organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3′,5′-Di­chloro-N,N-di­phenyl-[1,1′-biphen­yl]-4-amine

crossmark logo

aDepartment of Chemistry, the Pennsylvania State University at Hazelton, Hazelton, Pennsylvania 18202, USA, and bDepartment of Chemistry, the State University of New York at Buffalo, Buffalo, New York 14260-3000, USA
*Correspondence e-mail: dgp15@psu.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 September 2021; accepted 30 September 2021; online 13 October 2021)

The title tri­phenyl­amine derivative, C24H17Cl2N, featuring a 3,5-di­chloro-1,1′-biphenyl moiety has been synthesized and structurally characterized. The mol­ecular structure shows rotations of the phenyl rings in the range of 37–40° from the amine plane. In the crystal, the mol­ecules inter­act by van der Waals inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Owing to their electron donating ability, tri­phenyl­amine building blocks have found extensive use in organic electronic materials from polymeric (Iwan & Sek, 2011[Iwan, A. & Sek, D. (2011). Prog. Polym. Sci. 36, 1277-1325.]) to mol­ecular motifs (Blanchard et al., 2019[Blanchard, P., Malacrida, C., Cabanetos, C., Roncali, J. & Ludwigs, S. (2019). Polym. Int. 68, 589-606.]), including dye-sensitized solar cells (Mahmood, 2016[Mahmood, A. (2016). Solar Energy, 123, 127-144.]). Mol­ecular units capable of forming meta-linkages, such as 1,3-dihalobenezenes, are known to organize in helical arrangements (Banno et al., 2012[Banno, M., Yamaguchi, T., Nagai, K., Kaiser, C., Hecht, S. & Yashima, E. (2012). J. Am. Chem. Soc. 134, 8718-8728.]) and have been of inter­est due to their broken conjugation (Patel et al., 2011[Patel, D. G., Ohnishi, Y. Y., Yang, Y. X., Eom, S. H., Farley, R. T., Graham, K. R., Xue, J. G., Hirata, S., Schanze, K. S. & Reynolds, J. R. (2011). J. Polym. Sci. B Polym. Phys. 49, 557-565.]) and mechanical properties (Kandre et al., 2007[Kandre, R., Feldman, K., Meijer, H. E. H., Smith, P. & Schlüter, A. D. (2007). Angew. Chem. 119, 5044-5047.]). Thus, the title compound, C24H17Cl2N, could find use as a means to impose helical design elements in organic electronic materials. Worthy of note is that the reaction proceeds well with a water-soluble palladium catalyst (Hamilton et al., 2013[Hamilton, A. E., Buxton, A. M., Peeples, C. J. & Chalker, J. M. (2013). J. Chem. Educ. 90, 1509-1513.]).

The molecular structure of the title compound (Fig. 1[link]) shows that the tertiary nitro­gen atom adopts an almost planar environment (bond-angle sum = 358.9°). The C13–C18 and C19–C24 phenyl substituents on the amine are rotated by 38.28 (8) and 40.22 (8)°, respectively, with respect to the C1/C13/C19/N1 amine plane. The C1–C6 phenyl ring of the biphenyl moiety adjacent to the nitro­gen atom is rotated by 36.81 (8)° with respect to the same amine plane, while the C7–C12 chlorinated ring makes an angle with the amine plane of 6.04 (8)°. The dihedral angle between the C1–C6 and C7–C12 rings is 30.79 (7)°.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with atom numbering. Displacement ellipsoids are drawn at the 50% probability level.

Mol­ecules of the title compound pack in the extended structure as head-to-tail dimers (Fig. 2[link]). More broadly, the structure may be described as alternating sheets, which stack along [010] (Fig. 3[link]). Defining the N5—C7 bond as the polar axis of the mol­ecule, each sheet contains a polar array of mol­ecules with their axes approximately oriented along [100] (Fig. 4[link]). Adjacent layers exhibit similar orientations, albeit with mol­ecules pointing in the opposite polar direction. The mol­ecular packing is largely a consequence of van der Waals-type inter­actions. Although the mol­ecule contains two chlorine atoms, halogen bonding within the structure is unlikely as the shortest Cl⋯Cl contact distance of 3.74 Å is greater than the sum of the van der Waals radii for the pair (3.50 Å).

[Figure 2]
Figure 2
Crystal packing of the title compound viewed along [010] illustrating head-to-tail dimer formation.
[Figure 3]
Figure 3
Crystal packing of the title compound viewed along [001]. Alternating layers are highlighted in blue and red.
[Figure 4]
Figure 4
Single sheet of the title compound viewed along [010].

Synthesis and crystallization

The title compound was synthesized under typical Suzuki conditions from commercially available 4-(di­phenyl­amino)­phenyl­boronic acid and 1-bromo-3,5-di­chloro­benzene as shown in Fig. 5[link]. Briefly, the boronic acid (0.872 g, 3.02 mmol), bromide (0.681 g, 3.02 mmol), potassium carbonate (5.002 g, 36.19 mmol), water (15 ml) and ethanol (20 ml) were combined and sparged with nitro­gen for 10 minutes. The palladium catalyst (Hamilton et al., 2013[Hamilton, A. E., Buxton, A. M., Peeples, C. J. & Chalker, J. M. (2013). J. Chem. Educ. 90, 1509-1513.]) (0.4 ml, 2.5 mM in water) was then added and the reaction heated to 80°C under nitro­gen until thin layer chromatography (silica plates, 5% ethyl acetate in hexa­ne) showed complete consumption of the starting materials. The reaction was then poured into water (50 ml) and the resulting precipitate collected by suction filtration and recrystallized from hot ethanol to afford crystals of the title compound as colorless plates (0.832 g, 71%).

[Figure 5]
Figure 5
Synthetic scheme for the preparation of the title compound.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C24H17Cl2N
Mr 390.28
Crystal system, space group Monoclinic, P21/n
Temperature (K) 90
a, b, c (Å) 14.5188 (11), 7.7744 (7), 18.0700 (16)
β (°) 110.4472 (18)
V3) 1911.1 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.32 × 0.24 × 0.04
 
Data collection
Diffractometer Bruker SMART APEXII area detector
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.677, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 18024, 6318, 4600
Rint 0.041
(sin θ/λ)max−1) 0.748
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.116, 1.02
No. of reflections 6318
No. of parameters 244
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.30
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: olex2.solve (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

3',5'-Dichloro-N,N-diphenyl-[1,1'-biphenyl]-4-amine top
Crystal data top
C24H17Cl2NF(000) = 808
Mr = 390.28Dx = 1.356 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.5188 (11) ÅCell parameters from 6404 reflections
b = 7.7744 (7) Åθ = 2.9–32.1°
c = 18.0700 (16) ŵ = 0.35 mm1
β = 110.4472 (18)°T = 90 K
V = 1911.1 (3) Å3Plate, colourless
Z = 40.32 × 0.24 × 0.04 mm
Data collection top
Bruker SMART APEXII area detector
diffractometer
6318 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs4600 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.041
Detector resolution: 7.9 pixels mm-1θmax = 32.1°, θmin = 1.6°
ω and φ scansh = 2018
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
k = 1011
Tmin = 0.677, Tmax = 0.746l = 2427
18024 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.262P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6318 reflectionsΔρmax = 0.45 e Å3
244 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were placed geometrically (C—H = 0.95 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.58639 (3)0.75629 (5)0.37567 (2)0.02440 (10)
Cl20.50900 (3)0.69374 (6)0.06326 (2)0.03003 (11)
C40.22713 (10)0.73656 (17)0.17719 (8)0.0137 (3)
C130.10562 (10)0.75089 (17)0.21142 (7)0.0125 (2)
N10.07602 (9)0.73451 (16)0.14480 (6)0.0144 (2)
C190.14718 (10)0.75157 (18)0.06761 (7)0.0141 (3)
C100.53724 (11)0.72175 (18)0.21805 (9)0.0190 (3)
H100.6056870.7144030.2273250.023*
C70.33384 (11)0.73663 (17)0.19079 (8)0.0147 (3)
C10.02498 (10)0.73489 (17)0.15553 (7)0.0130 (3)
C200.23743 (11)0.6683 (2)0.04815 (8)0.0187 (3)
H200.2502010.5948390.0854680.022*
C210.30879 (12)0.6926 (2)0.02586 (9)0.0253 (3)
H210.3709190.6378730.0385830.030*
C140.05678 (10)0.65661 (18)0.28000 (7)0.0140 (3)
H140.0050750.5804670.2812480.017*
C80.40304 (11)0.75138 (17)0.26757 (8)0.0160 (3)
H80.3816050.7671310.3111290.019*
C160.16027 (11)0.7831 (2)0.34467 (8)0.0189 (3)
H160.1790450.7939240.3898210.023*
C60.06067 (11)0.64239 (19)0.10468 (8)0.0167 (3)
H60.0164170.5774990.0626820.020*
C30.19096 (10)0.82689 (17)0.22789 (8)0.0136 (3)
H30.2353700.8895060.2706980.016*
C20.09205 (10)0.82738 (17)0.21728 (8)0.0140 (3)
H20.0693720.8912890.2523410.017*
C90.50190 (11)0.74299 (18)0.27962 (9)0.0174 (3)
C240.12794 (12)0.8547 (2)0.01149 (8)0.0195 (3)
H240.0661670.9106090.0240410.023*
C150.08374 (11)0.67414 (19)0.34618 (8)0.0178 (3)
H150.0496280.6112520.3927950.021*
C120.36787 (11)0.71894 (19)0.12771 (9)0.0181 (3)
H120.3226000.7118900.0750860.022*
C170.20905 (11)0.87587 (19)0.27654 (8)0.0175 (3)
H170.2614090.9504180.2753120.021*
C110.46825 (12)0.71177 (19)0.14253 (9)0.0197 (3)
C230.19930 (13)0.8754 (2)0.06270 (9)0.0266 (4)
H230.1857900.9445570.1010480.032*
C180.18223 (10)0.86104 (18)0.21019 (8)0.0152 (3)
H180.2159060.9256700.1640210.018*
C220.28971 (13)0.7965 (2)0.08128 (9)0.0295 (4)
H220.3386880.8131490.1318060.035*
C50.15979 (11)0.64454 (19)0.11497 (8)0.0168 (3)
H50.1824560.5826950.0793210.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0142 (2)0.0296 (2)0.02519 (18)0.00058 (15)0.00163 (14)0.00117 (14)
Cl20.0253 (2)0.0422 (2)0.0312 (2)0.00160 (18)0.02072 (17)0.00223 (17)
C40.0133 (7)0.0140 (6)0.0146 (5)0.0024 (5)0.0057 (5)0.0020 (5)
C130.0108 (7)0.0145 (6)0.0126 (5)0.0027 (5)0.0048 (5)0.0019 (4)
N10.0099 (6)0.0230 (6)0.0100 (4)0.0004 (5)0.0032 (4)0.0001 (4)
C190.0133 (7)0.0177 (6)0.0108 (5)0.0028 (5)0.0037 (5)0.0003 (5)
C100.0128 (8)0.0162 (6)0.0309 (8)0.0017 (5)0.0114 (6)0.0004 (5)
C70.0133 (7)0.0136 (6)0.0191 (6)0.0011 (5)0.0079 (5)0.0007 (5)
C10.0115 (7)0.0158 (6)0.0126 (5)0.0011 (5)0.0051 (5)0.0018 (4)
C200.0158 (8)0.0246 (7)0.0159 (6)0.0006 (6)0.0059 (5)0.0040 (5)
C210.0134 (8)0.0399 (9)0.0197 (7)0.0024 (7)0.0020 (6)0.0111 (6)
C140.0120 (7)0.0157 (6)0.0139 (6)0.0009 (5)0.0042 (5)0.0004 (4)
C80.0159 (7)0.0142 (6)0.0189 (6)0.0008 (5)0.0074 (5)0.0014 (5)
C160.0169 (8)0.0265 (7)0.0149 (6)0.0041 (6)0.0077 (5)0.0051 (5)
C60.0157 (7)0.0207 (7)0.0135 (6)0.0011 (5)0.0049 (5)0.0036 (5)
C30.0130 (7)0.0134 (6)0.0147 (6)0.0013 (5)0.0054 (5)0.0007 (4)
C20.0152 (7)0.0133 (6)0.0147 (6)0.0013 (5)0.0068 (5)0.0002 (5)
C90.0146 (7)0.0138 (6)0.0225 (6)0.0003 (5)0.0049 (5)0.0000 (5)
C240.0213 (8)0.0211 (7)0.0174 (6)0.0026 (6)0.0084 (6)0.0033 (5)
C150.0180 (8)0.0218 (7)0.0129 (6)0.0023 (6)0.0047 (5)0.0003 (5)
C120.0169 (8)0.0197 (7)0.0203 (6)0.0014 (6)0.0098 (6)0.0006 (5)
C170.0121 (7)0.0221 (7)0.0195 (6)0.0011 (5)0.0068 (5)0.0058 (5)
C110.0199 (8)0.0188 (7)0.0259 (7)0.0002 (6)0.0148 (6)0.0007 (5)
C230.0336 (10)0.0311 (8)0.0167 (6)0.0146 (7)0.0110 (6)0.0071 (6)
C180.0118 (7)0.0177 (6)0.0152 (6)0.0001 (5)0.0037 (5)0.0005 (5)
C220.0251 (9)0.0456 (10)0.0128 (6)0.0180 (8)0.0005 (6)0.0024 (6)
C50.0159 (7)0.0206 (6)0.0153 (6)0.0024 (5)0.0073 (5)0.0017 (5)
Geometric parameters (Å, º) top
Cl1—C91.7435 (15)C14—C151.3889 (18)
Cl2—C111.7359 (14)C8—H80.9500
C4—C71.481 (2)C8—C91.376 (2)
C4—C31.3945 (18)C16—H160.9500
C4—C51.401 (2)C16—C151.390 (2)
C13—N11.4182 (16)C16—C171.389 (2)
C13—C141.4007 (18)C6—H60.9500
C13—C181.3977 (19)C6—C51.385 (2)
N1—C191.4226 (17)C3—H30.9500
N1—C11.4105 (18)C3—C21.3809 (19)
C19—C201.392 (2)C2—H20.9500
C19—C241.3954 (19)C24—H240.9500
C10—H100.9500C24—C231.388 (2)
C10—C91.388 (2)C15—H150.9500
C10—C111.384 (2)C12—H120.9500
C7—C81.405 (2)C12—C111.388 (2)
C7—C121.3985 (18)C17—H170.9500
C1—C61.4010 (18)C17—C181.3889 (18)
C1—C21.3968 (19)C23—H230.9500
C20—H200.9500C23—C221.380 (3)
C20—C211.389 (2)C18—H180.9500
C21—H210.9500C22—H220.9500
C21—C221.388 (3)C5—H50.9500
C14—H140.9500
C3—C4—C7120.19 (12)C5—C6—H6119.6
C3—C4—C5117.83 (13)C4—C3—H3119.3
C5—C4—C7121.97 (12)C2—C3—C4121.48 (13)
C14—C13—N1119.61 (12)C2—C3—H3119.3
C18—C13—N1121.12 (12)C1—C2—H2119.7
C18—C13—C14119.26 (12)C3—C2—C1120.70 (12)
C13—N1—C19119.49 (11)C3—C2—H2119.7
C1—N1—C13119.47 (11)C10—C9—Cl1118.44 (12)
C1—N1—C19119.91 (11)C8—C9—Cl1119.14 (11)
C20—C19—N1120.09 (12)C8—C9—C10122.41 (14)
C20—C19—C24119.57 (13)C19—C24—H24120.1
C24—C19—N1120.33 (13)C23—C24—C19119.81 (15)
C9—C10—H10121.5C23—C24—H24120.1
C11—C10—H10121.5C14—C15—C16120.46 (13)
C11—C10—C9117.00 (14)C14—C15—H15119.8
C8—C7—C4120.64 (12)C16—C15—H15119.8
C12—C7—C4120.76 (13)C7—C12—H12120.2
C12—C7—C8118.59 (13)C11—C12—C7119.52 (14)
C6—C1—N1120.92 (12)C11—C12—H12120.2
C2—C1—N1120.80 (12)C16—C17—H17119.6
C2—C1—C6118.28 (13)C18—C17—C16120.81 (13)
C19—C20—H20120.0C18—C17—H17119.6
C21—C20—C19119.97 (14)C10—C11—Cl2118.69 (12)
C21—C20—H20120.0C10—C11—C12122.51 (13)
C20—C21—H21119.9C12—C11—Cl2118.79 (12)
C22—C21—C20120.27 (16)C24—C23—H23119.7
C22—C21—H21119.9C22—C23—C24120.60 (15)
C13—C14—H14119.9C22—C23—H23119.7
C15—C14—C13120.17 (13)C13—C18—H18120.0
C15—C14—H14119.9C17—C18—C13119.91 (13)
C7—C8—H8120.0C17—C18—H18120.0
C9—C8—C7119.93 (13)C21—C22—H22120.1
C9—C8—H8120.0C23—C22—C21119.74 (14)
C15—C16—H16120.3C23—C22—H22120.1
C17—C16—H16120.3C4—C5—H5119.5
C17—C16—C15119.38 (12)C6—C5—C4120.99 (12)
C1—C6—H6119.6C6—C5—H5119.5
C5—C6—C1120.71 (13)
C4—C7—C8—C9176.90 (13)C20—C19—C24—C230.9 (2)
C4—C7—C12—C11177.15 (13)C20—C21—C22—C230.2 (2)
C4—C3—C2—C10.8 (2)C14—C13—N1—C19148.16 (13)
C13—N1—C19—C2045.47 (18)C14—C13—N1—C144.03 (18)
C13—N1—C19—C24133.12 (14)C14—C13—C18—C170.0 (2)
C13—N1—C1—C6149.15 (13)C8—C7—C12—C111.7 (2)
C13—N1—C1—C230.74 (19)C16—C17—C18—C130.3 (2)
C13—C14—C15—C161.0 (2)C6—C1—C2—C30.2 (2)
N1—C13—C14—C15178.69 (12)C3—C4—C7—C830.22 (19)
N1—C13—C18—C17179.36 (13)C3—C4—C7—C12150.93 (13)
N1—C19—C20—C21176.51 (13)C3—C4—C5—C60.5 (2)
N1—C19—C24—C23177.65 (13)C2—C1—C6—C50.8 (2)
N1—C1—C6—C5179.35 (13)C9—C10—C11—Cl2177.49 (11)
N1—C1—C2—C3179.69 (12)C9—C10—C11—C121.2 (2)
C19—N1—C1—C643.08 (19)C24—C19—C20—C212.1 (2)
C19—N1—C1—C2137.03 (13)C24—C23—C22—C211.3 (2)
C19—C20—C21—C221.5 (2)C15—C16—C17—C180.0 (2)
C19—C24—C23—C220.8 (2)C12—C7—C8—C92.0 (2)
C7—C4—C3—C2179.17 (12)C17—C16—C15—C140.7 (2)
C7—C4—C5—C6178.17 (13)C11—C10—C9—Cl1179.96 (11)
C7—C8—C9—Cl1178.43 (10)C11—C10—C9—C81.0 (2)
C7—C8—C9—C100.6 (2)C18—C13—N1—C1932.49 (19)
C7—C12—C11—Cl2178.84 (11)C18—C13—N1—C1135.33 (14)
C7—C12—C11—C100.1 (2)C18—C13—C14—C150.7 (2)
C1—N1—C19—C20146.77 (13)C5—C4—C7—C8148.45 (14)
C1—N1—C19—C2434.64 (19)C5—C4—C7—C1230.4 (2)
C1—C6—C5—C41.1 (2)C5—C4—C3—C20.4 (2)
 

Acknowledgements

DGP thanks Penn State Hazleton for funding in the form of a Research Development Grant. JBB acknowledges support from the National Science Foundation under grant No. DMR-2003932.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. DMR-2003932).

References

First citationBanno, M., Yamaguchi, T., Nagai, K., Kaiser, C., Hecht, S. & Yashima, E. (2012). J. Am. Chem. Soc. 134, 8718–8728.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBlanchard, P., Malacrida, C., Cabanetos, C., Roncali, J. & Ludwigs, S. (2019). Polym. Int. 68, 589–606.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHamilton, A. E., Buxton, A. M., Peeples, C. J. & Chalker, J. M. (2013). J. Chem. Educ. 90, 1509–1513.  Web of Science CrossRef CAS Google Scholar
First citationIwan, A. & Sek, D. (2011). Prog. Polym. Sci. 36, 1277–1325.  Web of Science CrossRef CAS Google Scholar
First citationKandre, R., Feldman, K., Meijer, H. E. H., Smith, P. & Schlüter, A. D. (2007). Angew. Chem. 119, 5044–5047.  CrossRef Google Scholar
First citationMahmood, A. (2016). Solar Energy, 123, 127–144.  Web of Science CrossRef CAS Google Scholar
First citationPatel, D. G., Ohnishi, Y. Y., Yang, Y. X., Eom, S. H., Farley, R. T., Graham, K. R., Xue, J. G., Hirata, S., Schanze, K. S. & Reynolds, J. R. (2011). J. Polym. Sci. B Polym. Phys. 49, 557–565.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds