.004 (3) | 0.007 (3) |
O4 | 0.033 (3) | 0.017 (3) | 0.026 (3) | −0.002 (2) | −0.001 (3) | 0.000 (2) |
O5 | 0.027 (3) | 0.021 (3) | 0.020 (3) | −0.005 (2) | 0.002 (2) | 0.001 (2) |
O6 | 0.025 (3) | 0.021 (3) | 0.033 (3) | 0.001 (3) | 0.005 (2) | 0.006 (3) |
O7 | 0.032 (3) | 0.016 (3) | 0.031 (3) | 0.005 (2) | −0.001 (2) | −0.001 (3) |
O8 | 0.025 (3) | 0.019 (3) | 0.024 (3) | −0.001 (2) | −0.001 (2) | 0.004 (2) |
O9 | 0.026 (3) | 0.019 (3) | 0.032 (3) | 0.000 (2) | 0.001 (3) | −0.003 (3) |
O10 | 0.024 (3) | 0.017 (3) | 0.026 (3) | 0.003 (2) | 0.003 (2) | 0.003 (2) |
N1 | 0.035 (4) | 0.021 (4) | 0.023 (4) | −0.005 (3) | −0.006 (3) | 0.004 (3) |
C1 | 0.030 (5) | 0.018 (4) | 0.026 (4) | −0.002 (3) | −0.001 (3) | 0.003 (3) |
C2 | 0.025 (4) | 0.016 (4) | 0.026 (5) | −0.003 (3) | −0.001 (4) | 0.004 (3) |
C3 | 0.023 (4) | 0.021 (4) | 0.024 (4) | −0.002 (3) | 0.002 (3) | 0.008 (3) |
C4 | 0.020 (4) | 0.019 (4) | 0.029 (5) | −0.004 (3) | 0.000 (3) | 0.000 (4) |
C5 | 0.029 (4) | 0.016 (4) | 0.023 (4) | −0.009 (3) | −0.001 (3) | 0.002 (3) |
C6 | 0.037 (5) | 0.023 (5) | 0.028 (5) | −0.003 (4) | 0.000 (4) | 0.003 (4) |
C7 | 0.023 (4) | 0.021 (4) | 0.023 (4) | 0.001 (3) | 0.002 (3) | 0.004 (4) |
C8 | 0.024 (4) | 0.015 (4) | 0.026 (5) | 0.003 (3) | −0.002 (3) | 0.005 (3) |
C9 | 0.021 (4) | 0.016 (4) | 0.024 (4) | 0.002 (3) | 0.002 (3) | −0.001 (4) |
C10 | 0.020 (4) | 0.019 (4) | 0.025 (4) | −0.002 (3) | 0.004 (3) | 0.003 (3) |
C11 | 0.021 (4) | 0.020 (4) | 0.027 (4) | −0.001 (3) | 0.007 (3) | −0.002 (4) |
C12 | 0.026 (4) | 0.014 (4) | 0.032 (5) | 0.001 (3) | 0.004 (4) | 0.000 (4) |
O1—C1 | 1.382 (9) | N1—H1C | 0.91 (4) |
O1—H1 | 0.83 (5) | C1—C2 | 1.541 (10) |
O1W—H1WA | 0.90 (6) | C1—H1D | 0.9800 |
O1W—H1WB | 0.89 (6) | C2—C3 | 1.521 (10) |
O2—C3 | 1.426 (9) | C2—H2A | 0.9800 |
O2—H2 | 0.80 (5) | C3—C4 | 1.512 (10) |
O3—C6 | 1.434 (10) | C3—H3A | 0.9800 |
O3—H3 | 0.82 (5) | C4—C5 | 1.533 (10) |
O4—C1 | 1.414 (9) | C4—H4 | 0.9800 |
O4—C5 | 1.440 (8) | C5—C6 | 1.502 (11) |
O5—C7 | 1.402 (9) | C5—H5 | 0.9800 |
O5—C4 | 1.445 (9) | C6—H6A | 0.9700 |
O6—C8 | 1.431 (9) | C6—H6B | 0.9700 |
O6—H6 | 0.82 (5) | C7—C8 | 1.507 (10) |
O7—C9 | 1.420 (9) | C7—H7A | 0.9800 |
O7—H7 | 0.81 (5) | C8—C9 | 1.526 (10) |
O8—C10 | 1.424 (9) | C8—H8A | 0.9800 |
O8—H8 | 0.78 (5) | C9—C10 | 1.513 (10) |
O9—C12 | 1.426 (9) | C9—H9A | 0.9800 |
O9—H9 | 0.83 (5) | C10—C11 | 1.528 (10) |
O10—C7 | 1.441 (8) | C10—H10 | 0.9800 |
O10—C11 | 1.447 (8) | C11—C12 | 1.510 (10) |
N1—C2 | 1.486 (10) | C11—H11 | 0.9800 |
N1—H1A | 0.90 (4) | C12—H12A | 0.9700 |
N1—H1B | 0.90 (4) | C12—H12B | 0.9700 |
C1—O1—H1 | 110 (6) | C6—C5—H5 | 109.6 |
H1WA—O1W—H1WB | 101 (9) | C4—C5—H5 | 109.6 |
C3—O2—H2 | 108 (6) | O3—C6—C5 | 108.5 (7) |
C6—O3—H3 | 115 (7) | O3—C6—H6A | 110.0 |
C1—O4—C5 | 114.7 (5) | C5—C6—H6A | 110.0 |
C7—O5—C4 | 116.0 (5) | O3—C6—H6B | 110.0 |
C8—O6—H6 | 102 (6) | C5—C6—H6B | 110.0 |
C9—O7—H7 | 105 (6) | H6A—C6—H6B | 108.4 |
C10—O8—H8 | 112 (6) | O5—C7—O10 | 106.7 (5) |
C12—O9—H9 | 114 (6) | O5—C7—C8 | 109.3 (6) |
C7—O10—C11 | 111.5 (5) | O10—C7—C8 | 109.3 (5) |
C2—N1—H1A | 110 (5) | O5—C7—H7A | 110.5 |
C2—N1—H1B | 117 (5) | O10—C7—H7A | 110.5 |
H1A—N1—H1B | 114 (7) | C8—C7—H7A | 110.5 |
C2—N1—H1C | 109 (6) | O6—C8—C7 | 110.8 (6) |
H1A—N1—H1C | 109 (8) | O6—C8—C9 | 109.1 (6) |
H1B—N1—H1C | 97 (7) | C7—C8—C9 | 108.7 (6) |
O1—C1—O4 | 114.2 (6) | O6—C8—H8A | 109.4 |
O1—C1—C2 | 106.8 (6) | C7—C8—H8A | 109.4 |
O4—C1—C2 | 108.8 (6) | C9—C8—H8A | 109.4 |
O1—C1—H1D | 109.0 | O7—C9—C10 | 108.6 (6) |
O4—C1—H1D | 109.0 | O7—C9—C8 | 111.8 (6) |
C2—C1—H1D | 109.0 | C10—C9—C8 | 109.5 (6) |
N1—C2—C3 | 112.4 (6) | O7—C9—H9A | 109.0 |
N1—C2—C1 | 109.9 (6) | C10—C9—H9A | 109.0 |
C3—C2—C1 | 110.2 (6) | C8—C9—H9A | 109.0 |
N1—C2—H2A | 108.1 | O8—C10—C9 | 107.6 (6) |
C3—C2—H2A | 108.1 | O8—C10—C11 | 112.3 (6) |
C1—C2—H2A | 108.1 | C9—C10—C11 | 107.9 (6) |
O2—C3—C4 | 111.9 (7) | O8—C10—H10 | 109.7 |
O2—C3—C2 | 106.9 (6) | C9—C10—H10 | 109.7 |
C4—C3—C2 | 108.6 (6) | C11—C10—H10 | 109.7 |
O2—C3—H3A | 109.8 | O10—C11—C12 | 106.9 (6) |
C4—C3—H3A | 109.8 | O10—C11—C10 | 110.3 (6) |
C2—C3—H3A | 109.8 | C12—C11—C10 | 111.7 (6) |
O5—C4—C3 | 110.8 (6) | O10—C11—H11 | 109.3 |
O5—C4—C5 | 106.7 (6) | C12—C11—H11 | 109.3 |
C3—C4—C5 | 111.6 (6) | C10—C11—H11 | 109.3 |
O5—C4—H4 | 109.3 | O9—C12—C11 | 113.2 (6) |
C3—C4—H4 | 109.3 | O9—C12—H12A | 108.9 |
C5—C4—H4 | 109.3 | C11—C12—H12A | 108.9 |
O4—C5—C6 | 106.8 (6) | O9—C12—H12B | 108.9 |
O4—C5—C4 | 108.6 (6) | C11—C12—H12B | 108.9 |
C6—C5—C4 | 112.5 (7) | H12A—C12—H12B | 107.7 |
O4—C5—H5 | 109.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Cl1 | 0.83 (5) | 2.28 (6) | 3.075 (6) | 163 (9) |
O2—H2···O10 | 0.80 (5) | 1.98 (6) | 2.743 (7) | 159 (8) |
O3—H3···Cl1i | 0.82 (5) | 2.31 (6) | 3.130 (7) | 172 (9) |
O6—H6···O9ii | 0.82 (5) | 1.84 (6) | 2.654 (8) | 171 (9) |
O7—H7···O2iii | 0.81 (5) | 1.92 (6) | 2.697 (8) | 158 (9) |
O8—H8···Cl1iv | 0.78 (5) | 2.32 (6) | 3.080 (5) | 166 (8) |
O9—H9···O6v | 0.83 (5) | 1.88 (5) | 2.707 (8) | 178 (9) |
N1—H1A···O1W | 0.90 (4) | 1.96 (5) | 2.819 (9) | 159 (7) |
N1—H1B···O7vi | 0.90 (4) | 2.26 (7) | 2.862 (8) | 124 (6) |
N1—H1B···O8vi | 0.90 (4) | 2.16 (6) | 2.922 (8) | 142 (7) |
N1—H1C···O1 | 0.91 (4) | 2.34 (8) | 2.787 (9) | 110 (6) |
N1—H1C···O1Wvii | 0.91 (4) | 2.35 (6) | 3.162 (11) | 149 (7) |
O1W—H1WA···O3viii | 0.90 (6) | 1.85 (7) | 2.746 (8) | 170 (10) |
O1W—H1WB···Cl1ix | 0.89 (6) | 2.50 (7) | 3.335 (7) | 156 (9) |
Symmetry codes: (i) −x, y−1/2, −z+1; (ii) −x, y−1/2, −z; (iii) −x+1, y−1/2, −z; (iv) x, y, z−1; (v) −x+1, y+1/2, −z; (vi) −x, y+1/2, −z; (vii) x−1, y, z; (viii) −x+1, y+1/2, −z+1; (ix) −x, y+1/2, −z+1. |
Sugar | Tautomer, conformation | τ | Φ | Ψ | Intramolecular contacts around glycosidic bond (O···H; O···O; O···H—O) |
Gal-β1→4-GlcNH3+Cl-·H2O (I)a | α-pyranose, 4C1 | 116.0 | -95.2 | +90.7 | O10···H—O2 (1.98; 2.743; 159) O5···H-O2 (2.64; 2.964; 106) |
Gal-β1→4-GlcNHCOCH3·H2O (N-acetyllactosamine, LacNAc·H2O)b | α-pyranose, 4C1b | 116.3 | -88.1 | +97.8 | O10···H-O2 (1.98; 2.787; 139) O5···H—O6 (2.40; 2.868; 122) |
LacNAc/ toad galectinc | α-pyranose, 4C1 | 118.2; 113.6 | -66.9; -67.8 | +132.4; +132.6 | Not reported |
LacNAc calculationsd | α-pyranose, 4C1d | 117.1 | -75 | +135 | O10···H—O2 |
Gal-β1→4-Glc·H2O (α-lactose)e | α-pyranose, 4C1 | 116.9 | -93.4 | +95.9 | O10···H—O2 (2.02; 2.819; 159) O5···H—O2 (2.65; 2.992; 106) |
Gal-β1→4-Glc (β-lactose)f | β-pyranose, 4C1 | 116.5 | -76.3 | +106.4 | O10···H—O2 (n.d.; 2.707; 101) |
Gal-β1→4-GlcNHCOCH3·2H2O (N-acetyllactosylamine)g | β-pyranose, 4C1 | 117.4 | -89.3 | +81.5 | O10···H—O2 (2.06; 2.767; 144) O9···H—O2 (2.45; 3.126; 141) |
Notes: (a) This work; (b) Longchambon et al. (1981); (c) Bianchet et al. (2000); (d) Imberty et al. (1991); (e) Smith et al. (2005); (f) Hirotsu & Shimada (1974); (g) Lakshmanan et al. (2001). |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O5 | 0.80 (7) | 2.64 (8) | 2.964 (8) | 106 (6) |
N1—H1B···O2 | 0.90 (6) | 2.55 (7) | 2.855 (9) | 101 (5) |
O7—H7···O6 | 0.81 (8) | 2.63 (8) | 2.847 (8) | 97 (8) |
C2—H2A···O1i | 0.98 | 2.34 | 3.199 (10) | 146 |
C9—H9A···O8i | 0.98 | 2.58 | 3.309 (9) | 132 |
C10—H10···Cl1ii | 0.98 | 2.82 | 3.741 (9) | 157 |
Symmetry codes: (i) x + 1, y, z; (ii) x + 1, y, z - 1. |
Funding information
Funding for this research was provided by: University of Missouri, Agriculture Experiment Station Chemical Laboratories; National Institute of Food and Agriculture (grant No. Hatch 1023929).
References
Acarin, L., Vela, J. M., González, B. & Castellano, B. (1994). J. Histochem. Cytochem. 42, 1033–1041. CrossRef CAS PubMed Google Scholar
Bianchet, M. A., Ahmed, H., Vasta, G. R. & Amzel, L. M. (2000). Proteins, 40, 378–388. Web of Science CrossRef PubMed CAS Google Scholar
Boscher, C., Dennis, J. W. & Nabi, I. R. (2011). Curr. Opin. Cell Biol. 23, 383–392. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2016). APEX, SAINT and AXScale. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dekany, G., Ágoston, K., Bajza, I., Bøjstrup, M., Pérez, I. F., Kröger, L. & Röhrig, C. H. (2014). US Patent 8,796,434. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Glinskii, O. V., Sud, S., Mossine, V. V., Mawhinney, T. P., Anthony, D. C., Glinsky, G. V., Pienta, K. J. & Glinsky, V. V. (2012). Neoplasia, 14, 65–73. CrossRef CAS PubMed Google Scholar
Guardia, C. M. A., Gauto, D. F., Di Lella, S., Rabinovich, G. A., Martí, M. A. & Estrin, D. A. (2011). J. Chem. Inf. Model. 51, 1918–1930. CrossRef CAS PubMed Google Scholar
Hirotsu, K. & Shimada, A. (1974). Bull. Chem. Soc. Jpn, 47, 1872–1879. CSD CrossRef CAS Web of Science Google Scholar
Imberty, A., Delage, M. M., Bourne, Y., Cambillau, C. & Perez, S. (1991). Glycoconjugate J. 8, 456–483. CrossRef CAS Google Scholar
Kulinich, A. & Liu, L. (2016). Carbohydr. Res. 432, 62–70. CrossRef CAS PubMed Google Scholar
Lakshmanan, T., Sriram, D. & Loganathan, D. (2001). Acta Cryst. C57, 825–826. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Longchambon, F., Ohanessian, J., Gillier-Pandraud, H., Duchet, D., Jacquinet, J.-C. & Sinaÿ, P. (1981). Acta Cryst. B37, 601–607. CrossRef CAS IUCr Journals Google Scholar
McNaught, A. D. (1996). Pure Appl. Chem. 68, 1919–2008. CrossRef CAS Web of Science Google Scholar
Mossine, V. V., Byrne, T. S., Barnes, C. L. & Mawhinney, T. P. (2018). J. Carbohydr. Chem. 37, 153–162. CrossRef CAS Google Scholar
Mossine, V. V., Glinsky, V. V. & Mawhinney, T. P. (2008). In Galectins, edited by A. A. Klyosov, D. Platt & Z. J. Witczak, pp. 235-270. John Wiley & Sons. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Seetharaman, J., Kanigsberg, A., Slaaby, R., Leffler, H., Barondes, S. H. & Rini, J. M. (1998). J. Biol. Chem. 273, 13047–13052. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, J. H., Dann, S. E., Elsegood, M. R. J., Dale, S. H. & Blatchford, C. G. (2005). Acta Cryst. E61, o2499–o2501. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wrodnigg, T. M. & Stütz, A. E. (1999). Angew. Chem. Int. Ed. 38, 827–828. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.