metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(isonicotinamide-κN)silver(I) tri­fluoro­methane­sulfonate aceto­nitrile disolvate

crossmark logo

aDepartment of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio Texas 78209, USA, and bDepartment of Chemistry, The University of Texas at San Antonio, San Antonio Texas 78249, USA
*Correspondence e-mail: adrian@uiwtx.edu

Edited by I. Brito, University of Antofagasta, Chile (Received 14 September 2021; accepted 15 October 2021; online 21 October 2021)

The central AgI atom of the title salt, [Ag(INAM)2](CF3SO3)·2CH3CN, where INAM is isonicotinamide (C6H6N2O), is twofold coordinated by the pyridine N atoms of two isonicotinamide ligands creating a slightly distorted linear mol­ecular geometry. The formation of polymeric chains {[Ag(INAM)2]+}n, held together by discrete hydrogen bonds through the amide group of the INAM ligand leaves voids for non-coordinating aceto­nitrile mol­ecules that inter­act the silver metal center via regium bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Silver(I) isonicotinamide complexes have been investigated for the ability to form coordination complexes with a variety of mol­ecular geometries due to amide hydrogen-bond synthons in their structure (Aakeröy & Beatty, 1998[Aakeröy, C. B. & Beatty, A. M. (1998). Cryst. Eng. 1, 39-49.]; Aakeröy et al., 1998[Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (1998). J. Chem. Soc. Dalton Trans. pp. 1943-1946.]; Lian et al. 2007[Lian, Z. X., Cai, J., Chen, C. H. & Luo, H. B. (2007). CrystEngComm, 9, 319-327.]), luminescent properties (Yeşilel et al., 2012[Yeşilel, O. Z., Günay, G., Semerci, F. & Erkmen, D. (2012). Z. Kristallogr. Cryst. Mater. 227, 694-701.]), and anti­bacterial activity (Abu-Youssef et al., 2007[Abu-Youssef, M. A., Dey, R., Gohar, Y., Massoud, A. A. A., Öhrström, L. & Langer, V. (2007). Inorg. Chem. 46, 5893-5903.]; Yu et al., 2020[Yu, X. Y., Zhang, R., Li, S. L., Yu, S. H., Gao, L., Yan, W. F., Jin, J. & Luo, Y. N. (2020). Inorg. Chem. Commun. 116, 107897.]). Our research group inter­est currently lies in the synthesis of novel metal complexes with biological activity; as part of our research in this area, herein, we describe the synthesis and structure of the title silver(I) complex.

As depicted in Fig. 1[link], the asymmetric unit of the title compound shows the AgI ion in a distorted linear coordination environment defined by two N-bonded isonicotamide ligands. Two aceto­nitrile mol­ecules and a tri­fluoro­methane­sulfonate ion complete the asymmetric unit; the aceto­nitrile mol­ecules sit at opposite sides of the plane defined by N1—Ag1—N3 with the nitrile group facing the silver(I) metal center. All relevant bond lengths and angles involving the Ag atom are presented in Table 1[link]. The angle N1—Ag1—N3 of 172.78 (7) is within the reported values (174.9, 180, and 171.1) in the comparable silver(I) isonicotinamide structures currently available in the CSD (version 5.42 with update May 2021; Aakeröy & Beatty, 1998[Aakeröy, C. B. & Beatty, A. M. (1998). Cryst. Eng. 1, 39-49.]; refcode NISNEI; Bhogala et al., 2004[Bhogala, B. R., Thallapally, P. K. & Nangia, A. (2004). Cryst. Growth Des. 4, 215-218.]; refcode NABYOF; Abu-Youssef et al., 2007[Abu-Youssef, M. A., Dey, R., Gohar, Y., Massoud, A. A. A., Öhrström, L. & Langer, V. (2007). Inorg. Chem. 46, 5893-5903.]; refcode XECZUB01).

Table 1
Selected geometric parameters (Å, °)

Ag1—N3 2.162 (2) Ag1—N1 2.162 (2)
       
N1—Ag1—N3 172.78 (7) N2—C6—C3 117.3 (2)
N4—C12—C9 118.3 (2)    
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level; H atoms are omitted for clarity.

Two types of hydrogen-bonding motifs are present in the crystal lattice, with numerical values collated in Table 2[link]. In the crystal packing, mol­ecules self-assemble into layers aligned along the a-axis direction (Fig. 2[link]) via N—H⋯O inter­actions. The tri­fluoro­methane­sulfonate anions fill the void between the layers and inter­act with the isonicotinamide ligands through additional N—H⋯O inter­actions. The pyridyl rings of the isonicotinamide ligand show ππ stacking inter­actions with centroid-to-centroid (CgCg) distances ranging from 3.7005 (13) to 3.8503 (14) Å, and offset distances ranging from 1.940 to 2.056 Å, respectively.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.88 2.06 2.898 (3) 160
N2—H2B⋯O3 0.88 2.09 2.939 (3) 162
N4—H4A⋯O1ii 0.88 2.05 2.927 (3) 171
N4—H4B⋯O5iii 0.88 2.22 3.033 (3) 154
Symmetry codes: (i) [x+1, y, z-1]; (ii) [x-1, y, z+1]; (iii) [-x+1, -y+1, -z+1].
[Figure 2]
Figure 2
Perspective view of the packing structure of the title complex along the crystallographic b axis; H atoms are omitted for clarity.

Two different supra­molecular inter­actions involving the silver atom are also responsible for the observed crystal packing: an Ag⋯Ag inter­action with a distance between silver atoms of 3.4258 (3) Å, comparable to other silver complexes found in the CSD database (Titov et al., 2018[Titov, A. A., Smol'yakov, A. F., Baranova, K. F., Filippov, O. A. & Shubina, E. S. (2018). Mendeleev Commun. 28, 387-389.]; refcode FINWOR; Titov et al., 2019[Titov, A. A., Filippov, O. A., Smol'yakov, A. F., Baranova, K. F., Titova, E. M., Averin, A. A. & Shubina, E. S. (2019). Eur. J. Inorg. Chem. pp. 821-827.]; refcode PIRCUR); and regium bonds, between the nitro­gen of the aceto­nitrile solvent mol­ecules and the silver atom (Alkorta et al., 2020[Alkorta, I., Trujillo, C., Sánchez-Sanz, G. & Elguero, J. (2020). Crystals, 10, 137.]; Zierkiewicz et al., 2018[Zierkiewicz, W., Michalczyk, M. & Scheiner, S. (2018). Phys. Chem. Chem. Phys. 20, 22498-22509.]), with lengths of 2.916 Å for Ag1—N5 and 2.955 Å for Ag1—N6. (Fig. 3[link])

[Figure 3]
Figure 3
Capped sticks representation of the title mol­ecule showing hydrogen bonds inter­actions (violet), regium bonds (light blue), Ag⋯Ag inter­actions (light green), and ππ stacking inter­actions (red).

Synthesis and crystallization

Silver tri­fluoro­methane­sulfonate (0.200 g, 0.778 mmol) was added to an aceto­nitrile solution of isonicotinamide (0.190 g, 1.56 mmol) and stirred for 30 min. The resulting clear solution was used to grow crystals by vapor diffusion with diethyl ether at 278 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Ag(C6H6N2O)2](CF3O3S)·2C2H3N)
Mr 583.30
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.4566 (2), 11.0330 (3), 11.9848 (3)
α, β, γ (°) 114.000 (2), 103.9287 (19), 95.129 (2)
V3) 1083.72 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 9.00
Crystal size (mm) 0.27 × 0.10 × 0.07
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.544, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 24470, 4387, 4211
Rint 0.044
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.08
No. of reflections 4387
No. of parameters 300
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.77, −0.78
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Bis(isonicotinamide-κN)silver(I) trifluoromethanesulfonate acetonitrile disolvate top
Crystal data top
[Ag(C6H6N2O)2](CF3O3S)·2C2H3N)Z = 2
Mr = 583.30F(000) = 584
Triclinic, P1Dx = 1.788 Mg m3
a = 9.4566 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.0330 (3) ÅCell parameters from 12499 reflections
c = 11.9848 (3) Åθ = 4.2–76.2°
α = 114.000 (2)°µ = 9.00 mm1
β = 103.9287 (19)°T = 100 K
γ = 95.129 (2)°Plate, clear colourless
V = 1083.72 (5) Å30.27 × 0.10 × 0.07 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
4387 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source4211 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.044
Detector resolution: 10.0000 pixels mm-1θmax = 76.5°, θmin = 4.2°
ω scansh = 1011
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2019)
k = 1313
Tmin = 0.544, Tmax = 1.000l = 1514
24470 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0394P)2 + 0.7P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
4387 reflectionsΔρmax = 0.77 e Å3
300 parametersΔρmin = 0.78 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.33026 (2)0.42666 (2)0.38452 (2)0.01913 (7)
S10.80813 (6)0.92406 (6)0.27008 (6)0.01835 (13)
F10.59457 (16)1.01941 (15)0.16879 (15)0.0272 (3)
F30.77762 (19)1.00737 (17)0.09034 (15)0.0314 (4)
F20.80186 (19)1.16528 (15)0.27750 (16)0.0353 (4)
O20.13731 (19)0.48669 (17)0.77676 (16)0.0195 (3)
O10.68870 (19)0.28645 (17)0.09989 (16)0.0209 (4)
O50.96843 (19)0.96695 (17)0.31236 (17)0.0238 (4)
O30.7525 (2)0.79175 (17)0.16192 (18)0.0263 (4)
N30.1996 (2)0.40757 (19)0.50408 (18)0.0151 (4)
N10.4587 (2)0.4184 (2)0.25573 (18)0.0156 (4)
O40.7400 (2)0.9518 (2)0.37019 (19)0.0350 (5)
N20.7732 (2)0.5144 (2)0.0006 (2)0.0191 (4)
H2A0.8228790.5119500.0546330.023*
H2B0.7747050.5925200.0621220.023*
N40.1246 (2)0.2695 (2)0.73398 (19)0.0184 (4)
H4A0.1840090.2648930.7790820.022*
H4B0.0882390.1986020.6952560.022*
N60.1601 (2)0.1602 (2)0.1866 (2)0.0262 (5)
N50.4275 (3)0.7251 (2)0.5268 (2)0.0325 (5)
C90.0129 (2)0.3874 (2)0.6467 (2)0.0150 (4)
C30.6141 (2)0.4105 (2)0.0827 (2)0.0149 (4)
C20.5905 (3)0.5331 (2)0.1669 (2)0.0164 (5)
H20.6275090.6158730.1666270.020*
C100.0835 (2)0.5137 (2)0.6652 (2)0.0150 (4)
H100.0685380.5947750.7269050.018*
C80.0393 (3)0.2713 (2)0.5556 (2)0.0167 (5)
H80.0054290.1835950.5415800.020*
C110.1752 (3)0.5196 (2)0.5931 (2)0.0157 (4)
H110.2230220.6061060.6067130.019*
C120.0895 (3)0.3837 (2)0.7243 (2)0.0158 (4)
C50.4811 (3)0.3005 (2)0.1740 (2)0.0174 (5)
H50.4432860.2191600.1763800.021*
C60.6954 (3)0.3993 (2)0.0140 (2)0.0165 (5)
C10.5128 (3)0.5324 (2)0.2506 (2)0.0171 (5)
H10.4968000.6162400.3070820.021*
C40.5567 (3)0.2924 (2)0.0869 (2)0.0165 (5)
H40.5694080.2069740.0302780.020*
C70.1313 (3)0.2857 (2)0.4862 (2)0.0166 (5)
H70.1471190.2061880.4231320.020*
C160.0818 (3)0.1753 (2)0.1065 (2)0.0220 (5)
C170.0166 (3)0.1959 (3)0.0045 (3)0.0261 (5)
H17A0.1196520.1529360.0122350.039*
H17B0.0127160.1553200.0735820.039*
H17C0.0090320.2934170.0309800.039*
C140.5027 (3)0.8301 (3)0.5709 (3)0.0259 (6)
C130.7428 (3)1.0349 (2)0.1983 (2)0.0213 (5)
C150.6018 (3)0.9632 (3)0.6278 (3)0.0302 (6)
H15A0.6425200.9730960.5633230.036*
H15B0.6836480.9717240.7003190.036*
H15C0.5458211.0342430.6578090.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02101 (11)0.02377 (11)0.01987 (11)0.00738 (7)0.01347 (7)0.01206 (8)
S10.0220 (3)0.0175 (3)0.0209 (3)0.0087 (2)0.0108 (2)0.0103 (2)
F10.0224 (7)0.0293 (8)0.0322 (8)0.0106 (6)0.0075 (6)0.0153 (7)
F30.0405 (9)0.0372 (9)0.0328 (9)0.0161 (7)0.0204 (7)0.0243 (7)
F20.0379 (9)0.0142 (7)0.0423 (10)0.0057 (6)0.0000 (8)0.0083 (7)
O20.0237 (9)0.0203 (8)0.0220 (8)0.0116 (7)0.0139 (7)0.0113 (7)
O10.0266 (9)0.0191 (8)0.0220 (9)0.0069 (7)0.0151 (7)0.0093 (7)
O50.0220 (9)0.0198 (8)0.0302 (10)0.0066 (7)0.0069 (7)0.0117 (7)
O30.0290 (10)0.0154 (8)0.0335 (10)0.0036 (7)0.0094 (8)0.0100 (8)
N30.0163 (9)0.0182 (9)0.0141 (9)0.0071 (7)0.0076 (7)0.0080 (8)
N10.0157 (9)0.0194 (9)0.0153 (9)0.0062 (7)0.0073 (8)0.0092 (8)
O40.0402 (12)0.0530 (13)0.0336 (11)0.0270 (10)0.0243 (9)0.0294 (10)
N20.0229 (10)0.0198 (10)0.0190 (10)0.0041 (8)0.0137 (8)0.0089 (8)
N40.0220 (10)0.0187 (10)0.0229 (10)0.0086 (8)0.0154 (8)0.0116 (8)
N60.0259 (11)0.0295 (11)0.0251 (11)0.0045 (9)0.0108 (9)0.0125 (10)
N50.0456 (15)0.0285 (13)0.0290 (12)0.0141 (11)0.0177 (11)0.0133 (10)
C90.0143 (11)0.0192 (11)0.0139 (11)0.0049 (9)0.0044 (9)0.0093 (9)
C30.0132 (10)0.0173 (11)0.0165 (11)0.0050 (8)0.0047 (9)0.0092 (9)
C20.0174 (11)0.0175 (11)0.0178 (11)0.0058 (9)0.0069 (9)0.0098 (9)
C100.0163 (11)0.0156 (10)0.0135 (10)0.0061 (8)0.0054 (9)0.0058 (9)
C80.0178 (11)0.0167 (11)0.0184 (11)0.0047 (9)0.0075 (9)0.0091 (9)
C110.0161 (11)0.0164 (11)0.0164 (11)0.0052 (8)0.0053 (9)0.0085 (9)
C120.0151 (11)0.0198 (11)0.0147 (11)0.0057 (9)0.0055 (9)0.0088 (9)
C50.0175 (11)0.0171 (11)0.0200 (12)0.0040 (9)0.0074 (9)0.0094 (9)
C60.0143 (10)0.0207 (11)0.0180 (11)0.0068 (9)0.0057 (9)0.0107 (9)
C10.0184 (11)0.0183 (11)0.0174 (11)0.0060 (9)0.0072 (9)0.0091 (9)
C40.0177 (11)0.0169 (11)0.0162 (11)0.0054 (9)0.0074 (9)0.0070 (9)
C70.0201 (11)0.0161 (11)0.0158 (11)0.0059 (9)0.0082 (9)0.0072 (9)
C160.0253 (13)0.0204 (11)0.0227 (13)0.0038 (10)0.0143 (11)0.0081 (10)
C170.0293 (14)0.0265 (13)0.0261 (13)0.0082 (11)0.0116 (11)0.0131 (11)
C140.0328 (14)0.0335 (15)0.0226 (13)0.0188 (12)0.0154 (11)0.0170 (12)
C130.0243 (12)0.0169 (11)0.0247 (13)0.0077 (9)0.0091 (10)0.0095 (10)
C150.0310 (15)0.0315 (14)0.0327 (15)0.0113 (12)0.0126 (12)0.0162 (12)
Geometric parameters (Å, º) top
Ag1—N32.162 (2)C9—C121.505 (3)
Ag1—N12.162 (2)C3—C21.396 (3)
S1—O51.4442 (18)C3—C61.510 (3)
S1—O31.4433 (18)C3—C41.390 (3)
S1—O41.434 (2)C2—H20.9500
S1—C131.831 (2)C2—C11.380 (3)
F1—C131.337 (3)C10—H100.9500
F3—C131.333 (3)C10—C111.378 (3)
F2—C131.331 (3)C8—H80.9500
O2—C121.240 (3)C8—C71.380 (3)
O1—C61.235 (3)C11—H110.9500
N3—C111.348 (3)C5—H50.9500
N3—C71.347 (3)C5—C41.380 (3)
N1—C51.346 (3)C1—H10.9500
N1—C11.345 (3)C4—H40.9500
N2—H2A0.8800C7—H70.9500
N2—H2B0.8800C16—C171.459 (4)
N2—C61.338 (3)C17—H17A0.9800
N4—H4A0.8800C17—H17B0.9800
N4—H4B0.8800C17—H17C0.9800
N4—C121.331 (3)C14—C151.460 (4)
N6—C161.144 (3)C15—H15A0.9800
N5—C141.141 (4)C15—H15B0.9800
C9—C101.395 (3)C15—H15C0.9800
C9—C81.395 (3)
N1—Ag1—N3172.78 (7)O2—C12—C9118.8 (2)
O5—S1—C13103.79 (11)N4—C12—C9118.3 (2)
O3—S1—O5113.68 (11)N1—C5—H5118.5
O3—S1—C13101.70 (11)N1—C5—C4122.9 (2)
O4—S1—O5115.49 (12)C4—C5—H5118.5
O4—S1—O3116.01 (13)O1—C6—N2123.2 (2)
O4—S1—C13103.62 (11)O1—C6—C3119.5 (2)
C11—N3—Ag1119.93 (16)N2—C6—C3117.3 (2)
C7—N3—Ag1121.89 (15)N1—C1—C2123.0 (2)
C7—N3—C11118.0 (2)N1—C1—H1118.5
C5—N1—Ag1122.04 (16)C2—C1—H1118.5
C1—N1—Ag1120.28 (16)C3—C4—H4120.3
C1—N1—C5117.6 (2)C5—C4—C3119.4 (2)
H2A—N2—H2B120.0C5—C4—H4120.3
C6—N2—H2A120.0N3—C7—C8122.9 (2)
C6—N2—H2B120.0N3—C7—H7118.5
H4A—N4—H4B120.0C8—C7—H7118.5
C12—N4—H4A120.0N6—C16—C17179.3 (3)
C12—N4—H4B120.0C16—C17—H17A109.5
C10—C9—C12118.3 (2)C16—C17—H17B109.5
C8—C9—C10118.2 (2)C16—C17—H17C109.5
C8—C9—C12123.5 (2)H17A—C17—H17B109.5
C2—C3—C6123.5 (2)H17A—C17—H17C109.5
C4—C3—C2117.9 (2)H17B—C17—H17C109.5
C4—C3—C6118.5 (2)N5—C14—C15178.8 (3)
C3—C2—H2120.5F1—C13—S1110.99 (17)
C1—C2—C3119.1 (2)F3—C13—S1111.58 (16)
C1—C2—H2120.5F3—C13—F1107.2 (2)
C9—C10—H10120.3F2—C13—S1111.75 (17)
C11—C10—C9119.4 (2)F2—C13—F1107.49 (19)
C11—C10—H10120.3F2—C13—F3107.6 (2)
C9—C8—H8120.5C14—C15—H15A109.5
C7—C8—C9118.9 (2)C14—C15—H15B109.5
C7—C8—H8120.5C14—C15—H15C109.5
N3—C11—C10122.6 (2)H15A—C15—H15B109.5
N3—C11—H11118.7H15A—C15—H15C109.5
C10—C11—H11118.7H15B—C15—H15C109.5
O2—C12—N4122.8 (2)
Ag1—N3—C11—C10174.85 (16)C2—C3—C4—C50.8 (3)
Ag1—N3—C7—C8175.54 (17)C10—C9—C8—C71.2 (3)
Ag1—N1—C5—C4176.85 (17)C10—C9—C12—O217.8 (3)
Ag1—N1—C1—C2177.40 (17)C10—C9—C12—N4162.0 (2)
O5—S1—C13—F1172.06 (16)C8—C9—C10—C110.4 (3)
O5—S1—C13—F368.43 (19)C8—C9—C12—O2161.1 (2)
O5—S1—C13—F252.1 (2)C8—C9—C12—N419.1 (3)
O3—S1—C13—F169.70 (18)C11—N3—C7—C80.6 (3)
O3—S1—C13—F349.8 (2)C12—C9—C10—C11178.5 (2)
O3—S1—C13—F2170.33 (18)C12—C9—C8—C7177.7 (2)
N1—C5—C4—C30.6 (3)C5—N1—C1—C20.7 (3)
O4—S1—C13—F151.0 (2)C6—C3—C2—C1179.0 (2)
O4—S1—C13—F3170.54 (18)C6—C3—C4—C5179.5 (2)
O4—S1—C13—F268.9 (2)C1—N1—C5—C40.2 (3)
C9—C10—C11—N30.3 (3)C4—C3—C2—C10.4 (3)
C9—C8—C7—N31.3 (3)C4—C3—C6—O111.6 (3)
C3—C2—C1—N10.4 (3)C4—C3—C6—N2167.8 (2)
C2—C3—C6—O1167.0 (2)C7—N3—C11—C100.2 (3)
C2—C3—C6—N213.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.882.062.898 (3)160
N2—H2B···O30.882.092.939 (3)162
N4—H4A···O1ii0.882.052.927 (3)171
N4—H4B···O5iii0.882.223.033 (3)154
Symmetry codes: (i) x+1, y, z1; (ii) x1, y, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

We are thankful for the support of the Department of Chemistry and Biochemistry at the University of the Incarnate Word and the X-ray Diffraction Laboratory at The University of Texas at San Antonio.

Funding information

Funding for this research was provided by: The Welch Foundation (award No. BN0032).

References

First citationAakeröy, C. B. & Beatty, A. M. (1998). Cryst. Eng. 1, 39–49.  Google Scholar
First citationAakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (1998). J. Chem. Soc. Dalton Trans. pp. 1943–1946.  Google Scholar
First citationAbu-Youssef, M. A., Dey, R., Gohar, Y., Massoud, A. A. A., Öhrström, L. & Langer, V. (2007). Inorg. Chem. 46, 5893–5903.  PubMed CAS Google Scholar
First citationAlkorta, I., Trujillo, C., Sánchez-Sanz, G. & Elguero, J. (2020). Crystals, 10, 137.  CrossRef Google Scholar
First citationBhogala, B. R., Thallapally, P. K. & Nangia, A. (2004). Cryst. Growth Des. 4, 215–218.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLian, Z. X., Cai, J., Chen, C. H. & Luo, H. B. (2007). CrystEngComm, 9, 319–327.  CSD CrossRef CAS Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTitov, A. A., Filippov, O. A., Smol'yakov, A. F., Baranova, K. F., Titova, E. M., Averin, A. A. & Shubina, E. S. (2019). Eur. J. Inorg. Chem. pp. 821–827.  CSD CrossRef Google Scholar
First citationTitov, A. A., Smol'yakov, A. F., Baranova, K. F., Filippov, O. A. & Shubina, E. S. (2018). Mendeleev Commun. 28, 387–389.  CSD CrossRef CAS Google Scholar
First citationYeşilel, O. Z., Günay, G., Semerci, F. & Erkmen, D. (2012). Z. Kristallogr. Cryst. Mater. 227, 694–701.  Google Scholar
First citationYu, X. Y., Zhang, R., Li, S. L., Yu, S. H., Gao, L., Yan, W. F., Jin, J. & Luo, Y. N. (2020). Inorg. Chem. Commun. 116, 107897.  CSD CrossRef Google Scholar
First citationZierkiewicz, W., Michalczyk, M. & Scheiner, S. (2018). Phys. Chem. Chem. Phys. 20, 22498–22509.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds