metal-organic compounds
Bis(isonicotinamide-κN)silver(I) trifluoromethanesulfonate acetonitrile disolvate
aDepartment of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio Texas 78209, USA, and bDepartment of Chemistry, The University of Texas at San Antonio, San Antonio Texas 78249, USA
*Correspondence e-mail: adrian@uiwtx.edu
The central AgI atom of the title salt, [Ag(INAM)2](CF3SO3)·2CH3CN, where INAM is isonicotinamide (C6H6N2O), is twofold coordinated by the pyridine N atoms of two isonicotinamide ligands creating a slightly distorted linear molecular geometry. The formation of polymeric chains {[Ag(INAM)2]+}n, held together by discrete hydrogen bonds through the amide group of the INAM ligand leaves voids for non-coordinating acetonitrile molecules that interact the silver metal center via regium bonds.
Keywords: crystal structure; silver atom; isonicotinamide; trifluoromethanesulfonate ions; acetonitrile; polymeric structure.
CCDC reference: 2116012
Structure description
Silver(I) isonicotinamide complexes have been investigated for the ability to form coordination complexes with a variety of molecular geometries due to amide hydrogen-bond synthons in their structure (Aakeröy & Beatty, 1998; Aakeröy et al., 1998; Lian et al. 2007), luminescent properties (Yeşilel et al., 2012), and antibacterial activity (Abu-Youssef et al., 2007; Yu et al., 2020). Our research group interest currently lies in the synthesis of novel metal complexes with biological activity; as part of our research in this area, herein, we describe the synthesis and structure of the title silver(I) complex.
As depicted in Fig. 1, the of the title compound shows the AgI ion in a distorted linear coordination environment defined by two N-bonded isonicotamide ligands. Two acetonitrile molecules and a trifluoromethanesulfonate ion complete the the acetonitrile molecules sit at opposite sides of the plane defined by N1—Ag1—N3 with the nitrile group facing the silver(I) metal center. All relevant bond lengths and angles involving the Ag atom are presented in Table 1. The angle N1—Ag1—N3 of 172.78 (7) is within the reported values (174.9, 180, and 171.1) in the comparable silver(I) isonicotinamide structures currently available in the CSD (version 5.42 with update May 2021; Aakeröy & Beatty, 1998; refcode NISNEI; Bhogala et al., 2004; refcode NABYOF; Abu-Youssef et al., 2007; refcode XECZUB01).
|
Two types of hydrogen-bonding motifs are present in the . In the crystal packing, molecules self-assemble into layers aligned along the a-axis direction (Fig. 2) via N—H⋯O interactions. The trifluoromethanesulfonate anions fill the void between the layers and interact with the isonicotinamide ligands through additional N—H⋯O interactions. The pyridyl rings of the isonicotinamide ligand show π–π stacking interactions with centroid-to-centroid (Cg⋯Cg) distances ranging from 3.7005 (13) to 3.8503 (14) Å, and offset distances ranging from 1.940 to 2.056 Å, respectively.
