metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(μ-2,2′,2′′,2′′′-{[Pyrazine-2,3,5,6-tetra­yltetra­kis(methyl­ene)]tetra­kis(sulfanedi­yl)}tetra­acetato)bis­­[aqua­nickel(II)] hepta­hydrate

crossmark logo

aInstitute of Chemistry, University of Neuchâtel, Av. de Bellevax 51, CH-2000 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 29 November 2021; accepted 6 December 2021; online 9 December 2021)

Reaction of the ligand 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­acetic acid (H4L1), with NiCl2 leads to the formation of a binuclear complex, (μ-2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­acetato-κ5O,S,N1,S′,O′:κ5O′′,S′′,N4,S′′′,O′′′)bis[aqua­nickel(II)] hepta­hydrate, {[Ni2(C16H16N2O8S4)(H2O)2]·7H2O} (I). It crystallizes with two half mol­ecules in the asymmetric unit. The complete mol­ecules are generated by inversion symmetry, with the center of the pyrazine rings being located at crystallographic centres of inversion. The ligand coordinates two NiII ions in a bis-penta­dentate manner and the sixfold coordination sphere of each nickel(II) atom (NiS2O3N) is completed by a water mol­ecule. The complex crystallized as a hepta-hydrate. The binuclear complexes are linked by Owater—H⋯Ocarbon­yl hydrogen bonds, forming layers parallel to the (101) plane. This layered structure is additionally stabilized by weak C—H⋯O hydrogen bonds. Further O—H⋯O hydrogen bonds involving binuclear complexes and solvent water mol­ecules, together with weak C—H⋯S hydrogen bonds, link the layers to form a supra­molecular framework.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The tetra­kis-substituted pyrazine carb­oxy­lic acid ligand, 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­acetic acid (H4L1), is one of a series of tetra­kis-substituted pyrazine ligands containing NxS4 and N2S4O8 donor atoms synthesized to study their coordination behaviour with various first-row transition metals and the magnetic exchange properties of the complexes (Pacifico, 2003[Pacifico, J. (2003). PhD thesis, University of Neuchâtel, Switzerland.]). Crystal structures of two polymorphs of the tetra­propionic acid analogue of the title ligand, 3,3′,3′′,3′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­propionic acid (H4L2), and of two potassium–organic frameworks have been reported (Pacifico & Stoeckli-Evans, 2021[Pacifico, J. & Stoeckli-Evans, H. (2021). Acta Cryst. E77, 480-490.]).

Reaction of H4L1 with NiCl2 yielded the binuclear complex I, with the ligand coordinating two NiII ions in a bis-penta­dentate manner. Complex I was shown to exhibit a weak anti­ferromagnetic coupling between the Ni centres via the pyrazine ring with a J value of −1.78 cm−1 (Pacifico, 2003[Pacifico, J. (2003). PhD thesis, University of Neuchâtel, Switzerland.]).

A similar ligand, 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yltetra­kis­(methyl­ene)] tetra­kis­(sulfanedi­yl)}tetra­kis­(ethan-1-amine) (H4L3; CSD refcode PUXJUQ for the tetra­perchlorate salt: Pacifico & Stoeckli-Evans, 2020[Pacifico, J. & Stoeckli-Evans, H. (2020). Private communications [CCDC 2036276 (H4L3: tetraperchlorate salt; CSD refcode PUXJUQ), CCDC 2041654 (TAGTUU) and CCDC 2041655 (EHUBOB)]. CCDC, Cambridge, England.]), has also been shown to form binuclear nickel(II) complexes (TAGTUU and EHUBOB) with similar anti­ferromagnetic couplings (J = −1.78 cm−1; Pacifico, 2003[Pacifico, J. (2003). PhD thesis, University of Neuchâtel, Switzerland.]).

Reaction of H4L1 with nickel(II) chloride leads to the formation of the binuclear title compound I, which crystallizes with two half mol­ecules in the asymmetric unit (Fig. 1[link] and Table 1[link]). The complete mol­ecules are generated by inversion symmetry, with the centres of the pyrazine rings being located at crystallographic centres of inversion.

Table 1
Selected geometric parameters (Å, °)

Ni1—O1W 2.0276 (19) Ni2—O2W 2.033 (2)
Ni1—O2 2.0423 (18) Ni2—O6 2.0440 (19)
Ni1—O4 2.0158 (19) Ni2—O8 2.0287 (19)
Ni1—N1 2.081 (2) Ni2—N2 2.057 (2)
Ni1—S1 2.3775 (7) Ni2—S4 2.3674 (7)
Ni1—S2 2.3883 (8) Ni2—S3 2.3685 (7)
       
N1—C1—C2—S1 −20.9 (3) N2—C13—C14—S4 −1.3 (3)
N1—C5—C6—S2 −14.8 (3) N2—C9—C10—S3 −7.0 (3)
S1—C3—C4—O2 −0.1 (3) S4—C15—C16—O8 −21.9 (3)
S2—C7—C8—O4 −6.7 (4) S3—C11—C12—O6 −27.6 (4)
[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules of complex I, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x, −y + 1, −z].

The best fit for the mol­ecular overlap of the two mol­ecules is shown in Fig. 2[link]. The r.m.s. deviation is 0.3168 Å, with a maximum deviation of 0.7435 Å (Mercury; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), The two mol­ecules differ essentially in the conformations of the four chelate rings as shown by the torsion angles given in Table 1[link]. The calculation of the mean planes of the chelate rings (PLATON; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) indicate that: ring Ni1/N1/C1/C2/S1 is twisted on the S1—C2 bond compared to ring Ni2/N2/C13//14/S4, which is flat; ring Ni1/N1/C5/C6/S2 has an envelope conformation with atom S2 as the flap, while ring Ni2/N2/C9/C10/S3 is flat; ring Ni1/S1/C3/C4/O2 is flat compared to ring N12/S4/C15/C16 /O8, which has an envelope conformation with atom S4 as the flap, finally ring Ni1/S2/C7/C8/O4 is twisted on the Ni1—S2 bond, compared to ring Ni2/S3/C11/C12/O6, which is twisted on the S3—C11 bond.

[Figure 2]
Figure 2
Mol­ecular overlap of the two independent complex mol­ecules of I (Mercury; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). (Mol­ecule 1 involving atom Ni1 is in blue; Mol­ecule 2 involving atom Ni2 is in red.)

The ligand coordinates two NiII ions in a bis-penta­dentate manner and the sixfold coordination sphere of each nickel(II) atom (NiS2O3N) is completed by a water mol­ecule. The complex crystallized as a hepta-hydrate. Selected bond lengths involving the nickel atoms of the two mol­ecules are given in Table 1[link]. There is a slight difference in the Ni—N bond lengths [Ni1—N1 = 2.081 (2) Å, Ni2—N2 = 2.057 (2) Å; Table 1[link]], otherwise the bond lengths involving the nickel atoms are similar and close to those reported for the complex aqua­(2,2′-{(pyridine-2,6-di­yl)bis­[methyl­ene(sulfanedi­yl)]}di­propano­ato)nickel(II) (CSD refcode DUYFOU; Rheingold, 2015[Rheingold, A. L. (2015). Private communication [CCDC 2036276 (CSD refcode DUYFOU)]. CCDC, Cambridge, England.]).

In the crystal structure of I, binuclear nickel(II) complexes are linked by Owater—H⋯Ocarbon­yl hydrogen bonds, forming layers parallel to the (101) plane (Fig. 3[link], Table 2[link]). Within the layers, weak C—H⋯O hydrogen bonds are present (Table 2[link]). Solvent water mol­ecules are linked by O—Hwater⋯O water hydrogen bonds to form ribbons propagating along the b-axis direction that consist of eight and twenty-four membered rings of the R44(8) and R1210(24) types (Fig. 4[link] and Table 2[link]). Additional O—Hwater⋯Ocarbon­yl hydrogen bonds involving the binuclear complexes and solvent water mol­ecules, together with weak C—H⋯S hydrogen bonds, link the layers to form a supra­molecular framework (Fig. 5[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1i 0.90 (5) 1.78 (5) 2.672 (3) 174 (4)
O1W—H1WB⋯O5W 0.83 (5) 1.85 (5) 2.677 (3) 170 (5)
O2W—H2WA⋯O5ii 0.88 (5) 1.80 (5) 2.673 (3) 168 (4)
O2W—H2WB⋯O1iii 0.88 (6) 1.88 (6) 2.742 (3) 168 (6)
O3W—H3WA⋯O2 0.87 (4) 2.02 (4) 2.842 (3) 157 (4)
O3W—H3WB⋯O8Wi 0.98 (7) 1.87 (7) 2.785 (4) 154 (6)
O4W—H4WA⋯O8iv 0.91 (5) 1.83 (5) 2.733 (3) 172 (4)
O4W—H4WB⋯O6W 0.86 (5) 1.88 (5) 2.724 (3) 166 (5)
O5W—H5WA⋯O7W 0.97 (7) 1.88 (7) 2.785 (3) 154 (6)
O5W—H5WB⋯O5v 0.80 (5) 2.06 (5) 2.776 (3) 149 (5)
O6W—H6WA⋯O7 0.83 (5) 1.98 (5) 2.814 (3) 178 (4)
O6W—H6WB⋯O3Wiii 0.87 (6) 1.98 (6) 2.849 (4) 173 (5)
O7W—H7WA⋯O9W 0.86 (2) 1.85 (2) 2.698 (3) 169 (5)
O7W—H7WB⋯O6vi 0.97 (6) 1.94 (6) 2.899 (3) 174 (5)
O8W—H8WA⋯O7W 0.85 (2) 2.32 (2) 3.159 (5) 173 (6)
O8W—H8WB⋯O3Wiv 0.86 (8) 2.19 (8) 3.019 (4) 164 (7)
O9W—H9WA⋯O4 0.82 (6) 1.93 (6) 2.752 (3) 174 (6)
O9W—H9WB⋯O4W 0.84 (5) 1.90 (5) 2.731 (3) 171 (5)
C2—H2A⋯O4Wvii 0.99 2.35 3.324 (3) 167
C2—H2B⋯O6W 0.99 2.55 3.308 (4) 133
C3—H3A⋯O8Wviii 0.99 2.55 3.488 (4) 159
C6—H6A⋯O4Wix 0.99 2.43 3.413 (3) 173
C6—H6B⋯O3W 0.99 2.60 3.365 (4) 134
C6—H6B⋯O6Wiii 0.99 2.58 3.334 (3) 133
C10—H10B⋯O3v 0.99 2.27 3.150 (4) 148
C11—H11B⋯O5Wx 0.99 2.52 3.303 (4) 136
C11—H11B⋯O7Wx 0.99 2.58 3.516 (4) 158
C14—H14A⋯O9Wvi 0.99 2.45 3.260 (4) 139
C14—H14B⋯O3 0.99 2.29 3.169 (4) 148
C15—H15A⋯S3iv 0.99 2.84 3.609 (3) 135
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x, -y+2, -z]; (iii) [-x+1, -y+1, -z+1]; (iv) x+1, y, z; (v) [-x, -y+1, -z]; (vi) [-x+1, -y+1, -z]; (vii) [-x+2, -y+1, -z+1]; (viii) [-x+2, -y, -z+1]; (ix) [x-1, y, z]; (x) [x-1, y+1, z].
[Figure 3]
Figure 3
A view normal to the (101) plane of the crystal packing of the two independent mol­ecules of complex I (atom Ni1 light-green ball; atom Ni2 dark-green ball). Hydrogen bonds (see Table 2[link]) are shown as dashed lines. For clarity, solvent water mol­ecules and C-bound H atoms have been omitted.
[Figure 4]
Figure 4
A view along the c axis of the hydrogen-bonded network of solvent water mol­ecules (see Table 2[link]).
[Figure 5]
Figure 5
A view along the b axis of the crystal packing of complex I. Hydrogen bonds (see Table 2[link]) are shown as dashed lines. For clarity, C-bound H atoms have been omitted. (atom Ni1 light-green ball; atom Ni2 dark-green ball).

Synthesis and crystallization

The synthesis and crystal structure of the reagent tetra-2,3,5,6-bromo­methyl-pyrazine (TBr) have been reported [Ferigo et al., 1994[Ferigo, M., Bonhôte, P., Marty, W. & Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549-1554.]; Assoumatine & Stoeckli-Evans, 2014[Assoumatine, T. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 51-53.] (CSD refcode: TOJXUN)].

Synthesis of ligand 2,2′,2′′,2′′′-{[pyrazine-2,3,5,6-tetra­yl­tetra­kis­(methyl­ene)]tetra­kis­(sulfanedi­yl)}tetra­acetic acid (H4L1): Thio­glycolic acid (1.6313 g, 1.77 mol, 4 eq) was dissolved in 50 ml of THF, then NaOH (1.4166 g, 3.54 mol, 8 eq), dissolved in a minimum amount of water (a few ml) was added. The volume was increased to 100 ml adding THF and then the reaction was left to stir under reflux for 1 h. TBr (2 g, 4.42 mol, 1 eq) dissolved in 50 ml of THF, was then added dropwise using an addition funnel. The mixture was stirred under reflux for 6 h. After evaporation of the solvent, the mixture was dissolved in 50 ml of deionized water, and HCl (puriss.) was added dropwise until a clearly acidic pH was obtained. The mixture was then stirred at room temperature for at least 1–2 h. The yellow precipitate that slowly formed was filtered off and washed with a minimum amount of water and then with CHCl3. The solid obtained (H4L1) was dried in vacuo and was then recrystallized from methanol.

Spectroscopic data for H4L1: 1H-NMR(CD3OD, 400 MHz, p.p.m.): 4.13 (s, 8H, H2); 3.37 (s, 8H, H3). 13C-NMR(CD3OD, 50 MHz, p.p.m.): 172.82 (4 C, C4); 150.01 (4 C, C1); 34.31 (4 C, C3); 33.26 (4 C, C2).

Analysis for C16H20N2O8S4, MW = 496.60 g/mol: Calculated (%) C 38.70, H 4.06, N5.64, Found (%) C 37.35, H 3.99, N 5.4.

ESI-MS: 534.97[M + K]+; 519.00[M+Na]+; 497.02[M + H]+; 422.86, 407.04, 247.88.

IR (KBr disc, cm−1) ν: 2984(s), 2922(s), 1690(s), 1431(s), 1395(s), 1321(s), 1289(s), 1202(s), 1181(s).

Synthesis of complex [(H2O)Ni(L1)Ni(H2O)]·7H2O (I): NiCl2·6 H2O (38.3 mg, 0.161 mmol, 2 eq) and H4L1 (40 mg, 0.080 mmol, 1 eq) were mixed together in 20 ml of degassed water. The mixture was left at 353 K under stirring and nitro­gen conditions for 2.5 h. The mixture was then filtered and left to evaporate in air for two weeks, yielding purple needle-like crystals of complex I (m.p. 553 K decomposition).

Analysis for (C16H20N2Ni2O10S4)·7 (H2O), Mw = 772.10 g mol−1. Calculated (%) C 24.89, H 4.44, N 3.63. Found (%) C 28.17, H 3.90, N 4.18. Deviation due to the probable loss of water mol­ecules of crystallization, for example, loss of five water mol­ecules gives calculated (%) C 28.18, H 3.55, N 4.11.

ESI–MS: 703, 663, 615[M − 2H2O], 601, 579, 565, 511, 499, 477, 461, 433, 165.

IR (KBr disc, cm−1) ν: 3364(s), 2921(m), 1713(m), 1575(s), 1404(s), 1237(m), 1208(m), 1155(m), 1137(m), 928(m), 704(m).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For complex I, the average HKL measurement multiplicity was low at 2.6, hence an empirical absorption correction was applied.

Table 3
Experimental details

Crystal data
Chemical formula [Ni2(C16H16N2O8S4)(H2O)2]·7H2O
Mr 772.11
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 153
a, b, c (Å) 8.6799 (8), 11.4092 (10), 14.7210 (13)
α, β, γ (°) 90.308 (7), 103.619 (7), 93.801 (7)
V3) 1413.4 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.71
Crystal size (mm) 0.49 × 0.06 × 0.06
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Empirical (using intensity measurements) (ShxAbs; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.])
Tmin, Tmax 0.261, 0.714
No. of measured, independent and observed [I > 2σ(I)] reflections 19974, 7779, 6120
Rint 0.052
(sin θ/λ)max−1) 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.096, 1.02
No. of reflections 7779
No. of parameters 443
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.74, −0.64
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

(µ-2,2',2'',2'''-{[Pyrazine-2,3,5,6-tetrayltetrakis(methylene)]tetrakis(sulfanediyl)}tetraacetato-κ5O,S,N1,S',O':κ5O'',S'',N4,S''',O''')bis[aquanickel(II)] heptahydrate top
Crystal data top
[Ni2(C16H16N2O8S4)(H2O)2]·7H2OZ = 2
Mr = 772.11F(000) = 800
Triclinic, P1Dx = 1.814 Mg m3
a = 8.6799 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4092 (10) ÅCell parameters from 19267 reflections
c = 14.7210 (13) Åθ = 2.3–25.9°
α = 90.308 (7)°µ = 1.71 mm1
β = 103.619 (7)°T = 153 K
γ = 93.801 (7)°Needle, purple
V = 1413.4 (2) Å30.49 × 0.06 × 0.06 mm
Data collection top
STOE IPDS 2
diffractometer
7779 independent reflections
Radiation source: fine-focus sealed tube6120 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.052
φ + ω scansθmax = 29.5°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(ShxAbs; Spek, 2020)
h = 1211
Tmin = 0.261, Tmax = 0.714k = 1513
19974 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0462P)2 + 1.0506P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
7779 reflectionsΔρmax = 0.74 e Å3
443 parametersΔρmin = 0.64 e Å3
2 restraintsExtinction correction: (SHELXL-2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0029 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms of coordinated and non-coordinated water molecules were all located from difference-Fourier maps and freely refined. The C-bound H atoms were included in calculated positions and treated as riding on their parent C atom: C—H = 0.97 - 0.99 Å with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.53221 (4)0.24084 (3)0.38618 (2)0.01578 (8)
S10.80929 (7)0.27577 (5)0.45193 (4)0.01770 (12)
S20.25256 (8)0.24883 (6)0.32588 (5)0.01966 (13)
O10.6527 (3)0.09177 (18)0.64400 (14)0.0260 (4)
O20.5239 (2)0.15751 (16)0.50754 (13)0.0189 (3)
O30.4421 (3)0.4074 (2)0.13485 (16)0.0374 (5)
O40.5504 (2)0.31920 (17)0.26639 (13)0.0218 (4)
O1W0.5614 (2)0.07971 (17)0.33656 (14)0.0214 (4)
H1WA0.493 (5)0.021 (4)0.347 (3)0.044 (12)*
H1WB0.562 (5)0.074 (4)0.280 (4)0.049 (13)*
N10.5120 (2)0.39964 (18)0.45117 (14)0.0150 (4)
C10.6427 (3)0.4640 (2)0.49454 (16)0.0150 (4)
C20.8013 (3)0.4274 (2)0.48542 (19)0.0187 (5)
H2A0.8786070.4432430.5460800.022*
H2B0.8367460.4777640.4386140.022*
C30.8088 (3)0.1985 (2)0.5586 (2)0.0243 (5)
H3A0.8810170.1340740.5628200.029*
H3B0.8540110.2534600.6118820.029*
C40.6478 (3)0.1460 (2)0.57012 (18)0.0186 (5)
C50.3695 (3)0.4333 (2)0.45563 (17)0.0157 (4)
C60.2232 (3)0.3583 (2)0.40844 (18)0.0191 (5)
H6A0.1424440.4103190.3752900.023*
H6B0.1796630.3178000.4572180.023*
C70.2684 (3)0.3386 (3)0.22634 (19)0.0267 (6)
H7A0.1957410.3020370.1697390.032*
H7B0.2304290.4166840.2358800.032*
C80.4334 (3)0.3569 (3)0.20767 (19)0.0233 (5)
Ni20.08393 (4)0.76880 (3)0.11162 (2)0.01682 (8)
S30.17445 (8)0.74194 (6)0.13855 (4)0.01891 (13)
S40.33203 (7)0.76930 (6)0.07086 (4)0.01819 (12)
O50.2463 (2)0.9086 (2)0.09705 (16)0.0298 (5)
O60.0227 (2)0.85094 (17)0.00750 (13)0.0211 (4)
O70.4137 (2)0.62254 (19)0.31716 (15)0.0272 (4)
O80.1895 (2)0.67823 (17)0.22496 (13)0.0208 (4)
O2W0.1272 (3)0.92039 (18)0.18933 (14)0.0230 (4)
H2WA0.159 (6)0.984 (4)0.162 (3)0.052 (13)*
H2WB0.187 (7)0.910 (5)0.245 (4)0.078 (18)*
N20.0311 (2)0.60923 (18)0.04172 (14)0.0161 (4)
C90.1108 (3)0.5517 (2)0.03476 (17)0.0161 (4)
C100.2367 (3)0.6057 (2)0.07259 (18)0.0191 (5)
H10A0.2762420.5481130.1132930.023*
H10B0.3268350.6201960.0195480.023*
C110.2527 (4)0.8505 (3)0.0556 (2)0.0288 (6)
H11A0.3656990.8267620.0272390.035*
H11B0.2492150.9260090.0896680.035*
C120.1675 (3)0.8705 (2)0.02232 (19)0.0209 (5)
C130.1429 (3)0.5602 (2)0.00845 (17)0.0162 (4)
C140.3030 (3)0.6239 (2)0.01658 (19)0.0201 (5)
H14A0.3219310.6308700.0469670.024*
H14B0.3847620.5747690.0528300.024*
C150.4378 (3)0.7395 (3)0.18853 (18)0.0231 (5)
H15A0.5286620.6929420.1851310.028*
H15B0.4818160.8151650.2204520.028*
C160.3408 (3)0.6741 (2)0.24832 (18)0.0189 (5)
O3W0.2116 (3)0.1139 (2)0.53431 (19)0.0364 (5)
H3WA0.310 (5)0.107 (3)0.531 (3)0.030 (9)*
H3WB0.186 (8)0.056 (6)0.578 (5)0.09 (2)*
O4W0.9679 (3)0.5567 (2)0.29921 (16)0.0274 (4)
H4WA1.041 (6)0.603 (4)0.278 (3)0.047 (12)*
H4WB0.893 (6)0.597 (4)0.310 (4)0.058 (14)*
O5W0.5598 (3)0.0350 (2)0.15764 (15)0.0283 (4)
H5WA0.649 (8)0.081 (6)0.143 (4)0.09 (2)*
H5WB0.487 (6)0.068 (4)0.129 (4)0.054 (14)*
O6W0.7456 (3)0.6695 (2)0.36273 (17)0.0315 (5)
H6WA0.648 (6)0.654 (4)0.349 (3)0.042 (12)*
H6WB0.763 (6)0.738 (5)0.391 (4)0.068 (16)*
O7W0.8648 (3)0.1299 (2)0.16038 (19)0.0370 (5)
H7WA0.867 (6)0.202 (2)0.178 (3)0.050 (13)*
H7WB0.923 (7)0.132 (5)0.112 (4)0.078 (17)*
O8W0.9536 (3)0.0333 (3)0.3655 (3)0.0467 (7)
H8WA0.939 (8)0.059 (6)0.310 (2)0.10 (2)*
H8WB1.022 (9)0.070 (7)0.410 (5)0.11 (3)*
O9W0.8291 (3)0.3532 (2)0.20860 (18)0.0339 (5)
H9WA0.745 (7)0.338 (5)0.224 (4)0.065 (16)*
H9WB0.878 (6)0.411 (4)0.241 (3)0.048 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01756 (15)0.01571 (15)0.01319 (15)0.00010 (11)0.00220 (11)0.00087 (11)
S10.0181 (3)0.0171 (3)0.0182 (3)0.0016 (2)0.0048 (2)0.0015 (2)
S20.0195 (3)0.0176 (3)0.0199 (3)0.0013 (2)0.0015 (2)0.0045 (2)
O10.0324 (10)0.0244 (10)0.0177 (9)0.0046 (8)0.0007 (8)0.0025 (8)
O20.0206 (8)0.0201 (9)0.0149 (8)0.0013 (7)0.0026 (7)0.0003 (7)
O30.0421 (13)0.0489 (14)0.0205 (10)0.0069 (11)0.0048 (9)0.0131 (10)
O40.0244 (9)0.0253 (9)0.0157 (8)0.0010 (7)0.0050 (7)0.0047 (7)
O1W0.0266 (9)0.0174 (9)0.0198 (9)0.0006 (7)0.0052 (8)0.0035 (7)
N10.0163 (9)0.0135 (9)0.0143 (9)0.0011 (7)0.0027 (7)0.0014 (7)
C10.0169 (10)0.0150 (10)0.0127 (10)0.0012 (8)0.0026 (8)0.0007 (8)
C20.0157 (11)0.0177 (11)0.0223 (12)0.0001 (9)0.0040 (9)0.0017 (9)
C30.0232 (13)0.0220 (12)0.0256 (13)0.0001 (10)0.0021 (10)0.0045 (10)
C40.0230 (12)0.0168 (11)0.0144 (11)0.0009 (9)0.0021 (9)0.0011 (9)
C50.0173 (10)0.0153 (10)0.0136 (10)0.0011 (8)0.0025 (8)0.0000 (8)
C60.0190 (11)0.0203 (12)0.0167 (11)0.0003 (9)0.0020 (9)0.0029 (9)
C70.0271 (13)0.0351 (15)0.0164 (12)0.0059 (11)0.0011 (10)0.0008 (11)
C80.0281 (13)0.0262 (13)0.0142 (11)0.0017 (10)0.0020 (10)0.0005 (10)
Ni20.01780 (15)0.01761 (16)0.01431 (15)0.00035 (11)0.00256 (11)0.00098 (11)
S30.0210 (3)0.0200 (3)0.0168 (3)0.0014 (2)0.0069 (2)0.0016 (2)
S40.0185 (3)0.0189 (3)0.0162 (3)0.0023 (2)0.0031 (2)0.0005 (2)
O50.0248 (10)0.0340 (11)0.0279 (11)0.0016 (8)0.0008 (8)0.0106 (9)
O60.0209 (9)0.0234 (9)0.0189 (9)0.0030 (7)0.0040 (7)0.0032 (7)
O70.0284 (10)0.0290 (10)0.0222 (10)0.0049 (8)0.0008 (8)0.0059 (8)
O80.0205 (9)0.0243 (9)0.0164 (8)0.0017 (7)0.0026 (7)0.0015 (7)
O2W0.0312 (10)0.0183 (9)0.0177 (9)0.0001 (8)0.0025 (8)0.0027 (7)
N20.0165 (9)0.0170 (9)0.0140 (9)0.0007 (7)0.0019 (7)0.0008 (8)
C90.0165 (10)0.0179 (11)0.0128 (10)0.0002 (8)0.0017 (8)0.0002 (9)
C100.0170 (11)0.0212 (12)0.0192 (11)0.0003 (9)0.0046 (9)0.0045 (9)
C110.0299 (14)0.0270 (14)0.0347 (16)0.0108 (11)0.0155 (12)0.0101 (12)
C120.0229 (12)0.0168 (11)0.0228 (12)0.0009 (9)0.0047 (10)0.0044 (10)
C130.0170 (10)0.0175 (11)0.0135 (10)0.0007 (8)0.0024 (8)0.0004 (9)
C140.0190 (11)0.0215 (12)0.0197 (12)0.0032 (9)0.0056 (9)0.0053 (10)
C150.0184 (11)0.0314 (14)0.0170 (12)0.0032 (10)0.0009 (9)0.0020 (10)
C160.0213 (11)0.0191 (11)0.0145 (11)0.0004 (9)0.0009 (9)0.0024 (9)
O3W0.0268 (11)0.0366 (13)0.0473 (14)0.0028 (9)0.0113 (10)0.0092 (11)
O4W0.0258 (10)0.0272 (10)0.0281 (11)0.0019 (8)0.0052 (8)0.0017 (8)
O5W0.0287 (11)0.0321 (11)0.0239 (10)0.0034 (9)0.0058 (8)0.0033 (9)
O6W0.0272 (11)0.0402 (13)0.0276 (11)0.0041 (9)0.0066 (9)0.0044 (10)
O7W0.0386 (13)0.0311 (12)0.0462 (14)0.0009 (10)0.0208 (11)0.0050 (11)
O8W0.0367 (14)0.0421 (15)0.061 (2)0.0031 (11)0.0130 (14)0.0098 (14)
O9W0.0352 (12)0.0336 (12)0.0345 (12)0.0043 (10)0.0132 (10)0.0071 (10)
Geometric parameters (Å, º) top
Ni1—O1W2.0276 (19)S3—C101.810 (3)
Ni1—O22.0423 (18)S4—C151.805 (3)
Ni1—O42.0158 (19)S4—C141.814 (3)
Ni1—N12.081 (2)O5—C121.248 (3)
Ni1—S12.3775 (7)O6—C121.260 (3)
Ni1—S22.3883 (8)O7—C161.236 (3)
S1—C31.805 (3)O8—C161.281 (3)
S1—C21.806 (3)O2W—H2WA0.88 (5)
S2—C61.809 (3)O2W—H2WB0.88 (6)
S2—C71.819 (3)N2—C131.337 (3)
O1—C41.248 (3)N2—C91.338 (3)
O2—C41.255 (3)C9—C13ii1.405 (3)
O3—C81.235 (3)C9—C101.502 (3)
O4—C81.270 (3)C10—H10A0.9900
O1W—H1WA0.90 (5)C10—H10B0.9900
O1W—H1WB0.83 (5)C11—C121.515 (4)
N1—C11.333 (3)C11—H11A0.9900
N1—C51.335 (3)C11—H11B0.9900
C1—C5i1.403 (3)C13—C141.503 (3)
C1—C21.500 (3)C14—H14A0.9900
C2—H2A0.9900C14—H14B0.9900
C2—H2B0.9900C15—C161.521 (4)
C3—C41.531 (4)C15—H15A0.9900
C3—H3A0.9900C15—H15B0.9900
C3—H3B0.9900O3W—H3WA0.87 (4)
C5—C61.503 (3)O3W—H3WB0.98 (7)
C6—H6A0.9900O4W—H4WA0.91 (5)
C6—H6B0.9900O4W—H4WB0.86 (5)
C7—C81.523 (4)O5W—H5WA0.97 (7)
C7—H7A0.9900O5W—H5WB0.80 (5)
C7—H7B0.9900O6W—H6WA0.83 (5)
Ni2—O2W2.033 (2)O6W—H6WB0.87 (6)
Ni2—O62.0440 (19)O7W—H7WA0.857 (19)
Ni2—O82.0287 (19)O7W—H7WB0.97 (6)
Ni2—N22.057 (2)O8W—H8WA0.85 (2)
Ni2—S42.3674 (7)O8W—H8WB0.86 (8)
Ni2—S32.3685 (7)O9W—H9WA0.82 (6)
S3—C111.795 (3)O9W—H9WB0.84 (5)
O4—Ni1—O1W92.71 (8)O2W—Ni2—N2175.03 (9)
O4—Ni1—O2177.15 (8)O6—Ni2—N289.81 (8)
O1W—Ni1—O285.47 (8)O8—Ni2—S485.30 (6)
O4—Ni1—N192.73 (8)O2W—Ni2—S497.60 (6)
O1W—Ni1—N1173.94 (8)O6—Ni2—S493.64 (6)
O2—Ni1—N188.99 (8)N2—Ni2—S486.11 (6)
O4—Ni1—S191.86 (6)O8—Ni2—S394.92 (6)
O1W—Ni1—S192.11 (6)O2W—Ni2—S391.04 (6)
O2—Ni1—S186.03 (6)O6—Ni2—S385.63 (6)
N1—Ni1—S185.03 (6)N2—Ni2—S385.28 (6)
O4—Ni1—S284.80 (6)S4—Ni2—S3171.37 (3)
O1W—Ni1—S299.55 (6)C11—S3—C10102.65 (14)
O2—Ni1—S297.65 (6)C11—S3—Ni293.29 (10)
N1—Ni1—S283.62 (6)C10—S3—Ni298.05 (8)
S1—Ni1—S2167.99 (3)C15—S4—C14101.74 (13)
C3—S1—C2103.12 (13)C15—S4—Ni293.14 (9)
C3—S1—Ni195.52 (9)C14—S4—Ni297.06 (8)
C2—S1—Ni196.06 (8)C12—O6—Ni2119.89 (17)
C6—S2—C7101.48 (13)C16—O8—Ni2120.83 (17)
C6—S2—Ni196.67 (9)Ni2—O2W—H2WA117 (3)
C7—S2—Ni195.58 (10)Ni2—O2W—H2WB112 (4)
C4—O2—Ni1121.22 (17)H2WA—O2W—H2WB113 (5)
C8—O4—Ni1123.77 (18)C13—N2—C9120.3 (2)
Ni1—O1W—H1WA116 (3)C13—N2—Ni2119.43 (17)
Ni1—O1W—H1WB117 (3)C9—N2—Ni2120.15 (16)
H1WA—O1W—H1WB106 (4)N2—C9—C13ii119.9 (2)
C1—N1—C5119.7 (2)N2—C9—C10120.7 (2)
C1—N1—Ni1119.71 (16)C13ii—C9—C10119.5 (2)
C5—N1—Ni1120.41 (16)C9—C10—S3115.48 (18)
N1—C1—C5i120.2 (2)C9—C10—H10A108.4
N1—C1—C2118.9 (2)S3—C10—H10A108.4
C5i—C1—C2120.9 (2)C9—C10—H10B108.4
C1—C2—S1116.34 (18)S3—C10—H10B108.4
C1—C2—H2A108.2H10A—C10—H10B107.5
S1—C2—H2A108.2C12—C11—S3115.45 (19)
C1—C2—H2B108.2C12—C11—H11A108.4
S1—C2—H2B108.2S3—C11—H11A108.4
H2A—C2—H2B107.4C12—C11—H11B108.4
C4—C3—S1116.69 (19)S3—C11—H11B108.4
C4—C3—H3A108.1H11A—C11—H11B107.5
S1—C3—H3A108.1O5—C12—O6124.2 (3)
C4—C3—H3B108.1O5—C12—C11116.9 (2)
S1—C3—H3B108.1O6—C12—C11118.9 (2)
H3A—C3—H3B107.3N2—C13—C9ii119.8 (2)
O1—C4—O2124.7 (2)N2—C13—C14120.6 (2)
O1—C4—C3114.8 (2)C9ii—C13—C14119.5 (2)
O2—C4—C3120.5 (2)C13—C14—S4116.43 (18)
N1—C5—C1i120.1 (2)C13—C14—H14A108.2
N1—C5—C6119.1 (2)S4—C14—H14A108.2
C1i—C5—C6120.7 (2)C13—C14—H14B108.2
C5—C6—S2115.43 (17)S4—C14—H14B108.2
C5—C6—H6A108.4H14A—C14—H14B107.3
S2—C6—H6A108.4C16—C15—S4115.77 (18)
C5—C6—H6B108.4C16—C15—H15A108.3
S2—C6—H6B108.4S4—C15—H15A108.3
H6A—C6—H6B107.5C16—C15—H15B108.3
C8—C7—S2116.14 (19)S4—C15—H15B108.3
C8—C7—H7A108.3H15A—C15—H15B107.4
S2—C7—H7A108.3O7—C16—O8124.6 (3)
C8—C7—H7B108.3O7—C16—C15117.7 (2)
S2—C7—H7B108.3O8—C16—C15117.8 (2)
H7A—C7—H7B107.4H3WA—O3W—H3WB108 (4)
O3—C8—O4124.9 (3)H4WA—O4W—H4WB111 (4)
O3—C8—C7116.4 (3)H5WA—O5W—H5WB101 (5)
O4—C8—C7118.7 (2)H6WA—O6W—H6WB107 (4)
O8—Ni2—O2W90.24 (8)H7WA—O7W—H7WB104 (5)
O8—Ni2—O6176.47 (8)H8WA—O8W—H8WB120 (7)
O2W—Ni2—O693.24 (8)H9WA—O9W—H9WB109 (5)
O8—Ni2—N286.76 (8)
N1—C1—C2—S120.9 (3)Ni1—S2—C7—C89.7 (2)
N1—C5—C6—S214.8 (3)Ni1—O4—C8—O3178.4 (2)
S1—C3—C4—O20.1 (3)Ni1—O4—C8—C72.2 (4)
S2—C7—C8—O46.7 (4)S2—C7—C8—O3172.7 (2)
N2—C13—C14—S41.3 (3)C13—N2—C9—C13ii0.6 (4)
N2—C9—C10—S37.0 (3)Ni2—N2—C9—C13ii176.41 (18)
S4—C15—C16—O821.9 (3)C13—N2—C9—C10179.5 (2)
S3—C11—C12—O627.6 (4)Ni2—N2—C9—C103.7 (3)
C5—N1—C1—C5i0.2 (4)C13ii—C9—C10—S3173.09 (19)
Ni1—N1—C1—C5i175.32 (17)C11—S3—C10—C9101.2 (2)
C5—N1—C1—C2177.5 (2)Ni2—S3—C10—C96.0 (2)
Ni1—N1—C1—C27.4 (3)C10—S3—C11—C1272.7 (3)
C5i—C1—C2—S1161.87 (19)Ni2—S3—C11—C1226.3 (2)
C3—S1—C2—C176.6 (2)Ni2—O6—C12—O5172.1 (2)
Ni1—S1—C2—C120.51 (19)Ni2—O6—C12—C119.8 (3)
C2—S1—C3—C496.0 (2)S3—C11—C12—O5154.2 (2)
Ni1—S1—C3—C41.6 (2)C9—N2—C13—C9ii0.6 (4)
Ni1—O2—C4—O1176.6 (2)Ni2—N2—C13—C9ii176.44 (18)
Ni1—O2—C4—C32.3 (3)C9—N2—C13—C14179.6 (2)
S1—C3—C4—O1178.92 (19)Ni2—N2—C13—C143.7 (3)
C1—N1—C5—C1i0.2 (4)C9ii—C13—C14—S4178.57 (19)
Ni1—N1—C5—C1i175.29 (17)C15—S4—C14—C1399.1 (2)
C1—N1—C5—C6178.5 (2)Ni2—S4—C14—C134.4 (2)
Ni1—N1—C5—C63.4 (3)C14—S4—C15—C1671.2 (2)
C1i—C5—C6—S2166.52 (19)Ni2—S4—C15—C1626.7 (2)
C7—S2—C6—C575.9 (2)Ni2—O8—C16—O7178.7 (2)
Ni1—S2—C6—C521.24 (19)Ni2—O8—C16—C150.2 (3)
C6—S2—C7—C8107.7 (2)S4—C15—C16—O7159.5 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1iii0.90 (5)1.78 (5)2.672 (3)174 (4)
O1W—H1WB···O5W0.83 (5)1.85 (5)2.677 (3)170 (5)
O2W—H2WA···O5iv0.88 (5)1.80 (5)2.673 (3)168 (4)
O2W—H2WB···O1i0.88 (6)1.88 (6)2.742 (3)168 (6)
O3W—H3WA···O20.87 (4)2.02 (4)2.842 (3)157 (4)
O3W—H3WB···O8Wiii0.98 (7)1.87 (7)2.785 (4)154 (6)
O4W—H4WA···O8v0.91 (5)1.83 (5)2.733 (3)172 (4)
O4W—H4WB···O6W0.86 (5)1.88 (5)2.724 (3)166 (5)
O5W—H5WA···O7W0.97 (7)1.88 (7)2.785 (3)154 (6)
O5W—H5WB···O5ii0.80 (5)2.06 (5)2.776 (3)149 (5)
O6W—H6WA···O70.83 (5)1.98 (5)2.814 (3)178 (4)
O6W—H6WB···O3Wi0.87 (6)1.98 (6)2.849 (4)173 (5)
O7W—H7WA···O9W0.86 (2)1.85 (2)2.698 (3)169 (5)
O7W—H7WB···O6vi0.97 (6)1.94 (6)2.899 (3)174 (5)
O8W—H8WA···O7W0.85 (2)2.32 (2)3.159 (5)173 (6)
O8W—H8WB···O3Wv0.86 (8)2.19 (8)3.019 (4)164 (7)
O9W—H9WA···O40.82 (6)1.93 (6)2.752 (3)174 (6)
O9W—H9WB···O4W0.84 (5)1.90 (5)2.731 (3)171 (5)
C2—H2A···O4Wvii0.992.353.324 (3)167
C2—H2B···O6W0.992.553.308 (4)133
C3—H3A···O8Wviii0.992.553.488 (4)159
C6—H6A···O4Wix0.992.433.413 (3)173
C6—H6B···O3W0.992.603.365 (4)134
C6—H6B···O6Wi0.992.583.334 (3)133
C10—H10B···O3ii0.992.273.150 (4)148
C11—H11B···O5Wx0.992.523.303 (4)136
C11—H11B···O7Wx0.992.583.516 (4)158
C14—H14A···O9Wvi0.992.453.260 (4)139
C14—H14B···O30.992.293.169 (4)148
C15—H15A···S3v0.992.843.609 (3)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z+1; (iv) x, y+2, z; (v) x+1, y, z; (vi) x+1, y+1, z; (vii) x+2, y+1, z+1; (viii) x+2, y, z+1; (ix) x1, y, z; (x) x1, y+1, z.
 

Acknowledgements

We are extremely grateful to Professor Joan Ribas and members of his group at the Universitat de Barcelona, Departamento de Química Inorgánica, for the magnetic measurements, help in their inter­pretation and valuable discussions. HSE is grateful to the University of Neuchâtel for their support over the years.

Funding information

Funding for this research was provided by: Swiss National Science Foundation; University of Neuchâtel.

References

First citationAssoumatine, T. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 51–53.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerigo, M., Bonhôte, P., Marty, W. & Stoeckli-Evans, H. (1994). J. Chem. Soc. Dalton Trans. pp. 1549–1554.  CSD CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPacifico, J. (2003). PhD thesis, University of Neuchâtel, Switzerland.  Google Scholar
First citationPacifico, J. & Stoeckli-Evans, H. (2020). Private communications [CCDC 2036276 (H4L3: tetraperchlorate salt; CSD refcode PUXJUQ), CCDC 2041654 (TAGTUU) and CCDC 2041655 (EHUBOB)]. CCDC, Cambridge, England.  Google Scholar
First citationPacifico, J. & Stoeckli-Evans, H. (2021). Acta Cryst. E77, 480–490.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRheingold, A. L. (2015). Private communication [CCDC 2036276 (CSD refcode DUYFOU)]. CCDC, Cambridge, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds