metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Bis[8-(benzyl­sulfan­yl)quinoline-κ2N,S]di­chlorido­cobalt(II)

crossmark logo

aDepartment of Applied Chemistry, Graduate School of Engineering, Osaka, Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
*Correspondence e-mail: skodama@chem.osakafu-u.ac.jp

Edited by M. Zeller, Purdue University, USA (Received 21 September 2021; accepted 23 September 2021; online 4 October 2021)

The title di­chloro­cobalt(II) complex, trans-[CoCl2(1)2] [1 = 8-(benzyl­sulfanyl)­quinoline, C16H13NS], has a central CoII atom (site symmetry [\overline1]) that exhibits a distorted octa­hedral coordination geometry and is coordinated by two N and two S atoms from the bidentate N,S-ligand (1) situated in an equatorial plane and two Cl atoms in the axial positions. Complexes are linked by weak inter­molecular C—H⋯π inter­actions between the 8-(benzyl­sulfanyl)­quinoline ligands, forming a chain extending along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Di­chlorido­cobalt(II) complexes with homo donor ligands (e.g., multidentate nitro­gen ligands) have been widely used in catalytic applications (Ma et al., 2014[Ma, J., Feng, C., Wang, S., Zhao, K.-Q., Sun, W.-H., Redshaw, C. & Solan, G. A. (2014). Inorg. Chem. Front. 1, 14-34.]; Ai et al., 2019[Ai, W., Zhong, R., Liu, X. & Liu, Q. (2019). Chem. Rev. 119, 2876-2953.]; Guo et al., 2021[Guo, J., Cheng, Z., Chen, J., Chen, X. & Lu, Z. (2021). Acc. Chem. Res. 54, 2701-2716.]). Di­chlorido­cobalt(II) complexes with hetero donor ligands (e.g., nitro­gen- and sulfur-containing multidentate ligands) also exhibit inter­esting catalytic activities, e.g. in the oxidation reaction of n-octane (Soobramoney et al., 2014[Soobramoney, L., Bala, M. D. & Friedrich, H. B. (2014). Dalton Trans. 43, 15968-15978.]) and in the photochemical-driven hydrogen evolution from water (Lei et al., 2018[Lei, J.-M., Luo, S.-P. & Zhan, S.-Z. (2018). J. Photochem. Photobiol. Chem. 364, 650-656.]); however, they are still limited in number. Herein, we report the structure determination of a new di­chlorido­cobalt(II) complex 2 with 8-(benzyl­sulfanyl)­quinoline (1) as an N,S-ligand (Kita et al., 2002[Kita, M., Abiko, S., Fuyuhiro, A., Yamanari, K., Murata, K. & Yamashita, S. (2002). Polyhedron, 21, 843-848.]) by single-crystal X-ray analysis.

As presented in Fig. 1[link], complex 2 exhibits a distorted octa­hedral coordination geometry. The central CoII atom, located on a crystallographic center of inversion, is coordinated by two N and two S atoms from two symmetry-equivalent ligands 1 situated in the equatorial plane and two Cl atoms in the axial positions. The Co—N [2.1543 (17) Å] and Co—S [2.4856 (5) Å] bond lengths are within the range of those found in di­chlorido­cobalt(II) complexes with a nitro­gen- and sulfur-containing multidentate ligand (Soobramoney et al., 2014[Soobramoney, L., Bala, M. D. & Friedrich, H. B. (2014). Dalton Trans. 43, 15968-15978.]; Lei et al., 2018[Lei, J.-M., Luo, S.-P. & Zhan, S.-Z. (2018). J. Photochem. Photobiol. Chem. 364, 650-656.]). In addition, weak inter­molecular C—H⋯π inter­actions between the 8-(benzyl­sulfanyl)­quinoline ligands are observed in the crystal packing of 2 (Karle et al., 2007[Karle, I. L., Butcher, R. J., Wolak, M. A., da Silva Filho, D. A., Uchida, M., Brédas, J.-L. & Kafafi, Z. H. (2007). J. Phys. Chem. C, 111, 9543-9547.]), forming a chain along the a-axis direction (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯Cg2i 0.95 2.89 3.575 (2) 131
Symmetry code: (i) [-x, -y, -z].
[Figure 1]
Figure 1
The mol­ecular structure of 2 with atom numbering. Dispacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. [Symmetry code: (i) 1 − x, 1 − y, 1 − z.]
[Figure 2]
Figure 2
Crystal packing of 2 viewed along the c axis.

Synthesis and crystallization

CoCl2·6H2O (18.5 mg, 0.078 mmol) and 8-(benzyl­sulfanyl)­quinoline (1; 45.5 mg, 0.18 mmol) in EtOH (20 mL) were heated at reflux overnight. The solvents were evaporated from the resulting suspension, and the residue was suspended in Et2O followed by filtration to obtain a yellow–green powder. The powder was dissolved in EtOH, and Et2O was diffused into the resulting solution to give 2 (4.5 mg, 9% yield) as yellow crystals. M.p. 150.2–150.8°C; IR (KBr, cm−1) 3045, 2998, 1595, 1493, 1452, 1371, 1312, 1240, 994, 833.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [CoCl2(C16H13NS)2]
Mr 632.50
Crystal system, space group Monoclinic, P21/c
Temperature (K) 103
a, b, c (Å) 8.00610 (17), 13.5141 (3), 13.3349 (3)
β (°) 105.714 (7)
V3) 1388.85 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.99
Crystal size (mm) 0.09 × 0.04 × 0.02
 
Data collection
Diffractometer Rigaku VariMax RAPID
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR and RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.780, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 22957, 3191, 2814
Rint 0.034
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.18
No. of reflections 3191
No. of parameters 178
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.23
Computer programs: RAPID-AUTO (Rigaku, 1995[Rigaku (1995). ABSCOR and RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: RAPID-AUTO (Rigaku, 1995); cell refinement: RAPID-AUTO (Rigaku, 1995); data reduction: RAPID-AUTO (Rigaku, 1995); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

trans-Bis[8-(benzylsulfanyl)quinoline-κ2N,S]dichloridocobalt(II) top
Crystal data top
[CoCl2(C16H13NS)2]F(000) = 650
Mr = 632.50Dx = 1.512 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 8.00610 (17) ÅCell parameters from 18593 reflections
b = 13.5141 (3) Åθ = 2.2–27.5°
c = 13.3349 (3) ŵ = 0.99 mm1
β = 105.714 (7)°T = 103 K
V = 1388.85 (7) Å3Prism, colourless
Z = 20.09 × 0.04 × 0.02 mm
Data collection top
Rigaku VariMax RAPID
diffractometer
3191 independent reflections
Radiation source: rotating anode X-ray generator, MicroMax 0072814 reflections with I > 2σ(I)
Multi-layer mirror optics monochromatorRint = 0.034
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω scansh = 910
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
k = 1717
Tmin = 0.780, Tmax = 1.000l = 1717
22957 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0232P)2 + 1.8429P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
3191 reflectionsΔρmax = 0.44 e Å3
178 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were positioned geometrically and constrained to ride on their parent atoms with C—H and CH2 bond distances of 0.95 and 0.99 Å. Uiso(H) values were set to 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.5000000.5000000.5000000.01456 (10)
Cl10.75883 (6)0.50541 (4)0.64296 (4)0.01844 (12)
S10.64306 (7)0.43574 (4)0.36942 (4)0.01617 (12)
N10.5642 (2)0.63898 (13)0.44057 (13)0.0157 (3)
C10.5280 (3)0.72466 (16)0.47761 (17)0.0182 (4)
H10.4794810.7234450.5352140.022*
C20.5564 (3)0.81773 (16)0.43738 (18)0.0203 (4)
H20.5275150.8769680.4672430.024*
C30.6260 (3)0.82107 (16)0.35484 (17)0.0205 (4)
H30.6462460.8828910.3263110.025*
C40.6677 (3)0.73190 (16)0.31209 (16)0.0172 (4)
C50.7444 (3)0.73145 (17)0.22805 (17)0.0211 (4)
H50.7658340.7920800.1976520.025*
C60.7877 (3)0.64363 (17)0.19073 (17)0.0227 (5)
H60.8413010.6435610.1352860.027*
C70.7535 (3)0.55343 (17)0.23382 (17)0.0219 (5)
H70.7812980.4929700.2057530.026*
C80.6802 (3)0.55136 (15)0.31611 (16)0.0173 (4)
C90.6357 (3)0.64133 (15)0.35748 (16)0.0159 (4)
C100.8657 (3)0.39310 (16)0.42715 (18)0.0196 (4)
H10A0.9366440.4035950.3777370.023*
H10B0.9187440.4306570.4916540.023*
C110.8590 (3)0.28453 (16)0.45155 (17)0.0183 (4)
C120.8020 (3)0.21507 (17)0.37238 (19)0.0231 (5)
H120.7692550.2357790.3016570.028*
C130.7929 (3)0.11537 (17)0.3968 (2)0.0271 (5)
H130.7524540.0682360.3427990.033*
C140.8429 (3)0.08496 (17)0.4998 (2)0.0280 (5)
H140.8366820.0169310.5163900.034*
C150.9017 (3)0.15333 (18)0.5785 (2)0.0277 (5)
H150.9384610.1320490.6490120.033*
C160.9073 (3)0.25348 (17)0.55467 (19)0.0230 (5)
H160.9441550.3005900.6090580.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0166 (2)0.01190 (19)0.01521 (19)0.00096 (15)0.00437 (15)0.00003 (15)
Cl10.0184 (2)0.0177 (2)0.0182 (2)0.00075 (19)0.00324 (19)0.00025 (19)
S10.0184 (2)0.0127 (2)0.0175 (2)0.00018 (19)0.00518 (19)0.00035 (19)
N10.0154 (8)0.0149 (8)0.0161 (8)0.0004 (7)0.0030 (7)0.0004 (7)
C10.0182 (10)0.0162 (10)0.0196 (10)0.0017 (8)0.0044 (8)0.0016 (8)
C20.0204 (10)0.0139 (10)0.0251 (11)0.0007 (8)0.0034 (9)0.0012 (8)
C30.0194 (10)0.0151 (10)0.0235 (11)0.0016 (8)0.0001 (9)0.0039 (8)
C40.0161 (10)0.0166 (10)0.0164 (10)0.0009 (8)0.0001 (8)0.0034 (8)
C50.0235 (11)0.0207 (11)0.0175 (10)0.0022 (9)0.0028 (8)0.0064 (8)
C60.0270 (11)0.0242 (11)0.0184 (11)0.0002 (9)0.0088 (9)0.0045 (9)
C70.0262 (11)0.0206 (11)0.0203 (10)0.0032 (9)0.0084 (9)0.0014 (9)
C80.0192 (10)0.0161 (10)0.0159 (10)0.0006 (8)0.0035 (8)0.0018 (8)
C90.0154 (9)0.0151 (9)0.0157 (10)0.0000 (8)0.0014 (8)0.0020 (8)
C100.0168 (10)0.0161 (10)0.0260 (11)0.0003 (8)0.0061 (9)0.0018 (9)
C110.0151 (10)0.0155 (10)0.0255 (11)0.0022 (8)0.0075 (8)0.0014 (8)
C120.0289 (12)0.0191 (11)0.0244 (11)0.0021 (9)0.0127 (9)0.0006 (9)
C130.0325 (13)0.0173 (11)0.0356 (13)0.0002 (9)0.0164 (11)0.0045 (10)
C140.0271 (12)0.0156 (11)0.0441 (15)0.0024 (9)0.0142 (11)0.0061 (10)
C150.0226 (11)0.0262 (12)0.0321 (13)0.0004 (10)0.0038 (10)0.0108 (10)
C160.0190 (10)0.0216 (11)0.0265 (12)0.0010 (9)0.0032 (9)0.0029 (9)
Geometric parameters (Å, º) top
Co1—Cl1i2.4070 (5)C6—C71.406 (3)
Co1—Cl12.4070 (5)C7—H70.9500
Co1—S12.4856 (5)C7—C81.378 (3)
Co1—S1i2.4856 (5)C9—C41.419 (3)
Co1—N1i2.1542 (17)C9—C81.420 (3)
Co1—N12.1543 (17)C10—H10A0.9900
S1—C81.775 (2)C10—H10B0.9900
S1—C101.832 (2)C11—C101.507 (3)
N1—C11.322 (3)C11—C121.394 (3)
N1—C91.378 (3)C11—C161.389 (3)
C1—H10.9500C12—H120.9500
C2—C11.410 (3)C13—C121.393 (3)
C2—H20.9500C13—H130.9500
C2—C31.362 (3)C14—C131.385 (4)
C3—H30.9500C14—H140.9500
C4—C31.411 (3)C14—C151.382 (4)
C4—C51.417 (3)C15—H150.9500
C5—H50.9500C16—C151.394 (3)
C5—C61.367 (3)C16—H160.9500
C6—H60.9500
Cl1i—Co1—Cl1180.0C5—C6—H6119.8
Cl1—Co1—S1i84.016 (17)C5—C6—C7120.5 (2)
Cl1—Co1—S195.984 (17)C7—C6—H6119.8
Cl1i—Co1—S184.015 (17)C6—C7—H7119.5
Cl1i—Co1—S1i95.984 (17)C8—C7—C6121.0 (2)
S1i—Co1—S1180.0C8—C7—H7119.5
N1—Co1—Cl1i88.58 (5)C7—C8—S1119.38 (17)
N1i—Co1—Cl1i91.42 (5)C7—C8—C9119.84 (19)
N1i—Co1—Cl188.58 (5)C9—C8—S1120.78 (16)
N1—Co1—Cl191.42 (5)N1—C9—C4121.66 (19)
N1—Co1—S181.12 (5)N1—C9—C8119.66 (18)
N1i—Co1—S1i81.12 (5)C4—C9—C8118.68 (19)
N1i—Co1—S198.88 (5)S1—C10—H10A110.1
N1—Co1—S1i98.88 (5)S1—C10—H10B110.1
N1i—Co1—N1180.00 (9)H10A—C10—H10B108.4
C8—S1—Co197.58 (7)C11—C10—S1108.03 (15)
C8—S1—C10101.30 (10)C11—C10—H10A110.1
C10—S1—Co1113.32 (8)C11—C10—H10B110.1
C1—N1—Co1121.86 (14)C12—C11—C10121.0 (2)
C1—N1—C9117.47 (18)C16—C11—C10119.4 (2)
C9—N1—Co1120.55 (13)C16—C11—C12119.5 (2)
N1—C1—H1117.8C11—C12—H12119.9
N1—C1—C2124.4 (2)C13—C12—C11120.1 (2)
C2—C1—H1117.8C13—C12—H12119.9
C1—C2—H2120.6C12—C13—H13120.0
C3—C2—C1118.7 (2)C14—C13—C12120.0 (2)
C3—C2—H2120.6C14—C13—H13120.0
C2—C3—H3120.3C13—C14—H14119.9
C2—C3—C4119.4 (2)C15—C14—C13120.2 (2)
C4—C3—H3120.3C15—C14—H14119.9
C3—C4—C5121.6 (2)C14—C15—H15120.0
C3—C4—C9118.32 (19)C14—C15—C16120.1 (2)
C5—C4—C9120.0 (2)C16—C15—H15120.0
C4—C5—H5120.0C11—C16—C15120.1 (2)
C6—C5—C4119.9 (2)C11—C16—H16119.9
C6—C5—H5120.0C15—C16—H16119.9
Co1—S1—C8—C7177.06 (17)C6—C7—C8—S1178.85 (18)
Co1—S1—C8—C93.13 (18)C6—C7—C8—C91.0 (3)
Co1—S1—C10—C1191.07 (15)C8—S1—C10—C11165.48 (15)
Co1—N1—C1—C2175.63 (16)C8—C9—C4—C3178.91 (19)
Co1—N1—C9—C4175.41 (15)C8—C9—C4—C50.8 (3)
Co1—N1—C9—C85.1 (3)C9—N1—C1—C20.5 (3)
N1—C9—C4—C30.6 (3)C9—C4—C3—C20.2 (3)
N1—C9—C4—C5178.78 (19)C9—C4—C5—C60.0 (3)
N1—C9—C8—S10.5 (3)C10—S1—C8—C767.23 (19)
N1—C9—C8—C7179.27 (19)C10—S1—C8—C9112.57 (18)
C1—N1—C9—C40.7 (3)C10—C11—C12—C13178.5 (2)
C1—N1—C9—C8178.79 (19)C10—C11—C16—C15180.0 (2)
C1—C2—C3—C40.1 (3)C11—C16—C15—C142.1 (4)
C3—C2—C1—N10.1 (3)C12—C11—C10—S164.7 (2)
C3—C4—C5—C6178.1 (2)C12—C11—C16—C151.2 (3)
C4—C5—C6—C71.3 (3)C13—C14—C15—C161.5 (4)
C4—C9—C8—S1179.91 (16)C14—C13—C12—C110.9 (4)
C4—C9—C8—C70.3 (3)C15—C14—C13—C120.0 (4)
C5—C4—C3—C2178.3 (2)C16—C11—C10—S1114.0 (2)
C5—C6—C7—C81.8 (4)C16—C11—C12—C130.3 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C16—H16···Cg2ii0.952.893.575 (2)131
Symmetry code: (ii) x, y, z.
 

Acknowledgements

A part of this work was conducted at the Nara Institute of Science and Technology (NAIST), supported by the Nanotechnology Platform Program (Synthesis of Mol­ecules and Materials) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. 21H01977; grant No. 19H02791; grant No. 19H02756); Iketani Science and Technology Foundation (grant No. 0331022-A).

References

First citationAi, W., Zhong, R., Liu, X. & Liu, Q. (2019). Chem. Rev. 119, 2876–2953.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuo, J., Cheng, Z., Chen, J., Chen, X. & Lu, Z. (2021). Acc. Chem. Res. 54, 2701–2716.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKarle, I. L., Butcher, R. J., Wolak, M. A., da Silva Filho, D. A., Uchida, M., Brédas, J.-L. & Kafafi, Z. H. (2007). J. Phys. Chem. C, 111, 9543–9547.  Web of Science CSD CrossRef CAS Google Scholar
First citationKita, M., Abiko, S., Fuyuhiro, A., Yamanari, K., Murata, K. & Yamashita, S. (2002). Polyhedron, 21, 843–848.  Web of Science CSD CrossRef CAS Google Scholar
First citationLei, J.-M., Luo, S.-P. & Zhan, S.-Z. (2018). J. Photochem. Photobiol. Chem. 364, 650–656.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, J., Feng, C., Wang, S., Zhao, K.-Q., Sun, W.-H., Redshaw, C. & Solan, G. A. (2014). Inorg. Chem. Front. 1, 14–34.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1995). ABSCOR and RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoobramoney, L., Bala, M. D. & Friedrich, H. B. (2014). Dalton Trans. 43, 15968–15978.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds