organic compounds
1,3-Thiazole-4-carbonitrile
aLeibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
*Correspondence e-mail: david.linke@catalysis.de
The title compound, C4H2N2S, is a 1,3-thiazole substituted in the 4-position by a nitrile group. In the crystal, C—H⋯N hydrogen bonds and aromatic π–π stacking interactions are observed.
CCDC reference: 2128844
Structure description
The title compound, C4H2N2S, consists of a 1,3-thiazole ring substituted in the 4-position by a nitrile group (Fig. 1). The whole molecule is nearly planar with a mean deviation from the best plane defined by all non-hydrogen atoms of 0.005 Å. All bond lengths are in the expected ranges (Allen et al., 1987).
In the crystal, weak C—H⋯N hydrogen bonds arising from both C—H groupings build up a wavy layer of molecules in the (011) plane (Table 1, Fig. 2). The layers are stacked in the (100) direction by weak π–π stacking interactions between the 1,3-thiazole rings [centroid–centroid distance = 3.7924 (10) Å, ring slippage = 1.39 Å].
Synthesis and crystallization
Commercial powder of the title compound (Fluorochem, UK, catalogue No. 1H NMR (300.2 MHz, DMSO-d6) δ 9.316, 9.310 (J = 1.82 Hz, H3), 8.908, 8.902 (J = 1.84 Hz, H2). 13C NMR (75.5 MHz, DMSO-d6) δ 157.4, 133.6, 125.9, 114.5. The NMR data are consistent with those previously published by Augustine et al. (2009).
076318) was purified by at normal pressure on a hot plate set to 55°C. The colourless crystals formed over two days on the covering watch glass.Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2128844
https://doi.org/10.1107/S2414314621013328/hb4395sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314621013328/hb4395Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314621013328/hb4395Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2015) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C4H2N2S | F(000) = 224 |
Mr = 110.14 | Dx = 1.536 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 3.7924 (3) Å | Cell parameters from 2588 reflections |
b = 19.8932 (18) Å | θ = 4.5–66.7° |
c = 6.3155 (5) Å | µ = 4.77 mm−1 |
β = 91.084 (6)° | T = 150 K |
V = 476.37 (7) Å3 | Plate, colourless |
Z = 4 | 0.24 × 0.18 × 0.08 mm |
Bruker APEXII CCD diffractometer | 854 independent reflections |
Radiation source: microfocus | 783 reflections with I > 2σ(I) |
Multilayer monochromator | Rint = 0.040 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 66.7°, θmin = 4.5° |
φ and ω scans | h = −4→4 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −23→23 |
Tmin = 0.40, Tmax = 0.71 | l = −7→7 |
4709 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.097 | w = 1/[σ2(Fo2) + (0.0638P)2 + 0.0618P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
854 reflections | Δρmax = 0.32 e Å−3 |
64 parameters | Δρmin = −0.23 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8382 (4) | 0.61784 (9) | 0.5796 (3) | 0.0306 (4) | |
C2 | 0.8897 (5) | 0.59416 (9) | 0.7795 (3) | 0.0360 (4) | |
H2 | 0.838664 | 0.549800 | 0.825466 | 0.043* | |
C3 | 1.0479 (5) | 0.70963 (10) | 0.7216 (3) | 0.0388 (5) | |
H3 | 1.124522 | 0.755015 | 0.731394 | 0.047* | |
C4 | 0.6933 (5) | 0.57919 (9) | 0.4057 (3) | 0.0350 (4) | |
N1 | 0.9271 (4) | 0.68396 (9) | 0.5450 (3) | 0.0400 (4) | |
N2 | 0.5794 (5) | 0.54939 (9) | 0.2660 (3) | 0.0450 (4) | |
S1 | 1.06029 (11) | 0.65664 (2) | 0.93452 (7) | 0.0367 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0280 (7) | 0.0334 (9) | 0.0306 (9) | 0.0004 (7) | 0.0030 (6) | 0.0000 (6) |
C2 | 0.0424 (10) | 0.0352 (9) | 0.0304 (9) | 0.0020 (7) | 0.0011 (7) | 0.0000 (7) |
C3 | 0.0400 (9) | 0.0378 (9) | 0.0383 (11) | −0.0060 (7) | −0.0022 (8) | 0.0015 (7) |
C4 | 0.0381 (9) | 0.0364 (9) | 0.0305 (9) | −0.0020 (7) | 0.0040 (7) | 0.0031 (7) |
N1 | 0.0480 (10) | 0.0372 (10) | 0.0346 (9) | −0.0069 (6) | −0.0029 (7) | 0.0049 (6) |
N2 | 0.0559 (10) | 0.0455 (9) | 0.0336 (9) | −0.0102 (8) | 0.0000 (7) | −0.0022 (7) |
S1 | 0.0380 (3) | 0.0426 (3) | 0.0294 (3) | 0.00213 (16) | −0.0020 (2) | −0.00236 (15) |
C1—C2 | 1.358 (3) | C3—N1 | 1.302 (3) |
C1—N1 | 1.376 (3) | C3—S1 | 1.7089 (19) |
C1—C4 | 1.441 (3) | C3—H3 | 0.9500 |
C2—S1 | 1.7024 (19) | C4—N2 | 1.141 (3) |
C2—H2 | 0.9500 | ||
C2—C1—N1 | 116.58 (16) | N1—C3—S1 | 115.85 (15) |
C2—C1—C4 | 124.71 (17) | N1—C3—H3 | 122.1 |
N1—C1—C4 | 118.70 (16) | S1—C3—H3 | 122.1 |
C1—C2—S1 | 109.13 (14) | N2—C4—C1 | 178.96 (19) |
C1—C2—H2 | 125.4 | C3—N1—C1 | 108.81 (16) |
S1—C2—H2 | 125.4 | C2—S1—C3 | 89.62 (9) |
N1—C1—C2—S1 | −0.4 (2) | C4—C1—N1—C3 | 179.24 (16) |
C4—C1—C2—S1 | −179.26 (14) | C1—C2—S1—C3 | 0.28 (15) |
S1—C3—N1—C1 | −0.1 (2) | N1—C3—S1—C2 | −0.12 (16) |
C2—C1—N1—C3 | 0.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N2i | 0.95 | 2.59 | 3.374 (2) | 140 |
C3—H3···N1ii | 0.95 | 2.57 | 3.257 (2) | 129 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, −y+3/2, z+1/2. |
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. II, S1–S19. CrossRef Web of Science Google Scholar
Augustine, J. K., Atta, R. N., Ramappa, B. K. & Boodappa, C. (2009). Synlett, pp. 3378–3382. CrossRef Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.