organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Pyrazine-2(1H)-thione

crossmark logo

aDepartment of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Lodz, Poland
*Correspondence e-mail: kinga.raj@chemia.uni.lodz.pl

Edited by G. Diaz de Delgado, Universidad de Los Andes, Venezuela (Received 22 September 2021; accepted 21 October 2021; online 29 October 2021)

The title compound, C4H4N2S, was obtained by the reduction of 2-mercapto­pyrazine (during its crystallization with 2-mercapto­pyrazine and isonicotinic acid N-oxide in ethanol solution. It crystallizes in the monoclinic space group P21/m. In the crystal, the mol­ecules are linked by N—H⋯N and C—H⋯S hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazine is an aromatic six-membered hetrocyclic that contains two nitro­gen atoms in positions 1 and 4. As a result, pyrazine has weaker basic properties than pyridine, pyridazine and pyrimidine. Pyrazine derivatives play an important role in chemotherapy (Wu et al., 2012[Wu, G., Yin, W., Shen, H. C. & Huang, Y. (2012). Green Chem. 14, 580-585.]; Polshettiwar & Varma 2008[Polshettiwar, V. & Varma, R. S. (2008). Pure Appl. Chem. 80, 777-790.]; Goya et al., 1997[Goya, P., Campillo, N., García-Gómez, C., Páez, J. A. & Alkorta, I. (1997). Farmaco, 52, 283-287.]). Its derivatives possess diverse biological activities such as anti­diabetic, diuretic (Pranab et al., 2011[Pranab, G., Golam, R. M., Madhumitha, C., Amitava, M. & Aniruddha, S. (2011). Indian J. Chem. B, 50, 1519-1523.]), anti-inflammatory (Chandrakant & Naresh, 2004[Bonde, C. G. & Gaikwad, N. J.(2004). Bioorg. Med. Chem. 12, 2151-2161.]), anti­microbial (Mallesha & Mohana 2011[Mallesha, L. & Mohana, K. N. (2011). Eur. J. Chem. 2, 193-199.]), analgesic (Doležal et al., 2007[Doležal, M., Tůmová, L., Kešetovičová, D., Tůma, J. & Kráľová, K. (2007). Molecules, 12, 2589-2598.]) and anti­cancer (Kayagil & Demirayak, 2011[Kayagil, I. & Demirayak, S. (2011). Turk. J. Chem. 3, 13-24.]). In addition, 2-mercaptopyrinosine derivatives are known to be cancer inhibitors (Mallesha & Mohana, 2011[Mallesha, L. & Mohana, K. N. (2011). Eur. J. Chem. 2, 193-199.]; Bonde & Gaikwad, 2004[Bonde, C. G. & Gaikwad, N. J.(2004). Bioorg. Med. Chem. 12, 2151-2161.]).

The title compound pyrazine-2(1H)-thione (I) was obtained as a yellow solid by reduction of 2-mercapto­pyrazine (II) during its crystallization with 2-mercapto­pyrazine (II) and isonicotinic acid N-oxide (III) in ethanol solution (Fig. 1[link]). Pyrazine-2(1H)-thione crystallizes in the monoclinic space group P21/m. The atomic labelling scheme is shown in Fig. 2[link]. In pyrazine-2(1H)-thione, being a reduced form of (II), there is one hydrogen atom at atom N1.

[Figure 1]
Figure 1
. Mol­ecular formulae of pyrazine-2(1H)-thione (I), 2-mercapto­pyrazine (II) and isonicotinic acid N-oxide (III).
[Figure 2]
Figure 2
The mol­ecular structure of pyrazine-2(1H)-thione, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

The C—C bond lengths are within the expected values known for aromatic systems. The N1—C2 and N1—C6 bond lengths [1.354 (3) and 1.355 (3) Å, respectively] are longer than those for N4—C3 and N4—C5 [1.299 (3) Å and 1.366 (3) Å)], respectively. This is the result of the protonation of the N1 atom. The C2—S2 bond length [1.671 (2) Å] is comparable within the 3σ criterion. All of the angles have usual values.

The crystal packing of pyrazine-2(1H)-thione is determined by hydrogen bonds of the N—H⋯N and C—H⋯S type (Table 1[link]). Firstly, N1—H1⋯N4 hydrogen bonds [C⋯S = 2.893 (2) Å] between neighbouring mol­ecules form a chain. As a result, the mol­ecules are ordered along the [100] direction. This parallel arrangement is additionally stabilized by further inter­actions between adjacent mol­ecules [C3—H3⋯S2 = 3.716 (2) Å, C5—H5⋯S2 = 3.797 (3) Å and C6—H6⋯S2 = 3.775 (3) Å], as shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯S2i 0.86 (3) 2.94 (3) 3.797 (3) 171 (3)
C6—H6⋯S2ii 0.90 (3) 2.88 (3) 3.775 (2) 173 (2)
C3—H3⋯S2iii 0.99 (3) 2.98 (3) 3.716 (2) 132 (2)
N1—H1⋯N4iv 0.85 (4) 2.04 (4) 2.893 (3) 178 (3)
C5—H5⋯S2i 0.86 (3) 2.94 (3) 3.797 (3) 171 (3)
C6—H6⋯S2ii 0.90 (3) 2.88 (3) 3.775 (2) 173 (2)
C3—H3⋯S2iii 0.99 (3) 2.98 (3) 3.716 (2) 132 (2)
N1—H1⋯N4iv 0.85 (4) 2.04 (4) 2.893 (3) 178 (3)
Symmetry codes: (i) [x-1, y, z-1]; (ii) [x, y, z-1]; (iii) [x-1, y, z]; (iv) x+1, y, z.
[Figure 3]
Figure 3
N–H⋯N and C—H⋯S hydrogen bonds between adjacent pyrazine-2(1H)-thione mol­ecules.

Mol­ecular Hirshfeld surface (Spackman & Jayatilaka, 2009[Spackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]), were generated with Crystal Explorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]) using the automatic procedures implemented in the program. The surfaces are mapped with a normalized contact distance (dnorm), with values ranging from −0.58 to 1.05 a.u. Graphical representations of the Hirshfeld fingerprint plots for selected types of inter­molecular inter­actions are presented in Fig. 4[link]. The C—H⋯S and N—H⋯N hydrogen bonds make major contribution to the overall Hirshfeld surface with 36.8% and 13.8% contributions, respectively. In addition, H⋯H (24.8%) and H⋯C (11.7%) contacts make a significant contribution to the crystal packing.

[Figure 4]
Figure 4
The mol­ecular Hirshfeld surfaces of pyrazine-2(1H)-thione mapped with dnorm. Red areas represent inter­molecular contacts of distances shorter than the van der Waals separation.

A search of the Cambridge Structural Database (CSD version 5.41, November 2019; Groom et al., 2016) for 2-mercapto­pyrazine with no disorder, no other errors and only organic compounds yielded 79 structures. However, the structure of this compound and its oxidised form were not found.

Synthesis and crystallization

Crystals suitable for X-ray measurements were obtained from commercially available reagents (Aldrich Chemical Co.) which were used without further purification. 0.5 mmol of 2-mercapto­pyrazine (II) was mixed with 0.5 mmol of iso­nico­tinic acid N-oxide (III) and dissolved in ethanol (4 ml). The obtained solution was kept at room temperature. Crystals (yellow plates) for X-ray diffraction were obtained after slow evaporation of the solvent within 2 weeks.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C4H4N2S
Mr 112.15
Crystal system, space group Monoclinic, P21/m
Temperature (K) 150
a, b, c (Å) 5.6113 (3), 6.4370 (6), 7.0923 (4)
β (°) 100.325 (6)
V3) 252.03 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.49
Crystal size (mm) 0.18 × 0.06 × 0.04
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.991, 0.997
No. of measured, independent and observed [I > 2σ(I)] reflections 2812, 562, 496
Rint 0.035
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.13
No. of reflections 562
No. of parameters 55
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.24, −0.19
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008).

Pyrazine-2(1H)-thione top
Crystal data top
C4H4N2SF(000) = 116
Mr = 112.15Dx = 1.478 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 5.6113 (3) ÅCell parameters from 1374 reflections
b = 6.4370 (6) Åθ = 3.2–29.1°
c = 7.0923 (4) ŵ = 0.49 mm1
β = 100.325 (6)°T = 150 K
V = 252.03 (3) Å3Plate, yellow
Z = 20.18 × 0.06 × 0.04 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
496 reflections with I > 2σ(I)
Detector resolution: 10.4052 pixels mm-1Rint = 0.035
ω scansθmax = 26.5°, θmin = 2.9°
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2015)
h = 76
Tmin = 0.991, Tmax = 0.997k = 78
2812 measured reflectionsl = 88
562 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031All H-atom parameters refined
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0411P)2 + 0.0767P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
562 reflectionsΔρmax = 0.24 e Å3
55 parametersΔρmin = 0.19 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms of aromatic rings were introduced in calculated positions with idealized geometry and constrained using a rigid body model with isotropic displacement parameters equal to 1.2 the equivalent displacement parameters of the parent atoms. The H atom of the NH group was located in a difference Fourier map and freely refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.96392 (11)0.7500000.80505 (9)0.0517 (3)
N10.8466 (3)0.7500000.4242 (3)0.0354 (5)
N40.3609 (3)0.7500000.4191 (3)0.0371 (5)
C30.5132 (4)0.7500000.5802 (3)0.0335 (5)
C20.7722 (4)0.7500000.5956 (3)0.0321 (5)
C60.6909 (4)0.7500000.2544 (4)0.0418 (6)
C50.4506 (4)0.7500000.2523 (4)0.0436 (6)
H50.355 (5)0.7500000.143 (5)0.051 (8)*
H60.743 (5)0.7500000.142 (4)0.047 (8)*
H30.458 (5)0.7500000.704 (4)0.037 (7)*
H10.999 (7)0.7500000.426 (5)0.069 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0290 (4)0.0950 (6)0.0300 (4)0.0000.0026 (2)0.000
N10.0185 (9)0.0561 (13)0.0327 (10)0.0000.0074 (8)0.000
N40.0215 (9)0.0495 (12)0.0409 (11)0.0000.0069 (8)0.000
C30.0217 (10)0.0436 (13)0.0371 (12)0.0000.0108 (9)0.000
C20.0231 (10)0.0414 (13)0.0326 (11)0.0000.0076 (9)0.000
C60.0301 (12)0.0672 (18)0.0292 (12)0.0000.0085 (10)0.000
C50.0270 (12)0.0693 (18)0.0323 (13)0.0000.0008 (10)0.000
Geometric parameters (Å, º) top
S2—C21.671 (2)C3—C21.437 (3)
N1—C21.354 (3)C3—H30.99 (3)
N1—C61.355 (3)C6—C51.346 (3)
N1—H10.85 (4)C6—H60.90 (3)
N4—C31.299 (3)C5—H50.86 (3)
N4—C51.366 (3)
C2—N1—C6123.0 (2)N1—C2—S2123.03 (17)
C2—N1—H1117 (2)C3—C2—S2123.25 (18)
C6—N1—H1120 (2)C5—C6—N1119.6 (2)
C3—N4—C5118.37 (19)C5—C6—H6118.2 (19)
N4—C3—C2124.3 (2)N1—C6—H6122.2 (19)
N4—C3—H3121.6 (15)C6—C5—N4121.0 (2)
C2—C3—H3114.1 (15)C6—C5—H5118 (2)
N1—C2—C3113.7 (2)N4—C5—H5121 (2)
C5—N4—C3—C20.000 (1)N4—C3—C2—S2180.000 (1)
C6—N1—C2—C30.000 (1)C2—N1—C6—C50.000 (1)
C6—N1—C2—S2180.000 (1)N1—C6—C5—N40.000 (1)
N4—C3—C2—N10.000 (1)C3—N4—C5—C60.000 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···S2i0.86 (3)2.94 (3)3.797 (3)171 (3)
C6—H6···S2ii0.90 (3)2.88 (3)3.775 (2)173 (2)
C3—H3···S2iii0.99 (3)2.98 (3)3.716 (2)132 (2)
N1—H1···N4iv0.85 (4)2.04 (4)2.893 (3)178 (3)
C5—H5···S2i0.86 (3)2.94 (3)3.797 (3)171 (3)
C6—H6···S2ii0.90 (3)2.88 (3)3.775 (2)173 (2)
C3—H3···S2iii0.99 (3)2.98 (3)3.716 (2)132 (2)
N1—H1···N4iv0.85 (4)2.04 (4)2.893 (3)178 (3)
Symmetry codes: (i) x1, y, z1; (ii) x, y, z1; (iii) x1, y, z; (iv) x+1, y, z.
 

References

First citationBonde, C. G. & Gaikwad, N. J.(2004). Bioorg. Med. Chem. 12, 2151–2161.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDoležal, M., Tůmová, L., Kešetovičová, D., Tůma, J. & Kráľová, K. (2007). Molecules, 12, 2589–2598.  PubMed Google Scholar
First citationGoya, P., Campillo, N., García-Gómez, C., Páez, J. A. & Alkorta, I. (1997). Farmaco, 52, 283–287.  PubMed Google Scholar
First citationKayagil, I. & Demirayak, S. (2011). Turk. J. Chem. 3, 13–24.  Google Scholar
First citationMallesha, L. & Mohana, K. N. (2011). Eur. J. Chem. 2, 193–199.  CrossRef Google Scholar
First citationPolshettiwar, V. & Varma, R. S. (2008). Pure Appl. Chem. 80, 777–790.  Web of Science CrossRef CAS Google Scholar
First citationPranab, G., Golam, R. M., Madhumitha, C., Amitava, M. & Aniruddha, S. (2011). Indian J. Chem. B, 50, 1519–1523.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar
First citationWu, G., Yin, W., Shen, H. C. & Huang, Y. (2012). Green Chem. 14, 580–585.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds