metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(μ-cobaltoceniumseleno­late-1:2κ2Se:Se)bis­[bis­­(cobaltoceniumseleno­late-κSe)mercury(II)] tetra­kis­(hexa­fluorido­phosphate) aceto­nitrile disolvate

crossmark logo

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80-82, 6020 Innsbruck, Austria
*Correspondence e-mail: benno.bildstein@uibk.ac.at

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 September 2021; accepted 19 October 2021; online 21 October 2021)

The title compound, [Co6Hg2(C5H5)6(C5H4Se)6](PF6)4·2CH3CN or [Hg2(CcSe)6][PF6]4·2CH3CN (Cc = C10H9Co), was obtained as bright-orange needle-shaped crystals. It is a salt containing a tetra­cationic dimercury species with six cobaltoceniumseleno­late ligands, four hexa­fluorido­phosphate counter-ions and two aceto­nitrile solvent mol­ecules. The cation (point group [\overline{1}]) has a bi­tetra­hedral {Hg2Se6} core with two bridging Se atoms and four terminal Se atoms.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Zwitterionic cobaltoceniumseleno­late is a versatile ligand for forming organometallic coordination compounds (Vanicek et al., 2018[Vanicek, S., Podewitz, M., Hassenrück, C., Pittracher, M., Kopacka, H., Wurst, K., Müller, T., Liedl, K. R., Winter, R. F. & Bildstein, B. (2018). Chem. Eur. J. 24, 3165-3169.]). The title salt, [Hg2(CcSe)6][PF6]4·2CH3CN (Cc = C10H9Co), was synthesized starting from the recently reported cobaltocenium seleno­late gold(I) tri­phenyl­phosphine hexa­fluorido­phosphate (Menia et al., 2021[Menia, D., Kopacka, H., Wurst, K., Müller, T., Lippmann, P., Ott, I. & Bildstein, B. (2021). Eur. J. Inorg. Chem. pp. 2784-2786.]) using elemental mercury in dry ortho-dichlorbenzene. It was crystallized as an aceto­nitrile solvate showing positional disorder of the solvent mol­ecule and of one of the PF6 anions.

The cation lies about a crystallographic inversion center and has a bi­tetra­hedral {Hg2Se6} core formed by edge-sharing of two HgSe4 tetra­hedra and has two bridging Se2 atoms and four terminal Se1 and Se3 atoms (Fig. 1[link]). The Se2—Hg1—Se2i angle between the bridging Se atoms is 91.509 (10)°, resulting in an Hg1—Se1—Hg1i angle of 88.491 (10)° [symmetry code: (i) –x + 1, –y + 1, –z + 1]. The four Cipso—Se—Hg1 angles are slightly compressed, ranging from 98.79 (7) to 106.04 (7)°, as was also observed for cobaltocenium seleno­late gold complexes (Menia et al., 2021[Menia, D., Kopacka, H., Wurst, K., Müller, T., Lippmann, P., Ott, I. & Bildstein, B. (2021). Eur. J. Inorg. Chem. pp. 2784-2786.]). The terminal Se—Hg1 bond lengths are 2.5476 (3) (Se1—Hg1) and 2.5451 (3) Å (Se3—Hg1), whereas the bridging Se2—Hg1 bond lengths differ considerably with 2.6254 (3) Å for Se2—Hg1 and 3.1537 (4) for Se2—Hg1i. With an average Se—C distance of 1.89 Å between the seleno­late and the cobaltocenium residues, these bond lengths are comparable with other recently reported cobaltocenium seleno­lates (Menia et al., 2021[Menia, D., Kopacka, H., Wurst, K., Müller, T., Lippmann, P., Ott, I. & Bildstein, B. (2021). Eur. J. Inorg. Chem. pp. 2784-2786.]).

[Figure 1]
Figure 1
The mol­ecular entities of the title salt, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms and solvent mol­ecules were omitted for clarity. Non-labeled atoms are generated by symmetry operation −x + 1, −y + 1, −z + 1.

The sole comparable compound found in the literature is [Yb(C4H10O2)4][Hg2(C6H5Se)6] (Romanelli et al., 2008[Romanelli, M. D., Emge, T. J. & Brennan, J. G. (2008). Acta Cryst. E64, m987-m988.]). Here, instead of the cationic cobaltocenium species the selenium atoms are bonded to phenyl residues, which makes the Hg species a dianion. With an average Se—Hg bond length of 2.81 Å in the title compound, bonds are elongated in comparison with the dianion of Romanelli et al. (2.68 Å).

Since the packing of the mol­ecules (Fig. 2[link]) shows no remarkable hydrogen bonding or π-stacking inter­actions, the cohesion within the crystal structure is dominated by van der Waals forces.

[Figure 2]
Figure 2
Mol­ecular packing in the title compound with displacement ellipsoids drawn at the 50% probability level in views along the a (left), b (center) and c (right) axes. Hydrogen atoms, anions and solvent mol­ecules are omitted for clarity.

Synthesis and crystallization

In a 50 ml Schlenk flask, 11.1 mg of [(CcSe)(PPh3)Au]PF6 (1 eq., 0.013 mmol) were suspended in 5 ml of dry ortho-di­chloro­benzene. Approximately 0.1 ml of liquid mercury was added and the mixture stirred for 48 h. This reaction was originally carried out with the aim of removing selenium from the desired compound. The bright-orange precipitate was filtered off, washed with two portions of 10 ml of diethyl ether and dissolved in 5 ml of aceto­nitrile. This orange solution was concentrated to about 1 ml. Bright-orange needle-shaped crystals were obtained by diffusion-crystallization with diethyl ether at 253 K. 1H NMR (300 MHz, CD3CN): δ 5.70 (t, J = 2.0 Hz, 2H), 5.51 (t, J = 2.0 Hz, 2H), 5.46 (s, 5H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. One of the two PF6 anions (P2) shows disorder of four fluorine atoms over two sets of sites in a 2:1 ratio for F7, F8, F9, F10 and F7A, F8A, F9A, F10A. Another positional disorder occurs for the complete aceto­nitrile solvent mol­ecule in a 1:1 ratio. All disordered atoms were refined with anisotropic displacement parameters without further restraints, but with fixed occupation factors.

Table 1
Experimental details

Crystal data
Chemical formula [Co6Hg2(C5H5)6(C5H4Se)6](PF6)4·2C2H3N
Mr 2665.54
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 183
a, b, c (Å) 10.2933 (8), 14.3271 (12), 15.1087 (12)
α, β, γ (°) 109.744 (3), 109.764 (2), 95.306 (3)
V3) 1919.1 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 8.28
Crystal size (mm) 0.18 × 0.09 × 0.04
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 100
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.574, 0.837
No. of measured, independent and observed [I > 2σ(I)] reflections 69321, 7546, 7005
Rint 0.038
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.042, 1.04
No. of reflections 7546
No. of parameters 553
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.77, −0.80
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(µ-cobaltoceniumselenolate-1:2κ2Se:Se)bis[bis(cobaltoceniumselenolate-κSe)mercury(II)] tetrakis(hexafluoridophosphate) acetonitrile disolvate top
Crystal data top
[Co6Hg2(C5H5)6(C5H4Se)6](PF6)4·2C2H3NZ = 1
Mr = 2665.54F(000) = 1260
Triclinic, P1Dx = 2.306 Mg m3
a = 10.2933 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.3271 (12) ÅCell parameters from 9672 reflections
c = 15.1087 (12) Åθ = 2.3–26.4°
α = 109.744 (3)°µ = 8.28 mm1
β = 109.764 (2)°T = 183 K
γ = 95.306 (3)°Prism, orange
V = 1919.1 (3) Å30.18 × 0.09 × 0.04 mm
Data collection top
Bruker D8 QUEST PHOTON 100
diffractometer
7546 independent reflections
Radiation source: Incoatec Microfocus7005 reflections with I > 2σ(I)
Multi layered optics monochromatorRint = 0.038
Detector resolution: 10.4 pixels mm-1θmax = 26.0°, θmin = 2.2°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1717
Tmin = 0.574, Tmax = 0.837l = 1818
69321 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.017 w = 1/[σ2(Fo2) + (0.0197P)2 + 1.8079P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.042(Δ/σ)max = 0.003
S = 1.04Δρmax = 0.77 e Å3
7546 reflectionsΔρmin = 0.80 e Å3
553 parametersExtinction correction: SHELXL2014/7 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00230 (10)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. C-bound hydrogen atoms were placed in calculated positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and a C—H distance of 0.95 Å for aromatic H atoms. Positinal disorder of same flourine atoms at P2 in ratio 2:1 for F7-F10 : F7a-F10a and for solvent acetonitrile C32-C31-N1 : C32a-C31a-N1a in ratio 1:1, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Hg10.31028 (2)0.47867 (2)0.51180 (2)0.02781 (4)
Se10.32480 (3)0.45328 (2)0.67355 (2)0.02603 (6)
Se20.40933 (3)0.35008 (2)0.39551 (2)0.02572 (6)
Se30.13272 (3)0.56435 (2)0.42414 (2)0.02556 (6)
Co10.51168 (3)0.26149 (2)0.69145 (3)0.02302 (8)
Co20.21259 (4)0.23319 (2)0.12527 (3)0.02438 (8)
Co30.18455 (3)0.79863 (2)0.63293 (3)0.02143 (7)
C10.4091 (3)0.1559 (2)0.7209 (3)0.0462 (8)
H10.40180.16600.78430.055*
C20.5175 (3)0.1204 (2)0.6918 (3)0.0416 (7)
H20.59540.10180.73200.050*
C30.4906 (4)0.1174 (2)0.5936 (3)0.0482 (8)
H30.54710.09670.55540.058*
C40.3634 (4)0.1508 (2)0.5614 (3)0.0580 (11)
H40.31970.15660.49770.070*
C50.3142 (3)0.1739 (2)0.6405 (3)0.0519 (10)
H50.23080.19760.63950.062*
C60.5531 (3)0.3958 (2)0.8092 (2)0.0312 (6)
H60.51360.40810.85940.037*
C70.6793 (3)0.3613 (2)0.8153 (2)0.0337 (6)
H70.73940.34730.87030.040*
C80.6998 (3)0.3516 (2)0.7255 (2)0.0312 (6)
H80.77630.32970.70930.037*
C90.5863 (3)0.38023 (19)0.6631 (2)0.0267 (5)
H90.57370.38010.59780.032*
C100.4948 (3)0.40899 (17)0.71494 (19)0.0233 (5)
C110.1956 (3)0.0996 (2)0.1453 (2)0.0393 (7)
H110.23630.09150.20800.047*
C120.2595 (3)0.0951 (2)0.0760 (2)0.0402 (7)
H120.35110.08310.08350.048*
C130.1648 (4)0.1113 (2)0.0067 (2)0.0411 (7)
H130.18160.11260.06440.049*
C140.0411 (3)0.1252 (2)0.0110 (2)0.0438 (8)
H140.04070.13710.03280.053*
C150.0598 (3)0.1183 (2)0.1054 (3)0.0437 (8)
H150.00690.12500.13650.052*
C160.3985 (3)0.34072 (19)0.1954 (2)0.0338 (6)
H160.49040.32770.20720.041*
C170.3071 (4)0.3502 (2)0.1062 (2)0.0482 (9)
H170.32760.34540.04830.058*
C180.1804 (4)0.3679 (2)0.1184 (2)0.0474 (9)
H180.10100.37750.07020.057*
C190.1920 (3)0.36898 (19)0.2153 (2)0.0323 (6)
H190.12110.37800.24250.039*
C200.3288 (3)0.35406 (17)0.26440 (19)0.0241 (5)
C210.3979 (3)0.8491 (2)0.6884 (3)0.0446 (8)
H210.46630.81120.70610.053*
C220.3452 (3)0.9115 (2)0.7541 (2)0.0368 (7)
H220.37130.92370.82430.044*
C230.2474 (3)0.9533 (2)0.6989 (3)0.0456 (8)
H230.19530.99880.72490.055*
C240.2399 (4)0.9162 (3)0.5986 (3)0.0642 (12)
H240.18180.93180.54420.077*
C250.3341 (4)0.8515 (3)0.5931 (3)0.0603 (12)
H250.35090.81560.53390.072*
C260.1367 (3)0.65878 (18)0.6361 (2)0.0279 (6)
H260.20270.62550.66690.033*
C270.0690 (3)0.7278 (2)0.6860 (2)0.0373 (7)
H270.08050.74760.75540.045*
C280.0186 (3)0.7617 (2)0.6146 (3)0.0439 (8)
H280.07670.80810.62750.053*
C290.0046 (3)0.7144 (2)0.5202 (2)0.0350 (6)
H290.05000.72520.45940.042*
C300.0896 (3)0.64768 (18)0.5321 (2)0.0242 (5)
P10.94494 (10)0.11818 (8)0.70615 (7)0.0506 (2)
F10.9016 (3)0.1795 (2)0.79546 (19)0.0935 (9)
F20.9873 (3)0.0561 (2)0.61544 (18)0.0837 (8)
F30.7858 (3)0.0741 (3)0.6318 (2)0.1244 (14)
F41.1077 (3)0.1638 (2)0.7786 (2)0.0832 (7)
F50.9538 (3)0.0274 (2)0.7437 (2)0.0931 (9)
F60.9436 (4)0.2112 (3)0.6708 (3)0.1183 (12)
P20.65318 (11)0.20499 (8)1.02043 (7)0.0507 (2)
F110.5820 (5)0.2828 (3)0.9804 (3)0.1310 (14)
F120.7338 (3)0.13036 (18)1.06292 (17)0.0688 (6)
N10.6305 (9)0.5411 (7)1.0496 (6)0.077 (2)0.5
C310.7429 (13)0.5419 (11)1.0966 (8)0.058 (3)0.5
C320.8832 (15)0.5370 (17)1.1525 (14)0.077 (4)0.5
H32A0.87950.47391.16440.115*0.5
H32B0.92480.59571.21830.115*0.5
H32C0.94150.53811.11310.115*0.5
N1A0.9757 (6)0.5167 (5)1.0373 (5)0.0523 (14)0.5
C31A0.9058 (7)0.5274 (6)1.0817 (5)0.0459 (15)0.5
C32A0.8167 (17)0.5410 (13)1.1386 (14)0.087 (6)0.5
H32D0.72070.49901.09380.130*0.5
H32E0.81320.61291.16480.130*0.5
H32F0.85560.52041.19610.130*0.5
F70.6905 (9)0.1622 (8)0.9240 (5)0.118 (3)0.67
F80.6295 (11)0.2495 (9)1.1213 (8)0.082 (3)0.67
F90.5086 (7)0.1332 (5)0.9654 (5)0.0956 (18)0.67
F100.8129 (6)0.2804 (5)1.0832 (6)0.105 (2)0.67
F7A0.7705 (17)0.2628 (12)1.0115 (16)0.121 (5)0.33
F8A0.5165 (16)0.1357 (19)1.0199 (17)0.168 (9)0.33
F9A0.609 (2)0.1161 (9)0.9079 (10)0.121 (7)0.33
F10A0.668 (3)0.281 (2)1.1255 (19)0.154 (13)0.33
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.03160 (6)0.02915 (6)0.02704 (6)0.01267 (4)0.01398 (4)0.01231 (4)
Se10.02882 (13)0.02585 (13)0.02935 (14)0.00876 (10)0.01531 (11)0.01336 (11)
Se20.02821 (13)0.02356 (13)0.02013 (13)0.00917 (10)0.00767 (10)0.00348 (10)
Se30.02908 (13)0.02367 (12)0.02107 (13)0.00690 (10)0.00785 (10)0.00730 (10)
Co10.02233 (16)0.01826 (16)0.02694 (18)0.00221 (12)0.00697 (14)0.01050 (14)
Co20.02932 (18)0.01654 (16)0.01857 (17)0.00271 (13)0.00503 (14)0.00182 (13)
Co30.02007 (16)0.01581 (15)0.02571 (18)0.00371 (12)0.00727 (14)0.00689 (13)
C10.0466 (18)0.0297 (15)0.071 (2)0.0005 (13)0.0282 (17)0.0274 (16)
C20.0366 (16)0.0237 (14)0.064 (2)0.0061 (12)0.0136 (15)0.0233 (14)
C30.057 (2)0.0213 (14)0.054 (2)0.0030 (13)0.0219 (17)0.0022 (14)
C40.059 (2)0.0277 (16)0.047 (2)0.0104 (15)0.0151 (18)0.0080 (15)
C50.0243 (15)0.0290 (16)0.090 (3)0.0009 (12)0.0104 (17)0.0234 (17)
C60.0413 (15)0.0252 (13)0.0229 (13)0.0037 (11)0.0104 (12)0.0079 (11)
C70.0294 (14)0.0290 (14)0.0305 (15)0.0014 (11)0.0020 (12)0.0132 (12)
C80.0223 (13)0.0301 (14)0.0419 (16)0.0020 (10)0.0085 (12)0.0202 (13)
C90.0259 (13)0.0285 (13)0.0318 (14)0.0039 (10)0.0129 (11)0.0180 (11)
C100.0254 (12)0.0158 (11)0.0250 (13)0.0003 (9)0.0073 (10)0.0072 (10)
C110.0577 (19)0.0170 (13)0.0280 (15)0.0002 (12)0.0064 (14)0.0039 (11)
C120.0337 (15)0.0198 (13)0.0475 (19)0.0063 (11)0.0087 (14)0.0024 (12)
C130.0564 (19)0.0258 (14)0.0254 (15)0.0006 (13)0.0142 (14)0.0041 (12)
C140.0368 (16)0.0258 (14)0.0384 (18)0.0021 (12)0.0049 (14)0.0017 (13)
C150.0432 (17)0.0223 (14)0.052 (2)0.0044 (12)0.0247 (15)0.0040 (13)
C160.0404 (16)0.0215 (13)0.0314 (15)0.0066 (11)0.0171 (13)0.0015 (11)
C170.083 (3)0.0272 (15)0.0290 (16)0.0053 (15)0.0226 (17)0.0083 (13)
C180.075 (2)0.0218 (14)0.0302 (16)0.0126 (15)0.0033 (16)0.0100 (12)
C190.0404 (15)0.0177 (12)0.0280 (14)0.0108 (11)0.0058 (12)0.0030 (11)
C200.0290 (13)0.0130 (11)0.0209 (12)0.0007 (9)0.0072 (10)0.0001 (9)
C210.0231 (14)0.0267 (15)0.073 (2)0.0011 (11)0.0160 (15)0.0105 (15)
C220.0359 (15)0.0291 (14)0.0299 (15)0.0080 (12)0.0041 (12)0.0064 (12)
C230.0366 (16)0.0152 (13)0.072 (2)0.0037 (11)0.0158 (16)0.0076 (14)
C240.070 (2)0.042 (2)0.054 (2)0.0220 (18)0.0121 (19)0.0341 (18)
C250.079 (3)0.0366 (18)0.053 (2)0.0262 (18)0.045 (2)0.0056 (16)
C260.0362 (14)0.0185 (12)0.0326 (15)0.0019 (10)0.0189 (12)0.0101 (11)
C270.0395 (16)0.0289 (14)0.0458 (18)0.0005 (12)0.0294 (14)0.0069 (13)
C280.0216 (14)0.0340 (15)0.061 (2)0.0054 (11)0.0183 (14)0.0007 (15)
C290.0176 (12)0.0309 (14)0.0404 (17)0.0037 (10)0.0027 (12)0.0043 (12)
C300.0208 (12)0.0166 (11)0.0290 (14)0.0013 (9)0.0090 (10)0.0041 (10)
P10.0506 (5)0.0761 (6)0.0418 (5)0.0398 (5)0.0252 (4)0.0293 (5)
F10.101 (2)0.136 (2)0.0600 (15)0.0695 (18)0.0506 (15)0.0277 (16)
F20.0968 (18)0.132 (2)0.0508 (13)0.0788 (17)0.0438 (13)0.0416 (15)
F30.0510 (15)0.205 (4)0.076 (2)0.0419 (19)0.0156 (14)0.014 (2)
F40.0610 (15)0.108 (2)0.0796 (18)0.0221 (14)0.0262 (13)0.0368 (16)
F50.134 (2)0.0842 (18)0.092 (2)0.0295 (17)0.0632 (19)0.0511 (16)
F60.192 (4)0.111 (2)0.102 (2)0.091 (3)0.067 (2)0.075 (2)
P20.0680 (6)0.0642 (6)0.0458 (5)0.0353 (5)0.0347 (5)0.0346 (5)
F110.204 (4)0.137 (3)0.114 (3)0.113 (3)0.071 (3)0.095 (2)
F120.0914 (17)0.0751 (15)0.0558 (13)0.0503 (13)0.0336 (13)0.0318 (12)
N10.095 (6)0.114 (6)0.053 (4)0.060 (5)0.044 (4)0.046 (4)
C310.075 (8)0.086 (6)0.041 (6)0.045 (6)0.037 (5)0.036 (5)
C320.066 (9)0.117 (9)0.063 (7)0.042 (9)0.035 (8)0.040 (6)
N1A0.046 (3)0.070 (4)0.050 (4)0.020 (3)0.020 (3)0.031 (3)
C31A0.051 (4)0.053 (4)0.035 (4)0.012 (3)0.017 (3)0.019 (3)
C32A0.103 (18)0.103 (9)0.089 (16)0.036 (15)0.077 (16)0.036 (11)
F70.150 (7)0.212 (10)0.061 (4)0.111 (6)0.079 (5)0.079 (6)
F80.104 (4)0.122 (7)0.058 (4)0.084 (4)0.056 (4)0.039 (5)
F90.069 (3)0.107 (4)0.076 (4)0.009 (3)0.009 (3)0.022 (3)
F100.081 (3)0.114 (4)0.122 (5)0.002 (3)0.019 (4)0.077 (4)
F7A0.134 (12)0.122 (11)0.199 (17)0.046 (9)0.120 (13)0.114 (14)
F8A0.070 (8)0.29 (2)0.22 (2)0.032 (10)0.076 (13)0.17 (2)
F9A0.211 (19)0.061 (6)0.050 (6)0.051 (8)0.008 (10)0.012 (5)
F10A0.25 (3)0.133 (17)0.041 (8)0.141 (19)0.021 (12)0.007 (8)
Geometric parameters (Å, º) top
Hg1—Se32.5451 (3)C12—H120.9500
Hg1—Se12.5476 (3)C13—C141.404 (5)
Hg1—Se22.6254 (3)C13—H130.9500
Hg1—Se2i3.1537 (4)C14—C151.413 (5)
Se1—C101.894 (3)C14—H140.9500
Se2—C201.895 (3)C15—H150.9500
Se2—Hg1i3.1537 (4)C16—C171.417 (5)
Se3—C301.886 (3)C16—C201.427 (4)
Co1—C62.018 (3)C16—H160.9500
Co1—C12.019 (3)C17—C181.411 (5)
Co1—C72.019 (3)C17—H170.9500
Co1—C82.024 (3)C18—C191.423 (4)
Co1—C52.029 (3)C18—H180.9500
Co1—C22.030 (3)C19—C201.426 (4)
Co1—C42.030 (3)C19—H190.9500
Co1—C32.033 (3)C21—C251.380 (5)
Co1—C92.035 (2)C21—C221.390 (4)
Co1—C102.056 (2)C21—H210.9500
Co2—C172.013 (3)C22—C231.395 (4)
Co2—C182.019 (3)C22—H220.9500
Co2—C132.023 (3)C23—C241.398 (6)
Co2—C142.030 (3)C23—H230.9500
Co2—C122.031 (3)C24—C251.405 (6)
Co2—C162.034 (3)C24—H240.9500
Co2—C152.035 (3)C25—H250.9500
Co2—C112.037 (3)C26—C271.418 (4)
Co2—C192.041 (3)C26—C301.425 (4)
Co2—C202.075 (2)C26—H260.9500
Co3—C252.006 (3)C27—C281.411 (5)
Co3—C282.008 (3)C27—H270.9500
Co3—C242.010 (3)C28—C291.422 (4)
Co3—C272.015 (3)C28—H280.9500
Co3—C292.021 (3)C29—C301.435 (4)
Co3—C212.025 (3)C29—H290.9500
Co3—C232.032 (3)P1—F31.559 (3)
Co3—C262.039 (2)P1—F11.571 (2)
Co3—C222.039 (3)P1—F41.583 (3)
Co3—C302.081 (2)P1—F51.584 (3)
C1—C51.397 (5)P1—F21.585 (2)
C1—C21.408 (5)P1—F61.595 (3)
C1—H10.9500P2—F7A1.471 (11)
C2—C31.399 (5)P2—F91.505 (6)
C2—H20.9500P2—F10A1.54 (2)
C3—C41.423 (5)P2—F81.553 (8)
C3—H30.9500P2—F111.566 (3)
C4—C51.402 (6)P2—F71.570 (5)
C4—H40.9500P2—F121.585 (2)
C5—H50.9500P2—F9A1.621 (12)
C6—C71.418 (4)P2—F8A1.642 (14)
C6—C101.432 (4)P2—F101.642 (6)
C6—H60.9500N1—C311.131 (12)
C7—C81.406 (4)C31—C321.427 (16)
C7—H70.9500C32—H32A0.9800
C8—C91.425 (4)C32—H32B0.9800
C8—H80.9500C32—H32C0.9800
C9—C101.422 (4)N1A—C31A1.126 (9)
C9—H90.9500N1A—N1Aii1.345 (12)
C11—C121.400 (5)C31A—C32A1.440 (15)
C11—C151.413 (5)C32A—H32D0.9800
C11—H110.9500C32A—H32E0.9800
C12—C131.407 (5)C32A—H32F0.9800
Se3—Hg1—Se1124.083 (9)Co1—C8—H8126.4
Se3—Hg1—Se2116.198 (10)C10—C9—C8108.5 (2)
Se1—Hg1—Se2115.319 (10)C10—C9—Co170.43 (14)
Se3—Hg1—Se2i99.723 (10)C8—C9—Co169.04 (14)
Se1—Hg1—Se2i99.201 (9)C10—C9—H9125.8
Se2—Hg1—Se2i91.509 (10)C8—C9—H9125.8
C10—Se1—Hg1104.54 (8)Co1—C9—H9126.4
C20—Se2—Hg1106.04 (7)C9—C10—C6106.6 (2)
C20—Se2—Hg1i98.79 (7)C9—C10—Se1129.78 (19)
Hg1—Se2—Hg1i88.491 (10)C6—C10—Se1123.6 (2)
C30—Se3—Hg1102.46 (8)C9—C10—Co168.88 (14)
C6—Co1—C1106.10 (13)C6—C10—Co168.01 (14)
C6—Co1—C741.12 (12)Se1—C10—Co1126.55 (12)
C1—Co1—C7113.44 (14)C12—C11—C15107.9 (3)
C6—Co1—C868.77 (12)C12—C11—Co269.63 (17)
C1—Co1—C8146.55 (13)C15—C11—Co269.62 (17)
C7—Co1—C840.69 (12)C12—C11—H11126.0
C6—Co1—C5113.78 (14)C15—C11—H11126.0
C1—Co1—C540.39 (14)Co2—C11—H11126.3
C7—Co1—C5145.45 (15)C11—C12—C13108.3 (3)
C8—Co1—C5172.73 (14)C11—C12—Co270.10 (16)
C6—Co1—C2129.59 (13)C13—C12—Co269.38 (16)
C1—Co1—C240.71 (13)C11—C12—H12125.8
C7—Co1—C2107.44 (12)C13—C12—H12125.8
C8—Co1—C2115.98 (12)Co2—C12—H12126.3
C5—Co1—C268.15 (12)C14—C13—C12108.0 (3)
C6—Co1—C4146.87 (15)C14—C13—Co269.98 (16)
C1—Co1—C468.11 (16)C12—C13—Co270.02 (16)
C7—Co1—C4171.93 (15)C14—C13—H13126.0
C8—Co1—C4134.13 (16)C12—C13—H13126.0
C5—Co1—C440.42 (16)Co2—C13—H13125.6
C2—Co1—C468.22 (14)C13—C14—C15108.0 (3)
C6—Co1—C3169.18 (13)C13—C14—Co269.47 (16)
C1—Co1—C368.23 (15)C15—C14—Co269.88 (16)
C7—Co1—C3131.41 (13)C13—C14—H14126.0
C8—Co1—C3110.49 (13)C15—C14—H14126.0
C5—Co1—C368.37 (14)Co2—C14—H14126.2
C2—Co1—C340.27 (14)C14—C15—C11107.7 (3)
C4—Co1—C340.99 (15)C14—C15—Co269.44 (17)
C6—Co1—C968.73 (11)C11—C15—Co269.78 (16)
C1—Co1—C9169.81 (12)C14—C15—H15126.1
C7—Co1—C968.91 (11)C11—C15—H15126.1
C8—Co1—C941.10 (10)Co2—C15—H15126.2
C5—Co1—C9132.51 (13)C17—C16—C20108.3 (3)
C2—Co1—C9149.25 (12)C17—C16—Co268.69 (17)
C4—Co1—C9111.05 (14)C20—C16—Co271.22 (14)
C3—Co1—C9118.31 (13)C17—C16—H16125.9
C6—Co1—C1041.14 (10)C20—C16—H16125.9
C1—Co1—C10129.79 (12)Co2—C16—H16125.8
C7—Co1—C1069.29 (10)C18—C17—C16108.2 (3)
C8—Co1—C1068.99 (10)C18—C17—Co269.77 (18)
C5—Co1—C10108.10 (11)C16—C17—Co270.33 (16)
C2—Co1—C10168.83 (12)C18—C17—H17125.9
C4—Co1—C10116.29 (12)C16—C17—H17125.9
C3—Co1—C10149.47 (13)Co2—C17—H17125.6
C9—Co1—C1040.70 (10)C17—C18—C19108.2 (3)
C17—Co2—C1840.97 (15)C17—C18—Co269.26 (17)
C17—Co2—C13104.66 (13)C19—C18—Co270.27 (16)
C18—Co2—C13118.79 (13)C17—C18—H18125.9
C17—Co2—C14122.20 (14)C19—C18—H18125.9
C18—Co2—C14106.12 (13)Co2—C18—H18126.1
C13—Co2—C1440.55 (13)C18—C19—C20108.0 (3)
C17—Co2—C12119.40 (14)C18—C19—Co268.68 (16)
C18—Co2—C12154.38 (14)C20—C19—Co271.02 (14)
C13—Co2—C1240.60 (13)C18—C19—H19126.0
C14—Co2—C1268.12 (12)C20—C19—H19126.0
C17—Co2—C1640.98 (13)Co2—C19—H19125.9
C18—Co2—C1668.82 (14)C19—C20—C16107.3 (2)
C13—Co2—C16122.91 (12)C19—C20—Se2128.4 (2)
C14—Co2—C16159.32 (13)C16—C20—Se2124.3 (2)
C12—Co2—C16107.28 (12)C19—C20—Co268.43 (14)
C17—Co2—C15160.25 (15)C16—C20—Co268.17 (14)
C18—Co2—C15124.82 (15)Se2—C20—Co2128.02 (12)
C13—Co2—C1568.31 (13)C25—C21—C22108.4 (3)
C14—Co2—C1540.68 (14)C25—C21—Co369.25 (19)
C12—Co2—C1568.04 (12)C22—C21—Co370.55 (16)
C16—Co2—C15158.24 (14)C25—C21—H21125.8
C17—Co2—C11155.77 (15)C22—C21—H21125.8
C18—Co2—C11162.92 (15)Co3—C21—H21126.0
C13—Co2—C1168.18 (13)C21—C22—C23108.1 (3)
C14—Co2—C1168.27 (13)C21—C22—Co369.44 (17)
C12—Co2—C1140.27 (13)C23—C22—Co369.68 (16)
C16—Co2—C11122.15 (13)C21—C22—H22125.9
C15—Co2—C1140.60 (13)C23—C22—H22125.9
C17—Co2—C1969.01 (13)Co3—C22—H22126.5
C18—Co2—C1941.04 (12)C22—C23—C24107.8 (3)
C13—Co2—C19155.45 (12)C22—C23—Co370.25 (16)
C14—Co2—C19121.50 (12)C24—C23—Co368.93 (18)
C12—Co2—C19163.16 (12)C22—C23—H23126.1
C16—Co2—C1968.67 (12)C24—C23—H23126.1
C15—Co2—C19109.28 (12)Co3—C23—H23126.3
C11—Co2—C19126.94 (12)C23—C24—C25107.6 (3)
C17—Co2—C2068.61 (11)C23—C24—Co370.62 (18)
C18—Co2—C2068.51 (11)C25—C24—Co369.38 (18)
C13—Co2—C20161.03 (12)C23—C24—H24126.2
C14—Co2—C20158.00 (12)C25—C24—H24126.2
C12—Co2—C20125.96 (11)Co3—C24—H24125.4
C16—Co2—C2040.62 (10)C21—C25—C24108.1 (3)
C15—Co2—C20123.73 (12)C21—C25—Co370.72 (18)
C11—Co2—C20110.28 (11)C24—C25—Co369.7 (2)
C19—Co2—C2040.55 (10)C21—C25—H25125.9
C25—Co3—C28151.76 (18)C24—C25—H25125.9
C25—Co3—C2440.96 (17)Co3—C25—H25125.3
C28—Co3—C24117.02 (17)C27—C26—C30108.8 (3)
C25—Co3—C27166.20 (17)C27—C26—Co368.63 (15)
C28—Co3—C2741.05 (14)C30—C26—Co371.34 (14)
C24—Co3—C27151.55 (17)C27—C26—H26125.6
C25—Co3—C29117.88 (15)C30—C26—H26125.6
C28—Co3—C2941.32 (13)Co3—C26—H26126.0
C24—Co3—C29106.39 (14)C28—C27—C26108.1 (3)
C27—Co3—C2969.23 (13)C28—C27—Co369.21 (17)
C25—Co3—C2140.03 (16)C26—C27—Co370.43 (15)
C28—Co3—C21165.87 (15)C28—C27—H27125.9
C24—Co3—C2167.94 (15)C26—C27—H27125.9
C27—Co3—C21128.78 (15)Co3—C27—H27126.0
C29—Co3—C21152.40 (13)C27—C28—C29108.1 (3)
C25—Co3—C2368.09 (14)C27—C28—Co369.74 (16)
C28—Co3—C23106.95 (12)C29—C28—Co369.80 (16)
C24—Co3—C2340.45 (16)C27—C28—H28126.0
C27—Co3—C23118.42 (13)C29—C28—H28126.0
C29—Co3—C23126.63 (12)Co3—C28—H28126.1
C21—Co3—C2367.55 (12)C28—C29—C30108.4 (3)
C25—Co3—C26128.18 (14)C28—C29—Co368.88 (16)
C28—Co3—C2668.92 (12)C30—C29—Co371.79 (14)
C24—Co3—C26165.64 (16)C28—C29—H29125.8
C27—Co3—C2640.94 (11)C30—C29—H29125.8
C29—Co3—C2668.77 (12)Co3—C29—H29125.1
C21—Co3—C26109.67 (12)C26—C30—C29106.6 (2)
C23—Co3—C26153.11 (14)C26—C30—Se3130.28 (19)
C25—Co3—C2267.48 (14)C29—C30—Se3123.1 (2)
C28—Co3—C22127.60 (13)C26—C30—Co368.20 (14)
C24—Co3—C2267.71 (13)C29—C30—Co367.29 (14)
C27—Co3—C22108.91 (13)Se3—C30—Co3129.52 (12)
C29—Co3—C22164.94 (12)F3—P1—F190.82 (16)
C21—Co3—C2240.01 (13)F3—P1—F4177.97 (19)
C23—Co3—C2240.07 (13)F1—P1—F490.61 (16)
C26—Co3—C22120.28 (12)F3—P1—F594.2 (2)
C25—Co3—C30108.22 (12)F1—P1—F590.20 (16)
C28—Co3—C3068.96 (11)F4—P1—F587.26 (16)
C24—Co3—C30127.29 (14)F3—P1—F288.73 (16)
C27—Co3—C3068.69 (11)F1—P1—F2179.55 (15)
C29—Co3—C3040.91 (10)F4—P1—F289.84 (15)
C21—Co3—C30119.73 (11)F5—P1—F289.87 (15)
C23—Co3—C30164.93 (13)F3—P1—F688.3 (2)
C26—Co3—C3040.46 (10)F1—P1—F690.27 (17)
C22—Co3—C30153.56 (11)F4—P1—F690.23 (19)
C5—C1—C2108.3 (3)F5—P1—F6177.5 (2)
C5—C1—Co170.19 (18)F2—P1—F689.67 (16)
C2—C1—Co170.06 (16)F7A—P2—F10A97.8 (13)
C5—C1—H1125.9F9—P2—F892.2 (5)
C2—C1—H1125.9F7A—P2—F1177.8 (6)
Co1—C1—H1125.5F9—P2—F1187.0 (3)
C3—C2—C1108.2 (3)F10A—P2—F1184.2 (10)
C3—C2—Co170.01 (17)F8—P2—F1191.9 (4)
C1—C2—Co169.24 (16)F9—P2—F792.0 (4)
C3—C2—H2125.9F8—P2—F7175.3 (5)
C1—C2—H2125.9F11—P2—F790.6 (3)
Co1—C2—H2126.4F7A—P2—F1299.1 (6)
C2—C3—C4107.6 (3)F9—P2—F1296.2 (3)
C2—C3—Co169.72 (17)F10A—P2—F1295.3 (10)
C4—C3—Co169.39 (18)F8—P2—F1288.6 (4)
C2—C3—H3126.2F11—P2—F12176.7 (2)
C4—C3—H3126.2F7—P2—F1288.7 (3)
Co1—C3—H3126.3F7A—P2—F9A92.5 (9)
C5—C4—C3107.8 (3)F10A—P2—F9A169.3 (13)
C5—C4—Co169.73 (19)F11—P2—F9A95.3 (5)
C3—C4—Co169.62 (18)F12—P2—F9A85.9 (5)
C5—C4—H4126.1F7A—P2—F8A175.2 (11)
C3—C4—H4126.1F10A—P2—F8A86.6 (13)
Co1—C4—H4126.1F11—P2—F8A100.8 (7)
C1—C5—C4108.2 (3)F12—P2—F8A82.4 (7)
C1—C5—Co169.43 (17)F9A—P2—F8A83.0 (10)
C4—C5—Co169.85 (18)F9—P2—F10177.7 (3)
C1—C5—H5125.9F8—P2—F1087.0 (5)
C4—C5—H5125.9F11—P2—F1095.2 (3)
Co1—C5—H5126.4F7—P2—F1088.7 (4)
C7—C6—C10108.8 (2)F12—P2—F1081.5 (2)
C7—C6—Co169.48 (16)N1—C31—C32176.8 (19)
C10—C6—Co170.84 (14)C31—C32—H32A109.5
C7—C6—H6125.6C31—C32—H32B109.5
C10—C6—H6125.6H32A—C32—H32B109.5
Co1—C6—H6125.6C31—C32—H32C109.5
C8—C7—C6107.9 (2)H32A—C32—H32C109.5
C8—C7—Co169.85 (15)H32B—C32—H32C109.5
C6—C7—Co169.40 (15)C31A—N1A—N1Aii163.0 (9)
C8—C7—H7126.0N1A—C31A—C32A179.9 (11)
C6—C7—H7126.0C31A—C32A—H32D109.5
Co1—C7—H7126.3C31A—C32A—H32E109.5
C7—C8—C9108.3 (2)H32D—C32A—H32E109.5
C7—C8—Co169.46 (15)C31A—C32A—H32F109.5
C9—C8—Co169.87 (14)H32D—C32A—H32F109.5
C7—C8—H8125.9H32E—C32A—H32F109.5
C9—C8—H8125.9
C5—C1—C2—C30.6 (3)C16—C17—C18—Co260.1 (2)
Co1—C1—C2—C359.4 (2)C17—C18—C19—C201.4 (3)
C5—C1—C2—Co160.0 (2)Co2—C18—C19—C2060.42 (18)
C1—C2—C3—C40.4 (3)C17—C18—C19—Co259.1 (2)
Co1—C2—C3—C459.3 (2)C18—C19—C20—C161.8 (3)
C1—C2—C3—Co158.9 (2)Co2—C19—C20—C1657.16 (17)
C2—C3—C4—C50.0 (3)C18—C19—C20—Se2178.91 (19)
Co1—C3—C4—C559.5 (2)Co2—C19—C20—Se2122.13 (19)
C2—C3—C4—Co159.5 (2)C18—C19—C20—Co258.96 (18)
C2—C1—C5—C40.6 (3)C17—C16—C20—C191.6 (3)
Co1—C1—C5—C459.3 (2)Co2—C16—C20—C1957.32 (17)
C2—C1—C5—Co159.9 (2)C17—C16—C20—Se2179.09 (18)
C3—C4—C5—C10.4 (3)Co2—C16—C20—Se2122.00 (17)
Co1—C4—C5—C159.0 (2)C17—C16—C20—Co258.90 (18)
C3—C4—C5—Co159.5 (2)Hg1—Se2—C20—C1933.8 (2)
C10—C6—C7—C80.7 (3)Hg1i—Se2—C20—C19124.7 (2)
Co1—C6—C7—C859.45 (19)Hg1—Se2—C20—C16147.06 (19)
C10—C6—C7—Co160.18 (18)Hg1i—Se2—C20—C1656.1 (2)
C6—C7—C8—C90.1 (3)Hg1—Se2—C20—Co2125.16 (14)
Co1—C7—C8—C959.30 (18)Hg1i—Se2—C20—Co2143.88 (14)
C6—C7—C8—Co159.17 (18)C25—C21—C22—C230.0 (3)
C7—C8—C9—C100.5 (3)Co3—C21—C22—C2359.1 (2)
Co1—C8—C9—C1059.57 (17)C25—C21—C22—Co359.1 (2)
C7—C8—C9—Co159.04 (18)C21—C22—C23—C240.0 (3)
C8—C9—C10—C61.0 (3)Co3—C22—C23—C2458.9 (2)
Co1—C9—C10—C657.75 (17)C21—C22—C23—Co359.0 (2)
C8—C9—C10—Se1179.32 (18)C22—C23—C24—C250.1 (3)
Co1—C9—C10—Se1120.6 (2)Co3—C23—C24—C2559.8 (2)
C8—C9—C10—Co158.71 (17)C22—C23—C24—Co359.8 (2)
C7—C6—C10—C91.0 (3)C22—C21—C25—C240.0 (3)
Co1—C6—C10—C958.30 (17)Co3—C21—C25—C2459.9 (2)
C7—C6—C10—Se1179.53 (17)C22—C21—C25—Co359.9 (2)
Co1—C6—C10—Se1120.19 (17)C23—C24—C25—C210.1 (4)
C7—C6—C10—Co159.34 (18)Co3—C24—C25—C2160.5 (2)
Hg1—Se1—C10—C98.8 (2)C23—C24—C25—Co360.6 (2)
Hg1—Se1—C10—C6173.14 (19)C30—C26—C27—C281.1 (3)
Hg1—Se1—C10—Co1100.68 (14)Co3—C26—C27—C2859.16 (19)
C15—C11—C12—C130.3 (3)C30—C26—C27—Co360.26 (17)
Co2—C11—C12—C1359.0 (2)C26—C27—C28—C290.4 (3)
C15—C11—C12—Co259.29 (19)Co3—C27—C28—C2959.5 (2)
C11—C12—C13—C140.4 (3)C26—C27—C28—Co359.92 (18)
Co2—C12—C13—C1459.9 (2)C27—C28—C29—C301.8 (3)
C11—C12—C13—Co259.48 (19)Co3—C28—C29—C3061.25 (18)
C12—C13—C14—C150.4 (3)C27—C28—C29—Co359.45 (19)
Co2—C13—C14—C1559.5 (2)C27—C26—C30—C292.2 (3)
C12—C13—C14—Co259.93 (19)Co3—C26—C30—C2956.42 (17)
C13—C14—C15—C110.3 (3)C27—C26—C30—Se3177.39 (18)
Co2—C14—C15—C1159.51 (19)Co3—C26—C30—Se3124.0 (2)
C13—C14—C15—Co259.3 (2)C27—C26—C30—Co358.60 (17)
C12—C11—C15—C140.0 (3)C28—C29—C30—C262.4 (3)
Co2—C11—C15—C1459.3 (2)Co3—C29—C30—C2656.98 (17)
C12—C11—C15—Co259.30 (19)C28—C29—C30—Se3177.18 (18)
C20—C16—C17—C180.8 (3)Co3—C29—C30—Se3123.41 (17)
Co2—C16—C17—C1859.7 (2)C28—C29—C30—Co359.42 (19)
C20—C16—C17—Co260.48 (18)Hg1—Se3—C30—C262.6 (2)
C16—C17—C18—C190.4 (3)Hg1—Se3—C30—C29177.93 (19)
Co2—C17—C18—C1959.7 (2)Hg1—Se3—C30—Co391.34 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+2.
 

Acknowledgements

We thank Dr Holger Kopacka (Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck) for the measurement of NMR spectra and Dr Viktoria Falkowski (Inorganic Chemistry Laboratory, Oxford University) and Dr Frank Tambornino (Inorganic Chemistry, University of Marburg) for important input.

Funding information

Funding for this research was provided by: Austrian Science Fund FWF (grant No. P33858).

References

First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMenia, D., Kopacka, H., Wurst, K., Müller, T., Lippmann, P., Ott, I. & Bildstein, B. (2021). Eur. J. Inorg. Chem. pp. 2784–2786.  CSD CrossRef Google Scholar
First citationRomanelli, M. D., Emge, T. J. & Brennan, J. G. (2008). Acta Cryst. E64, m987–m988.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVanicek, S., Podewitz, M., Hassenrück, C., Pittracher, M., Kopacka, H., Wurst, K., Müller, T., Liedl, K. R., Winter, R. F. & Bildstein, B. (2018). Chem. Eur. J. 24, 3165–3169.  CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds