metal-organic compounds
(μ-2,2′,2′′,2′′′-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(sulfanediyl)}tetraacetato)bis[aquanickel(II)] heptahydrate
aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevax 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch
Reaction of the ligand 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(sulfanediyl)}tetraacetic acid (H4L1), with NiCl2 leads to the formation of a binuclear complex, (μ-2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(sulfanediyl)}tetraacetato-κ5O,S,N1,S′,O′:κ5O′′,S′′,N4,S′′′,O′′′)bis[aquanickel(II)] heptahydrate, {[Ni2(C16H16N2O8S4)(H2O)2]·7H2O} (I). It crystallizes with two half molecules in the The complete molecules are generated by inversion symmetry, with the center of the pyrazine rings being located at crystallographic centres of inversion. The ligand coordinates two NiII ions in a bis-pentadentate manner and the sixfold coordination sphere of each nickel(II) atom (NiS2O3N) is completed by a water molecule. The complex crystallized as a hepta-hydrate. The binuclear complexes are linked by Owater—H⋯Ocarbonyl hydrogen bonds, forming layers parallel to the (101) plane. This layered structure is additionally stabilized by weak C—H⋯O hydrogen bonds. Further O—H⋯O hydrogen bonds involving binuclear complexes and solvent water molecules, together with weak C—H⋯S hydrogen bonds, link the layers to form a supramolecular framework.
Keywords: crystal structure; pyrazine; carboxylate; nickel(II); antiferromagnetic; hydrogen bonding.
CCDC reference: 2126552
Structure description
The tetrakis-substituted pyrazine carboxylic acid ligand, 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(sulfanediyl)}tetraacetic acid (H4L1), is one of a series of tetrakis-substituted pyrazine ligands containing NxS4 and N2S4O8 donor atoms synthesized to study their coordination behaviour with various first-row transition metals and the magnetic exchange properties of the complexes (Pacifico, 2003). Crystal structures of two polymorphs of the tetrapropionic acid analogue of the title ligand, 3,3′,3′′,3′′′-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(sulfanediyl)}tetrapropionic acid (H4L2), and of two potassium–organic frameworks have been reported (Pacifico & Stoeckli-Evans, 2021).
Reaction of H4L1 with NiCl2 yielded the binuclear complex I, with the ligand coordinating two NiII ions in a bis-pentadentate manner. Complex I was shown to exhibit a weak antiferromagnetic coupling between the Ni centres via the pyrazine ring with a J value of −1.78 cm−1 (Pacifico, 2003).
A similar ligand, 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene)] tetrakis(sulfanediyl)}tetrakis(ethan-1-amine) (H4L3; CSD refcode PUXJUQ for the tetraperchlorate salt: Pacifico & Stoeckli-Evans, 2020), has also been shown to form binuclear nickel(II) complexes (TAGTUU and EHUBOB) with similar antiferromagnetic couplings (J = −1.78 cm−1; Pacifico, 2003).
Reaction of H4L1 with nickel(II) chloride leads to the formation of the binuclear title compound I, which crystallizes with two half molecules in the (Fig. 1 and Table 1). The complete molecules are generated by inversion symmetry, with the centres of the pyrazine rings being located at crystallographic centres of inversion.
|
The best fit for the molecular overlap of the two molecules is shown in Fig. 2. The r.m.s. deviation is 0.3168 Å, with a maximum deviation of 0.7435 Å (Mercury; Macrae et al., 2020), The two molecules differ essentially in the conformations of the four chelate rings as shown by the torsion angles given in Table 1. The calculation of the mean planes of the chelate rings (PLATON; Spek, 2020) indicate that: ring Ni1/N1/C1/C2/S1 is twisted on the S1—C2 bond compared to ring Ni2/N2/C13//14/S4, which is flat; ring Ni1/N1/C5/C6/S2 has an with atom S2 as the flap, while ring Ni2/N2/C9/C10/S3 is flat; ring Ni1/S1/C3/C4/O2 is flat compared to ring N12/S4/C15/C16 /O8, which has an with atom S4 as the flap, finally ring Ni1/S2/C7/C8/O4 is twisted on the Ni1—S2 bond, compared to ring Ni2/S3/C11/C12/O6, which is twisted on the S3—C11 bond.
The ligand coordinates two NiII ions in a bis-pentadentate manner and the sixfold coordination sphere of each nickel(II) atom (NiS2O3N) is completed by a water molecule. The complex crystallized as a hepta-hydrate. Selected bond lengths involving the nickel atoms of the two molecules are given in Table 1. There is a slight difference in the Ni—N bond lengths [Ni1—N1 = 2.081 (2) Å, Ni2—N2 = 2.057 (2) Å; Table 1], otherwise the bond lengths involving the nickel atoms are similar and close to those reported for the complex aqua(2,2′-{(pyridine-2,6-diyl)bis[methylene(sulfanediyl)]}dipropanoato)nickel(II) (CSD refcode DUYFOU; Rheingold, 2015).
In the I, binuclear nickel(II) complexes are linked by Owater—H⋯Ocarbonyl hydrogen bonds, forming layers parallel to the (101) plane (Fig. 3, Table 2). Within the layers, weak C—H⋯O hydrogen bonds are present (Table 2). Solvent water molecules are linked by O—Hwater⋯O water hydrogen bonds to form ribbons propagating along the b-axis direction that consist of eight and twenty-four membered rings of the R44(8) and R1210(24) types (Fig. 4 and Table 2). Additional O—Hwater⋯Ocarbonyl hydrogen bonds involving the binuclear complexes and solvent water molecules, together with weak C—H⋯S hydrogen bonds, link the layers to form a supramolecular framework (Fig. 5).
ofSynthesis and crystallization
The synthesis and TBr) have been reported [Ferigo et al., 1994; Assoumatine & Stoeckli-Evans, 2014 (CSD refcode: TOJXUN)].
of the reagent tetra-2,3,5,6-bromomethyl-pyrazine (Synthesis of ligand 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(sulfanediyl)}tetraacetic acid (H4L1): Thioglycolic acid (1.6313 g, 1.77 mol, 4 eq) was dissolved in 50 ml of THF, then NaOH (1.4166 g, 3.54 mol, 8 eq), dissolved in a minimum amount of water (a few ml) was added. The volume was increased to 100 ml adding THF and then the reaction was left to stir under reflux for 1 h. TBr (2 g, 4.42 mol, 1 eq) dissolved in 50 ml of THF, was then added dropwise using an addition funnel. The mixture was stirred under reflux for 6 h. After evaporation of the solvent, the mixture was dissolved in 50 ml of deionized water, and HCl (puriss.) was added dropwise until a clearly acidic pH was obtained. The mixture was then stirred at room temperature for at least 1–2 h. The yellow precipitate that slowly formed was filtered off and washed with a minimum amount of water and then with CHCl3. The solid obtained (H4L1) was dried in vacuo and was then recrystallized from methanol.
Spectroscopic data for H4L1: 1H-NMR(CD3OD, 400 MHz, p.p.m.): 4.13 (s, 8H, H2); 3.37 (s, 8H, H3). 13C-NMR(CD3OD, 50 MHz, p.p.m.): 172.82 (4 C, C4); 150.01 (4 C, C1); 34.31 (4 C, C3); 33.26 (4 C, C2).
Analysis for C16H20N2O8S4, MW = 496.60 g/mol: Calculated (%) C 38.70, H 4.06, N5.64, Found (%) C 37.35, H 3.99, N 5.4.
ESI-MS: 534.97[M + K]+; 519.00[M+Na]+; 497.02[M + H]+; 422.86, 407.04, 247.88.
IR (KBr disc, cm−1) ν: 2984(s), 2922(s), 1690(s), 1431(s), 1395(s), 1321(s), 1289(s), 1202(s), 1181(s).
Synthesis of complex [(H2O)Ni(L1)Ni(H2O)]·7H2O (I): NiCl2·6 H2O (38.3 mg, 0.161 mmol, 2 eq) and H4L1 (40 mg, 0.080 mmol, 1 eq) were mixed together in 20 ml of degassed water. The mixture was left at 353 K under stirring and nitrogen conditions for 2.5 h. The mixture was then filtered and left to evaporate in air for two weeks, yielding purple needle-like crystals of complex I (m.p. 553 K decomposition).
Analysis for (C16H20N2Ni2O10S4)·7 (H2O), Mw = 772.10 g mol−1. Calculated (%) C 24.89, H 4.44, N 3.63. Found (%) C 28.17, H 3.90, N 4.18. Deviation due to the probable loss of water molecules of crystallization, for example, loss of five water molecules gives calculated (%) C 28.18, H 3.55, N 4.11.
ESI–MS: 703, 663, 615[M − 2H2O], 601, 579, 565, 511, 499, 477, 461, 433, 165.
IR (KBr disc, cm−1) ν: 3364(s), 2921(m), 1713(m), 1575(s), 1404(s), 1237(m), 1208(m), 1155(m), 1137(m), 928(m), 704(m).
Refinement
Crystal data, data collection and structure . For complex I, the average HKL measurement multiplicity was low at 2.6, hence an empirical absorption correction was applied.
details are summarized in Table 3
|
Structural data
CCDC reference: 2126552
https://doi.org/10.1107/S2414314621012955/im4014sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314621012955/im4014Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).[Ni2(C16H16N2O8S4)(H2O)2]·7H2O | Z = 2 |
Mr = 772.11 | F(000) = 800 |
Triclinic, P1 | Dx = 1.814 Mg m−3 |
a = 8.6799 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.4092 (10) Å | Cell parameters from 19267 reflections |
c = 14.7210 (13) Å | θ = 2.3–25.9° |
α = 90.308 (7)° | µ = 1.71 mm−1 |
β = 103.619 (7)° | T = 153 K |
γ = 93.801 (7)° | Needle, purple |
V = 1413.4 (2) Å3 | 0.49 × 0.06 × 0.06 mm |
STOE IPDS 2 diffractometer | 7779 independent reflections |
Radiation source: fine-focus sealed tube | 6120 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.052 |
φ + ω scans | θmax = 29.5°, θmin = 1.8° |
Absorption correction: empirical (using intensity measurements) (ShxAbs; Spek, 2020) | h = −12→11 |
Tmin = 0.261, Tmax = 0.714 | k = −15→13 |
19974 measured reflections | l = −20→20 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.096 | w = 1/[σ2(Fo2) + (0.0462P)2 + 1.0506P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
7779 reflections | Δρmax = 0.74 e Å−3 |
443 parameters | Δρmin = −0.64 e Å−3 |
2 restraints | Extinction correction: (SHELXL-2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0029 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. H atoms of coordinated and non-coordinated water molecules were all located from difference-Fourier maps and freely refined. The C-bound H atoms were included in calculated positions and treated as riding on their parent C atom: C—H = 0.97 - 0.99 Å with Uiso(H) = 1.2Ueq(C). |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.53221 (4) | 0.24084 (3) | 0.38618 (2) | 0.01578 (8) | |
S1 | 0.80929 (7) | 0.27577 (5) | 0.45193 (4) | 0.01770 (12) | |
S2 | 0.25256 (8) | 0.24883 (6) | 0.32588 (5) | 0.01966 (13) | |
O1 | 0.6527 (3) | 0.09177 (18) | 0.64400 (14) | 0.0260 (4) | |
O2 | 0.5239 (2) | 0.15751 (16) | 0.50754 (13) | 0.0189 (3) | |
O3 | 0.4421 (3) | 0.4074 (2) | 0.13485 (16) | 0.0374 (5) | |
O4 | 0.5504 (2) | 0.31920 (17) | 0.26639 (13) | 0.0218 (4) | |
O1W | 0.5614 (2) | 0.07971 (17) | 0.33656 (14) | 0.0214 (4) | |
H1WA | 0.493 (5) | 0.021 (4) | 0.347 (3) | 0.044 (12)* | |
H1WB | 0.562 (5) | 0.074 (4) | 0.280 (4) | 0.049 (13)* | |
N1 | 0.5120 (2) | 0.39964 (18) | 0.45117 (14) | 0.0150 (4) | |
C1 | 0.6427 (3) | 0.4640 (2) | 0.49454 (16) | 0.0150 (4) | |
C2 | 0.8013 (3) | 0.4274 (2) | 0.48542 (19) | 0.0187 (5) | |
H2A | 0.878607 | 0.443243 | 0.546080 | 0.022* | |
H2B | 0.836746 | 0.477764 | 0.438614 | 0.022* | |
C3 | 0.8088 (3) | 0.1985 (2) | 0.5586 (2) | 0.0243 (5) | |
H3A | 0.881017 | 0.134074 | 0.562820 | 0.029* | |
H3B | 0.854011 | 0.253460 | 0.611882 | 0.029* | |
C4 | 0.6478 (3) | 0.1460 (2) | 0.57012 (18) | 0.0186 (5) | |
C5 | 0.3695 (3) | 0.4333 (2) | 0.45563 (17) | 0.0157 (4) | |
C6 | 0.2232 (3) | 0.3583 (2) | 0.40844 (18) | 0.0191 (5) | |
H6A | 0.142444 | 0.410319 | 0.375290 | 0.023* | |
H6B | 0.179663 | 0.317800 | 0.457218 | 0.023* | |
C7 | 0.2684 (3) | 0.3386 (3) | 0.22634 (19) | 0.0267 (6) | |
H7A | 0.195741 | 0.302037 | 0.169739 | 0.032* | |
H7B | 0.230429 | 0.416684 | 0.235880 | 0.032* | |
C8 | 0.4334 (3) | 0.3569 (3) | 0.20767 (19) | 0.0233 (5) | |
Ni2 | 0.08393 (4) | 0.76880 (3) | 0.11162 (2) | 0.01682 (8) | |
S3 | −0.17445 (8) | 0.74194 (6) | 0.13855 (4) | 0.01891 (13) | |
S4 | 0.33203 (7) | 0.76930 (6) | 0.07086 (4) | 0.01819 (12) | |
O5 | −0.2463 (2) | 0.9086 (2) | −0.09705 (16) | 0.0298 (5) | |
O6 | −0.0227 (2) | 0.85094 (17) | −0.00750 (13) | 0.0211 (4) | |
O7 | 0.4137 (2) | 0.62254 (19) | 0.31716 (15) | 0.0272 (4) | |
O8 | 0.1895 (2) | 0.67823 (17) | 0.22496 (13) | 0.0208 (4) | |
O2W | 0.1272 (3) | 0.92039 (18) | 0.18933 (14) | 0.0230 (4) | |
H2WA | 0.159 (6) | 0.984 (4) | 0.162 (3) | 0.052 (13)* | |
H2WB | 0.187 (7) | 0.910 (5) | 0.245 (4) | 0.078 (18)* | |
N2 | 0.0311 (2) | 0.60923 (18) | 0.04172 (14) | 0.0161 (4) | |
C9 | −0.1108 (3) | 0.5517 (2) | 0.03476 (17) | 0.0161 (4) | |
C10 | −0.2367 (3) | 0.6057 (2) | 0.07259 (18) | 0.0191 (5) | |
H10A | −0.276242 | 0.548113 | 0.113293 | 0.023* | |
H10B | −0.326835 | 0.620196 | 0.019548 | 0.023* | |
C11 | −0.2527 (4) | 0.8505 (3) | 0.0556 (2) | 0.0288 (6) | |
H11A | −0.365699 | 0.826762 | 0.027239 | 0.035* | |
H11B | −0.249215 | 0.926009 | 0.089668 | 0.035* | |
C12 | −0.1675 (3) | 0.8705 (2) | −0.02232 (19) | 0.0209 (5) | |
C13 | 0.1429 (3) | 0.5602 (2) | 0.00845 (17) | 0.0162 (4) | |
C14 | 0.3030 (3) | 0.6239 (2) | 0.01658 (19) | 0.0201 (5) | |
H14A | 0.321931 | 0.630870 | −0.046967 | 0.024* | |
H14B | 0.384762 | 0.574769 | 0.052830 | 0.024* | |
C15 | 0.4378 (3) | 0.7395 (3) | 0.18853 (18) | 0.0231 (5) | |
H15A | 0.528662 | 0.692942 | 0.185131 | 0.028* | |
H15B | 0.481816 | 0.815165 | 0.220452 | 0.028* | |
C16 | 0.3408 (3) | 0.6741 (2) | 0.24832 (18) | 0.0189 (5) | |
O3W | 0.2116 (3) | 0.1139 (2) | 0.53431 (19) | 0.0364 (5) | |
H3WA | 0.310 (5) | 0.107 (3) | 0.531 (3) | 0.030 (9)* | |
H3WB | 0.186 (8) | 0.056 (6) | 0.578 (5) | 0.09 (2)* | |
O4W | 0.9679 (3) | 0.5567 (2) | 0.29921 (16) | 0.0274 (4) | |
H4WA | 1.041 (6) | 0.603 (4) | 0.278 (3) | 0.047 (12)* | |
H4WB | 0.893 (6) | 0.597 (4) | 0.310 (4) | 0.058 (14)* | |
O5W | 0.5598 (3) | 0.0350 (2) | 0.15764 (15) | 0.0283 (4) | |
H5WA | 0.649 (8) | 0.081 (6) | 0.143 (4) | 0.09 (2)* | |
H5WB | 0.487 (6) | 0.068 (4) | 0.129 (4) | 0.054 (14)* | |
O6W | 0.7456 (3) | 0.6695 (2) | 0.36273 (17) | 0.0315 (5) | |
H6WA | 0.648 (6) | 0.654 (4) | 0.349 (3) | 0.042 (12)* | |
H6WB | 0.763 (6) | 0.738 (5) | 0.391 (4) | 0.068 (16)* | |
O7W | 0.8648 (3) | 0.1299 (2) | 0.16038 (19) | 0.0370 (5) | |
H7WA | 0.867 (6) | 0.202 (2) | 0.178 (3) | 0.050 (13)* | |
H7WB | 0.923 (7) | 0.132 (5) | 0.112 (4) | 0.078 (17)* | |
O8W | 0.9536 (3) | 0.0333 (3) | 0.3655 (3) | 0.0467 (7) | |
H8WA | 0.939 (8) | 0.059 (6) | 0.310 (2) | 0.10 (2)* | |
H8WB | 1.022 (9) | 0.070 (7) | 0.410 (5) | 0.11 (3)* | |
O9W | 0.8291 (3) | 0.3532 (2) | 0.20860 (18) | 0.0339 (5) | |
H9WA | 0.745 (7) | 0.338 (5) | 0.224 (4) | 0.065 (16)* | |
H9WB | 0.878 (6) | 0.411 (4) | 0.241 (3) | 0.048 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.01756 (15) | 0.01571 (15) | 0.01319 (15) | 0.00010 (11) | 0.00220 (11) | −0.00087 (11) |
S1 | 0.0181 (3) | 0.0171 (3) | 0.0182 (3) | 0.0016 (2) | 0.0048 (2) | −0.0015 (2) |
S2 | 0.0195 (3) | 0.0176 (3) | 0.0199 (3) | −0.0013 (2) | 0.0015 (2) | −0.0045 (2) |
O1 | 0.0324 (10) | 0.0244 (10) | 0.0177 (9) | −0.0046 (8) | 0.0007 (8) | 0.0025 (8) |
O2 | 0.0206 (8) | 0.0201 (9) | 0.0149 (8) | −0.0013 (7) | 0.0026 (7) | 0.0003 (7) |
O3 | 0.0421 (13) | 0.0489 (14) | 0.0205 (10) | 0.0069 (11) | 0.0048 (9) | 0.0131 (10) |
O4 | 0.0244 (9) | 0.0253 (9) | 0.0157 (8) | 0.0010 (7) | 0.0050 (7) | 0.0047 (7) |
O1W | 0.0266 (9) | 0.0174 (9) | 0.0198 (9) | −0.0006 (7) | 0.0052 (8) | −0.0035 (7) |
N1 | 0.0163 (9) | 0.0135 (9) | 0.0143 (9) | −0.0011 (7) | 0.0027 (7) | −0.0014 (7) |
C1 | 0.0169 (10) | 0.0150 (10) | 0.0127 (10) | 0.0012 (8) | 0.0026 (8) | 0.0007 (8) |
C2 | 0.0157 (11) | 0.0177 (11) | 0.0223 (12) | 0.0001 (9) | 0.0040 (9) | −0.0017 (9) |
C3 | 0.0232 (13) | 0.0220 (12) | 0.0256 (13) | 0.0001 (10) | 0.0021 (10) | 0.0045 (10) |
C4 | 0.0230 (12) | 0.0168 (11) | 0.0144 (11) | −0.0009 (9) | 0.0021 (9) | −0.0011 (9) |
C5 | 0.0173 (10) | 0.0153 (10) | 0.0136 (10) | −0.0011 (8) | 0.0025 (8) | 0.0000 (8) |
C6 | 0.0190 (11) | 0.0203 (12) | 0.0167 (11) | −0.0003 (9) | 0.0020 (9) | −0.0029 (9) |
C7 | 0.0271 (13) | 0.0351 (15) | 0.0164 (12) | 0.0059 (11) | 0.0011 (10) | −0.0008 (11) |
C8 | 0.0281 (13) | 0.0262 (13) | 0.0142 (11) | 0.0017 (10) | 0.0020 (10) | 0.0005 (10) |
Ni2 | 0.01780 (15) | 0.01761 (16) | 0.01431 (15) | 0.00035 (11) | 0.00256 (11) | −0.00098 (11) |
S3 | 0.0210 (3) | 0.0200 (3) | 0.0168 (3) | 0.0014 (2) | 0.0069 (2) | −0.0016 (2) |
S4 | 0.0185 (3) | 0.0189 (3) | 0.0162 (3) | −0.0023 (2) | 0.0031 (2) | −0.0005 (2) |
O5 | 0.0248 (10) | 0.0340 (11) | 0.0279 (11) | 0.0016 (8) | 0.0008 (8) | 0.0106 (9) |
O6 | 0.0209 (9) | 0.0234 (9) | 0.0189 (9) | 0.0030 (7) | 0.0040 (7) | 0.0032 (7) |
O7 | 0.0284 (10) | 0.0290 (10) | 0.0222 (10) | 0.0049 (8) | 0.0008 (8) | 0.0059 (8) |
O8 | 0.0205 (9) | 0.0243 (9) | 0.0164 (8) | −0.0017 (7) | 0.0026 (7) | 0.0015 (7) |
O2W | 0.0312 (10) | 0.0183 (9) | 0.0177 (9) | −0.0001 (8) | 0.0025 (8) | −0.0027 (7) |
N2 | 0.0165 (9) | 0.0170 (9) | 0.0140 (9) | 0.0007 (7) | 0.0019 (7) | −0.0008 (8) |
C9 | 0.0165 (10) | 0.0179 (11) | 0.0128 (10) | −0.0002 (8) | 0.0017 (8) | −0.0002 (9) |
C10 | 0.0170 (11) | 0.0212 (12) | 0.0192 (11) | 0.0003 (9) | 0.0046 (9) | −0.0045 (9) |
C11 | 0.0299 (14) | 0.0270 (14) | 0.0347 (16) | 0.0108 (11) | 0.0155 (12) | 0.0101 (12) |
C12 | 0.0229 (12) | 0.0168 (11) | 0.0228 (12) | 0.0009 (9) | 0.0047 (10) | 0.0044 (10) |
C13 | 0.0170 (10) | 0.0175 (11) | 0.0135 (10) | 0.0007 (8) | 0.0024 (8) | −0.0004 (9) |
C14 | 0.0190 (11) | 0.0215 (12) | 0.0197 (12) | −0.0032 (9) | 0.0056 (9) | −0.0053 (10) |
C15 | 0.0184 (11) | 0.0314 (14) | 0.0170 (12) | −0.0032 (10) | 0.0009 (9) | −0.0020 (10) |
C16 | 0.0213 (11) | 0.0191 (11) | 0.0145 (11) | 0.0004 (9) | 0.0009 (9) | −0.0024 (9) |
O3W | 0.0268 (11) | 0.0366 (13) | 0.0473 (14) | 0.0028 (9) | 0.0113 (10) | 0.0092 (11) |
O4W | 0.0258 (10) | 0.0272 (10) | 0.0281 (11) | −0.0019 (8) | 0.0052 (8) | 0.0017 (8) |
O5W | 0.0287 (11) | 0.0321 (11) | 0.0239 (10) | 0.0034 (9) | 0.0058 (8) | −0.0033 (9) |
O6W | 0.0272 (11) | 0.0402 (13) | 0.0276 (11) | 0.0041 (9) | 0.0066 (9) | 0.0044 (10) |
O7W | 0.0386 (13) | 0.0311 (12) | 0.0462 (14) | −0.0009 (10) | 0.0208 (11) | −0.0050 (11) |
O8W | 0.0367 (14) | 0.0421 (15) | 0.061 (2) | −0.0031 (11) | 0.0130 (14) | 0.0098 (14) |
O9W | 0.0352 (12) | 0.0336 (12) | 0.0345 (12) | −0.0043 (10) | 0.0132 (10) | −0.0071 (10) |
Ni1—O1W | 2.0276 (19) | S3—C10 | 1.810 (3) |
Ni1—O2 | 2.0423 (18) | S4—C15 | 1.805 (3) |
Ni1—O4 | 2.0158 (19) | S4—C14 | 1.814 (3) |
Ni1—N1 | 2.081 (2) | O5—C12 | 1.248 (3) |
Ni1—S1 | 2.3775 (7) | O6—C12 | 1.260 (3) |
Ni1—S2 | 2.3883 (8) | O7—C16 | 1.236 (3) |
S1—C3 | 1.805 (3) | O8—C16 | 1.281 (3) |
S1—C2 | 1.806 (3) | O2W—H2WA | 0.88 (5) |
S2—C6 | 1.809 (3) | O2W—H2WB | 0.88 (6) |
S2—C7 | 1.819 (3) | N2—C13 | 1.337 (3) |
O1—C4 | 1.248 (3) | N2—C9 | 1.338 (3) |
O2—C4 | 1.255 (3) | C9—C13ii | 1.405 (3) |
O3—C8 | 1.235 (3) | C9—C10 | 1.502 (3) |
O4—C8 | 1.270 (3) | C10—H10A | 0.9900 |
O1W—H1WA | 0.90 (5) | C10—H10B | 0.9900 |
O1W—H1WB | 0.83 (5) | C11—C12 | 1.515 (4) |
N1—C1 | 1.333 (3) | C11—H11A | 0.9900 |
N1—C5 | 1.335 (3) | C11—H11B | 0.9900 |
C1—C5i | 1.403 (3) | C13—C14 | 1.503 (3) |
C1—C2 | 1.500 (3) | C14—H14A | 0.9900 |
C2—H2A | 0.9900 | C14—H14B | 0.9900 |
C2—H2B | 0.9900 | C15—C16 | 1.521 (4) |
C3—C4 | 1.531 (4) | C15—H15A | 0.9900 |
C3—H3A | 0.9900 | C15—H15B | 0.9900 |
C3—H3B | 0.9900 | O3W—H3WA | 0.87 (4) |
C5—C6 | 1.503 (3) | O3W—H3WB | 0.98 (7) |
C6—H6A | 0.9900 | O4W—H4WA | 0.91 (5) |
C6—H6B | 0.9900 | O4W—H4WB | 0.86 (5) |
C7—C8 | 1.523 (4) | O5W—H5WA | 0.97 (7) |
C7—H7A | 0.9900 | O5W—H5WB | 0.80 (5) |
C7—H7B | 0.9900 | O6W—H6WA | 0.83 (5) |
Ni2—O2W | 2.033 (2) | O6W—H6WB | 0.87 (6) |
Ni2—O6 | 2.0440 (19) | O7W—H7WA | 0.857 (19) |
Ni2—O8 | 2.0287 (19) | O7W—H7WB | 0.97 (6) |
Ni2—N2 | 2.057 (2) | O8W—H8WA | 0.85 (2) |
Ni2—S4 | 2.3674 (7) | O8W—H8WB | 0.86 (8) |
Ni2—S3 | 2.3685 (7) | O9W—H9WA | 0.82 (6) |
S3—C11 | 1.795 (3) | O9W—H9WB | 0.84 (5) |
O4—Ni1—O1W | 92.71 (8) | O2W—Ni2—N2 | 175.03 (9) |
O4—Ni1—O2 | 177.15 (8) | O6—Ni2—N2 | 89.81 (8) |
O1W—Ni1—O2 | 85.47 (8) | O8—Ni2—S4 | 85.30 (6) |
O4—Ni1—N1 | 92.73 (8) | O2W—Ni2—S4 | 97.60 (6) |
O1W—Ni1—N1 | 173.94 (8) | O6—Ni2—S4 | 93.64 (6) |
O2—Ni1—N1 | 88.99 (8) | N2—Ni2—S4 | 86.11 (6) |
O4—Ni1—S1 | 91.86 (6) | O8—Ni2—S3 | 94.92 (6) |
O1W—Ni1—S1 | 92.11 (6) | O2W—Ni2—S3 | 91.04 (6) |
O2—Ni1—S1 | 86.03 (6) | O6—Ni2—S3 | 85.63 (6) |
N1—Ni1—S1 | 85.03 (6) | N2—Ni2—S3 | 85.28 (6) |
O4—Ni1—S2 | 84.80 (6) | S4—Ni2—S3 | 171.37 (3) |
O1W—Ni1—S2 | 99.55 (6) | C11—S3—C10 | 102.65 (14) |
O2—Ni1—S2 | 97.65 (6) | C11—S3—Ni2 | 93.29 (10) |
N1—Ni1—S2 | 83.62 (6) | C10—S3—Ni2 | 98.05 (8) |
S1—Ni1—S2 | 167.99 (3) | C15—S4—C14 | 101.74 (13) |
C3—S1—C2 | 103.12 (13) | C15—S4—Ni2 | 93.14 (9) |
C3—S1—Ni1 | 95.52 (9) | C14—S4—Ni2 | 97.06 (8) |
C2—S1—Ni1 | 96.06 (8) | C12—O6—Ni2 | 119.89 (17) |
C6—S2—C7 | 101.48 (13) | C16—O8—Ni2 | 120.83 (17) |
C6—S2—Ni1 | 96.67 (9) | Ni2—O2W—H2WA | 117 (3) |
C7—S2—Ni1 | 95.58 (10) | Ni2—O2W—H2WB | 112 (4) |
C4—O2—Ni1 | 121.22 (17) | H2WA—O2W—H2WB | 113 (5) |
C8—O4—Ni1 | 123.77 (18) | C13—N2—C9 | 120.3 (2) |
Ni1—O1W—H1WA | 116 (3) | C13—N2—Ni2 | 119.43 (17) |
Ni1—O1W—H1WB | 117 (3) | C9—N2—Ni2 | 120.15 (16) |
H1WA—O1W—H1WB | 106 (4) | N2—C9—C13ii | 119.9 (2) |
C1—N1—C5 | 119.7 (2) | N2—C9—C10 | 120.7 (2) |
C1—N1—Ni1 | 119.71 (16) | C13ii—C9—C10 | 119.5 (2) |
C5—N1—Ni1 | 120.41 (16) | C9—C10—S3 | 115.48 (18) |
N1—C1—C5i | 120.2 (2) | C9—C10—H10A | 108.4 |
N1—C1—C2 | 118.9 (2) | S3—C10—H10A | 108.4 |
C5i—C1—C2 | 120.9 (2) | C9—C10—H10B | 108.4 |
C1—C2—S1 | 116.34 (18) | S3—C10—H10B | 108.4 |
C1—C2—H2A | 108.2 | H10A—C10—H10B | 107.5 |
S1—C2—H2A | 108.2 | C12—C11—S3 | 115.45 (19) |
C1—C2—H2B | 108.2 | C12—C11—H11A | 108.4 |
S1—C2—H2B | 108.2 | S3—C11—H11A | 108.4 |
H2A—C2—H2B | 107.4 | C12—C11—H11B | 108.4 |
C4—C3—S1 | 116.69 (19) | S3—C11—H11B | 108.4 |
C4—C3—H3A | 108.1 | H11A—C11—H11B | 107.5 |
S1—C3—H3A | 108.1 | O5—C12—O6 | 124.2 (3) |
C4—C3—H3B | 108.1 | O5—C12—C11 | 116.9 (2) |
S1—C3—H3B | 108.1 | O6—C12—C11 | 118.9 (2) |
H3A—C3—H3B | 107.3 | N2—C13—C9ii | 119.8 (2) |
O1—C4—O2 | 124.7 (2) | N2—C13—C14 | 120.6 (2) |
O1—C4—C3 | 114.8 (2) | C9ii—C13—C14 | 119.5 (2) |
O2—C4—C3 | 120.5 (2) | C13—C14—S4 | 116.43 (18) |
N1—C5—C1i | 120.1 (2) | C13—C14—H14A | 108.2 |
N1—C5—C6 | 119.1 (2) | S4—C14—H14A | 108.2 |
C1i—C5—C6 | 120.7 (2) | C13—C14—H14B | 108.2 |
C5—C6—S2 | 115.43 (17) | S4—C14—H14B | 108.2 |
C5—C6—H6A | 108.4 | H14A—C14—H14B | 107.3 |
S2—C6—H6A | 108.4 | C16—C15—S4 | 115.77 (18) |
C5—C6—H6B | 108.4 | C16—C15—H15A | 108.3 |
S2—C6—H6B | 108.4 | S4—C15—H15A | 108.3 |
H6A—C6—H6B | 107.5 | C16—C15—H15B | 108.3 |
C8—C7—S2 | 116.14 (19) | S4—C15—H15B | 108.3 |
C8—C7—H7A | 108.3 | H15A—C15—H15B | 107.4 |
S2—C7—H7A | 108.3 | O7—C16—O8 | 124.6 (3) |
C8—C7—H7B | 108.3 | O7—C16—C15 | 117.7 (2) |
S2—C7—H7B | 108.3 | O8—C16—C15 | 117.8 (2) |
H7A—C7—H7B | 107.4 | H3WA—O3W—H3WB | 108 (4) |
O3—C8—O4 | 124.9 (3) | H4WA—O4W—H4WB | 111 (4) |
O3—C8—C7 | 116.4 (3) | H5WA—O5W—H5WB | 101 (5) |
O4—C8—C7 | 118.7 (2) | H6WA—O6W—H6WB | 107 (4) |
O8—Ni2—O2W | 90.24 (8) | H7WA—O7W—H7WB | 104 (5) |
O8—Ni2—O6 | 176.47 (8) | H8WA—O8W—H8WB | 120 (7) |
O2W—Ni2—O6 | 93.24 (8) | H9WA—O9W—H9WB | 109 (5) |
O8—Ni2—N2 | 86.76 (8) | ||
N1—C1—C2—S1 | −20.9 (3) | Ni1—S2—C7—C8 | 9.7 (2) |
N1—C5—C6—S2 | −14.8 (3) | Ni1—O4—C8—O3 | 178.4 (2) |
S1—C3—C4—O2 | −0.1 (3) | Ni1—O4—C8—C7 | −2.2 (4) |
S2—C7—C8—O4 | −6.7 (4) | S2—C7—C8—O3 | 172.7 (2) |
N2—C13—C14—S4 | −1.3 (3) | C13—N2—C9—C13ii | −0.6 (4) |
N2—C9—C10—S3 | −7.0 (3) | Ni2—N2—C9—C13ii | −176.41 (18) |
S4—C15—C16—O8 | −21.9 (3) | C13—N2—C9—C10 | 179.5 (2) |
S3—C11—C12—O6 | −27.6 (4) | Ni2—N2—C9—C10 | 3.7 (3) |
C5—N1—C1—C5i | −0.2 (4) | C13ii—C9—C10—S3 | 173.09 (19) |
Ni1—N1—C1—C5i | −175.32 (17) | C11—S3—C10—C9 | 101.2 (2) |
C5—N1—C1—C2 | −177.5 (2) | Ni2—S3—C10—C9 | 6.0 (2) |
Ni1—N1—C1—C2 | 7.4 (3) | C10—S3—C11—C12 | −72.7 (3) |
C5i—C1—C2—S1 | 161.87 (19) | Ni2—S3—C11—C12 | 26.3 (2) |
C3—S1—C2—C1 | −76.6 (2) | Ni2—O6—C12—O5 | −172.1 (2) |
Ni1—S1—C2—C1 | 20.51 (19) | Ni2—O6—C12—C11 | 9.8 (3) |
C2—S1—C3—C4 | 96.0 (2) | S3—C11—C12—O5 | 154.2 (2) |
Ni1—S1—C3—C4 | −1.6 (2) | C9—N2—C13—C9ii | 0.6 (4) |
Ni1—O2—C4—O1 | −176.6 (2) | Ni2—N2—C13—C9ii | 176.44 (18) |
Ni1—O2—C4—C3 | 2.3 (3) | C9—N2—C13—C14 | −179.6 (2) |
S1—C3—C4—O1 | 178.92 (19) | Ni2—N2—C13—C14 | −3.7 (3) |
C1—N1—C5—C1i | 0.2 (4) | C9ii—C13—C14—S4 | 178.57 (19) |
Ni1—N1—C5—C1i | 175.29 (17) | C15—S4—C14—C13 | 99.1 (2) |
C1—N1—C5—C6 | −178.5 (2) | Ni2—S4—C14—C13 | 4.4 (2) |
Ni1—N1—C5—C6 | −3.4 (3) | C14—S4—C15—C16 | −71.2 (2) |
C1i—C5—C6—S2 | 166.52 (19) | Ni2—S4—C15—C16 | 26.7 (2) |
C7—S2—C6—C5 | −75.9 (2) | Ni2—O8—C16—O7 | 178.7 (2) |
Ni1—S2—C6—C5 | 21.24 (19) | Ni2—O8—C16—C15 | 0.2 (3) |
C6—S2—C7—C8 | 107.7 (2) | S4—C15—C16—O7 | 159.5 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O1iii | 0.90 (5) | 1.78 (5) | 2.672 (3) | 174 (4) |
O1W—H1WB···O5W | 0.83 (5) | 1.85 (5) | 2.677 (3) | 170 (5) |
O2W—H2WA···O5iv | 0.88 (5) | 1.80 (5) | 2.673 (3) | 168 (4) |
O2W—H2WB···O1i | 0.88 (6) | 1.88 (6) | 2.742 (3) | 168 (6) |
O3W—H3WA···O2 | 0.87 (4) | 2.02 (4) | 2.842 (3) | 157 (4) |
O3W—H3WB···O8Wiii | 0.98 (7) | 1.87 (7) | 2.785 (4) | 154 (6) |
O4W—H4WA···O8v | 0.91 (5) | 1.83 (5) | 2.733 (3) | 172 (4) |
O4W—H4WB···O6W | 0.86 (5) | 1.88 (5) | 2.724 (3) | 166 (5) |
O5W—H5WA···O7W | 0.97 (7) | 1.88 (7) | 2.785 (3) | 154 (6) |
O5W—H5WB···O5ii | 0.80 (5) | 2.06 (5) | 2.776 (3) | 149 (5) |
O6W—H6WA···O7 | 0.83 (5) | 1.98 (5) | 2.814 (3) | 178 (4) |
O6W—H6WB···O3Wi | 0.87 (6) | 1.98 (6) | 2.849 (4) | 173 (5) |
O7W—H7WA···O9W | 0.86 (2) | 1.85 (2) | 2.698 (3) | 169 (5) |
O7W—H7WB···O6vi | 0.97 (6) | 1.94 (6) | 2.899 (3) | 174 (5) |
O8W—H8WA···O7W | 0.85 (2) | 2.32 (2) | 3.159 (5) | 173 (6) |
O8W—H8WB···O3Wv | 0.86 (8) | 2.19 (8) | 3.019 (4) | 164 (7) |
O9W—H9WA···O4 | 0.82 (6) | 1.93 (6) | 2.752 (3) | 174 (6) |
O9W—H9WB···O4W | 0.84 (5) | 1.90 (5) | 2.731 (3) | 171 (5) |
C2—H2A···O4Wvii | 0.99 | 2.35 | 3.324 (3) | 167 |
C2—H2B···O6W | 0.99 | 2.55 | 3.308 (4) | 133 |
C3—H3A···O8Wviii | 0.99 | 2.55 | 3.488 (4) | 159 |
C6—H6A···O4Wix | 0.99 | 2.43 | 3.413 (3) | 173 |
C6—H6B···O3W | 0.99 | 2.60 | 3.365 (4) | 134 |
C6—H6B···O6Wi | 0.99 | 2.58 | 3.334 (3) | 133 |
C10—H10B···O3ii | 0.99 | 2.27 | 3.150 (4) | 148 |
C11—H11B···O5Wx | 0.99 | 2.52 | 3.303 (4) | 136 |
C11—H11B···O7Wx | 0.99 | 2.58 | 3.516 (4) | 158 |
C14—H14A···O9Wvi | 0.99 | 2.45 | 3.260 (4) | 139 |
C14—H14B···O3 | 0.99 | 2.29 | 3.169 (4) | 148 |
C15—H15A···S3v | 0.99 | 2.84 | 3.609 (3) | 135 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z; (iii) −x+1, −y, −z+1; (iv) −x, −y+2, −z; (v) x+1, y, z; (vi) −x+1, −y+1, −z; (vii) −x+2, −y+1, −z+1; (viii) −x+2, −y, −z+1; (ix) x−1, y, z; (x) x−1, y+1, z. |
Acknowledgements
We are extremely grateful to Professor Joan Ribas and members of his group at the Universitat de Barcelona, Departamento de Química Inorgánica, for the magnetic measurements, help in their interpretation and valuable discussions. HSE is grateful to the University of Neuchâtel for their support over the years.
Funding information
Funding for this research was provided by: Swiss National Science Foundation; University of Neuchâtel.
References
Assoumatine, T. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 51–53. CSD CrossRef CAS IUCr Journals Google Scholar
Ferigo, M., Bonhôte, P., Marty, W. & Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549–1554. CSD CrossRef Web of Science Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pacifico, J. (2003). PhD thesis, University of Neuchâtel, Switzerland. Google Scholar
Pacifico, J. & Stoeckli-Evans, H. (2020). Private communications [CCDC 2036276 (H4L3: tetraperchlorate salt; CSD refcode PUXJUQ), CCDC 2041654 (TAGTUU) and CCDC 2041655 (EHUBOB)]. CCDC, Cambridge, England. Google Scholar
Pacifico, J. & Stoeckli-Evans, H. (2021). Acta Cryst. E77, 480–490. Web of Science CrossRef IUCr Journals Google Scholar
Rheingold, A. L. (2015). Private communication [CCDC 2036276 (CSD refcode DUYFOU)]. CCDC, Cambridge, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.