with numerical values collated in Table 2Two different supramolecular interactions involving the silver atom are also responsible for the observed crystal packing: an Ag⋯Ag interaction with a distance between silver atoms of 3.4258 (3) Å, comparable to other silver complexes found in the CSD database (Titov et al., 2018; refcode FINWOR; Titov et al., 2019; refcode PIRCUR); and regium bonds, between the nitrogen of the acetonitrile solvent molecules and the silver atom (Alkorta et al., 2020; Zierkiewicz et al., 2018), with lengths of 2.916 Å for Ag1—N5 and 2.955 Å for Ag1—N6. (Fig. 3)
Synthesis and crystallization
Silver trifluoromethanesulfonate (0.200 g, 0.778 mmol) was added to an acetonitrile solution of isonicotinamide (0.190 g, 1.56 mmol) and stirred for 30 min. The resulting clear solution was used to grow crystals by vapor diffusion with diethyl ether at 278 K.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
Structural data
CCDC reference: 2116012
https://doi.org/10.1107/S2414314621010737/bx4019sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314621010737/bx4019Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314621010737/bx4019Isup3.mol
Data collection: CrysAlis PRO (Rigaku OD, 2019); cell
CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).[Ag(C6H6N2O)2](CF3O3S)·2C2H3N) | Z = 2 |
Mr = 583.30 | F(000) = 584 |
Triclinic, P1 | Dx = 1.788 Mg m−3 |
a = 9.4566 (2) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 11.0330 (3) Å | Cell parameters from 12499 reflections |
c = 11.9848 (3) Å | θ = 4.2–76.2° |
α = 114.000 (2)° | µ = 9.00 mm−1 |
β = 103.9287 (19)° | T = 100 K |
γ = 95.129 (2)° | Plate, clear colourless |
V = 1083.72 (5) Å3 | 0.27 × 0.10 × 0.07 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 4387 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 4211 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.044 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 76.5°, θmin = 4.2° |
ω scans | h = −10→11 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2019) | k = −13→13 |
Tmin = 0.544, Tmax = 1.000 | l = −15→14 |
24470 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.0394P)2 + 0.7P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.002 |
4387 reflections | Δρmax = 0.77 e Å−3 |
300 parameters | Δρmin = −0.78 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.33026 (2) | 0.42666 (2) | 0.38452 (2) | 0.01913 (7) | |
S1 | 0.80813 (6) | 0.92406 (6) | 0.27008 (6) | 0.01835 (13) | |
F1 | 0.59457 (16) | 1.01941 (15) | 0.16879 (15) | 0.0272 (3) | |
F3 | 0.77762 (19) | 1.00737 (17) | 0.09034 (15) | 0.0314 (4) | |
F2 | 0.80186 (19) | 1.16528 (15) | 0.27750 (16) | 0.0353 (4) | |
O2 | −0.13731 (19) | 0.48669 (17) | 0.77676 (16) | 0.0195 (3) | |
O1 | 0.68870 (19) | 0.28645 (17) | −0.09989 (16) | 0.0209 (4) | |
O5 | 0.96843 (19) | 0.96695 (17) | 0.31236 (17) | 0.0238 (4) | |
O3 | 0.7525 (2) | 0.79175 (17) | 0.16192 (18) | 0.0263 (4) | |
N3 | 0.1996 (2) | 0.40757 (19) | 0.50408 (18) | 0.0151 (4) | |
N1 | 0.4587 (2) | 0.4184 (2) | 0.25573 (18) | 0.0156 (4) | |
O4 | 0.7400 (2) | 0.9518 (2) | 0.37019 (19) | 0.0350 (5) | |
N2 | 0.7732 (2) | 0.5144 (2) | −0.0006 (2) | 0.0191 (4) | |
H2A | 0.822879 | 0.511950 | −0.054633 | 0.023* | |
H2B | 0.774705 | 0.592520 | 0.062122 | 0.023* | |
N4 | −0.1246 (2) | 0.2695 (2) | 0.73398 (19) | 0.0184 (4) | |
H4A | −0.184009 | 0.264893 | 0.779082 | 0.022* | |
H4B | −0.088239 | 0.198602 | 0.695256 | 0.022* | |
N6 | 0.1601 (2) | 0.1602 (2) | 0.1866 (2) | 0.0262 (5) | |
N5 | 0.4275 (3) | 0.7251 (2) | 0.5268 (2) | 0.0325 (5) | |
C9 | 0.0129 (2) | 0.3874 (2) | 0.6467 (2) | 0.0150 (4) | |
C3 | 0.6141 (2) | 0.4105 (2) | 0.0827 (2) | 0.0149 (4) | |
C2 | 0.5905 (3) | 0.5331 (2) | 0.1669 (2) | 0.0164 (5) | |
H2 | 0.627509 | 0.615873 | 0.166627 | 0.020* | |
C10 | 0.0835 (2) | 0.5137 (2) | 0.6652 (2) | 0.0150 (4) | |
H10 | 0.068538 | 0.594775 | 0.726905 | 0.018* | |
C8 | 0.0393 (3) | 0.2713 (2) | 0.5556 (2) | 0.0167 (5) | |
H8 | −0.005429 | 0.183595 | 0.541580 | 0.020* | |
C11 | 0.1752 (3) | 0.5196 (2) | 0.5931 (2) | 0.0157 (4) | |
H11 | 0.223022 | 0.606106 | 0.606713 | 0.019* | |
C12 | −0.0895 (3) | 0.3837 (2) | 0.7243 (2) | 0.0158 (4) | |
C5 | 0.4811 (3) | 0.3005 (2) | 0.1740 (2) | 0.0174 (5) | |
H5 | 0.443286 | 0.219160 | 0.176380 | 0.021* | |
C6 | 0.6954 (3) | 0.3993 (2) | −0.0140 (2) | 0.0165 (5) | |
C1 | 0.5128 (3) | 0.5324 (2) | 0.2506 (2) | 0.0171 (5) | |
H1 | 0.496800 | 0.616240 | 0.307082 | 0.021* | |
C4 | 0.5567 (3) | 0.2924 (2) | 0.0869 (2) | 0.0165 (5) | |
H4 | 0.569408 | 0.206974 | 0.030278 | 0.020* | |
C7 | 0.1313 (3) | 0.2857 (2) | 0.4862 (2) | 0.0166 (5) | |
H7 | 0.147119 | 0.206188 | 0.423132 | 0.020* | |
C16 | 0.0818 (3) | 0.1753 (2) | 0.1065 (2) | 0.0220 (5) | |
C17 | −0.0166 (3) | 0.1959 (3) | 0.0045 (3) | 0.0261 (5) | |
H17A | −0.119652 | 0.152936 | −0.012235 | 0.039* | |
H17B | 0.012716 | 0.155320 | −0.073582 | 0.039* | |
H17C | −0.009032 | 0.293417 | 0.030980 | 0.039* | |
C14 | 0.5027 (3) | 0.8301 (3) | 0.5709 (3) | 0.0259 (6) | |
C13 | 0.7428 (3) | 1.0349 (2) | 0.1983 (2) | 0.0213 (5) | |
C15 | 0.6018 (3) | 0.9632 (3) | 0.6278 (3) | 0.0302 (6) | |
H15A | 0.642520 | 0.973096 | 0.563323 | 0.036* | |
H15B | 0.683648 | 0.971724 | 0.700319 | 0.036* | |
H15C | 0.545821 | 1.034243 | 0.657809 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.02101 (11) | 0.02377 (11) | 0.01987 (11) | 0.00738 (7) | 0.01347 (7) | 0.01206 (8) |
S1 | 0.0220 (3) | 0.0175 (3) | 0.0209 (3) | 0.0087 (2) | 0.0108 (2) | 0.0103 (2) |
F1 | 0.0224 (7) | 0.0293 (8) | 0.0322 (8) | 0.0106 (6) | 0.0075 (6) | 0.0153 (7) |
F3 | 0.0405 (9) | 0.0372 (9) | 0.0328 (9) | 0.0161 (7) | 0.0204 (7) | 0.0243 (7) |
F2 | 0.0379 (9) | 0.0142 (7) | 0.0423 (10) | 0.0057 (6) | 0.0000 (8) | 0.0083 (7) |
O2 | 0.0237 (9) | 0.0203 (8) | 0.0220 (8) | 0.0116 (7) | 0.0139 (7) | 0.0113 (7) |
O1 | 0.0266 (9) | 0.0191 (8) | 0.0220 (9) | 0.0069 (7) | 0.0151 (7) | 0.0093 (7) |
O5 | 0.0220 (9) | 0.0198 (8) | 0.0302 (10) | 0.0066 (7) | 0.0069 (7) | 0.0117 (7) |
O3 | 0.0290 (10) | 0.0154 (8) | 0.0335 (10) | 0.0036 (7) | 0.0094 (8) | 0.0100 (8) |
N3 | 0.0163 (9) | 0.0182 (9) | 0.0141 (9) | 0.0071 (7) | 0.0076 (7) | 0.0080 (8) |
N1 | 0.0157 (9) | 0.0194 (9) | 0.0153 (9) | 0.0062 (7) | 0.0073 (8) | 0.0092 (8) |
O4 | 0.0402 (12) | 0.0530 (13) | 0.0336 (11) | 0.0270 (10) | 0.0243 (9) | 0.0294 (10) |
N2 | 0.0229 (10) | 0.0198 (10) | 0.0190 (10) | 0.0041 (8) | 0.0137 (8) | 0.0089 (8) |
N4 | 0.0220 (10) | 0.0187 (10) | 0.0229 (10) | 0.0086 (8) | 0.0154 (8) | 0.0116 (8) |
N6 | 0.0259 (11) | 0.0295 (11) | 0.0251 (11) | 0.0045 (9) | 0.0108 (9) | 0.0125 (10) |
N5 | 0.0456 (15) | 0.0285 (13) | 0.0290 (12) | 0.0141 (11) | 0.0177 (11) | 0.0133 (10) |
C9 | 0.0143 (11) | 0.0192 (11) | 0.0139 (11) | 0.0049 (9) | 0.0044 (9) | 0.0093 (9) |
C3 | 0.0132 (10) | 0.0173 (11) | 0.0165 (11) | 0.0050 (8) | 0.0047 (9) | 0.0092 (9) |
C2 | 0.0174 (11) | 0.0175 (11) | 0.0178 (11) | 0.0058 (9) | 0.0069 (9) | 0.0098 (9) |
C10 | 0.0163 (11) | 0.0156 (10) | 0.0135 (10) | 0.0061 (8) | 0.0054 (9) | 0.0058 (9) |
C8 | 0.0178 (11) | 0.0167 (11) | 0.0184 (11) | 0.0047 (9) | 0.0075 (9) | 0.0091 (9) |
C11 | 0.0161 (11) | 0.0164 (11) | 0.0164 (11) | 0.0052 (8) | 0.0053 (9) | 0.0085 (9) |
C12 | 0.0151 (11) | 0.0198 (11) | 0.0147 (11) | 0.0057 (9) | 0.0055 (9) | 0.0088 (9) |
C5 | 0.0175 (11) | 0.0171 (11) | 0.0200 (12) | 0.0040 (9) | 0.0074 (9) | 0.0094 (9) |
C6 | 0.0143 (10) | 0.0207 (11) | 0.0180 (11) | 0.0068 (9) | 0.0057 (9) | 0.0107 (9) |
C1 | 0.0184 (11) | 0.0183 (11) | 0.0174 (11) | 0.0060 (9) | 0.0072 (9) | 0.0091 (9) |
C4 | 0.0177 (11) | 0.0169 (11) | 0.0162 (11) | 0.0054 (9) | 0.0074 (9) | 0.0070 (9) |
C7 | 0.0201 (11) | 0.0161 (11) | 0.0158 (11) | 0.0059 (9) | 0.0082 (9) | 0.0072 (9) |
C16 | 0.0253 (13) | 0.0204 (11) | 0.0227 (13) | 0.0038 (10) | 0.0143 (11) | 0.0081 (10) |
C17 | 0.0293 (14) | 0.0265 (13) | 0.0261 (13) | 0.0082 (11) | 0.0116 (11) | 0.0131 (11) |
C14 | 0.0328 (14) | 0.0335 (15) | 0.0226 (13) | 0.0188 (12) | 0.0154 (11) | 0.0170 (12) |
C13 | 0.0243 (12) | 0.0169 (11) | 0.0247 (13) | 0.0077 (9) | 0.0091 (10) | 0.0095 (10) |
C15 | 0.0310 (15) | 0.0315 (14) | 0.0327 (15) | 0.0113 (12) | 0.0126 (12) | 0.0162 (12) |
Ag1—N3 | 2.162 (2) | C9—C12 | 1.505 (3) |
Ag1—N1 | 2.162 (2) | C3—C2 | 1.396 (3) |
S1—O5 | 1.4442 (18) | C3—C6 | 1.510 (3) |
S1—O3 | 1.4433 (18) | C3—C4 | 1.390 (3) |
S1—O4 | 1.434 (2) | C2—H2 | 0.9500 |
S1—C13 | 1.831 (2) | C2—C1 | 1.380 (3) |
F1—C13 | 1.337 (3) | C10—H10 | 0.9500 |
F3—C13 | 1.333 (3) | C10—C11 | 1.378 (3) |
F2—C13 | 1.331 (3) | C8—H8 | 0.9500 |
O2—C12 | 1.240 (3) | C8—C7 | 1.380 (3) |
O1—C6 | 1.235 (3) | C11—H11 | 0.9500 |
N3—C11 | 1.348 (3) | C5—H5 | 0.9500 |
N3—C7 | 1.347 (3) | C5—C4 | 1.380 (3) |
N1—C5 | 1.346 (3) | C1—H1 | 0.9500 |
N1—C1 | 1.345 (3) | C4—H4 | 0.9500 |
N2—H2A | 0.8800 | C7—H7 | 0.9500 |
N2—H2B | 0.8800 | C16—C17 | 1.459 (4) |
N2—C6 | 1.338 (3) | C17—H17A | 0.9800 |
N4—H4A | 0.8800 | C17—H17B | 0.9800 |
N4—H4B | 0.8800 | C17—H17C | 0.9800 |
N4—C12 | 1.331 (3) | C14—C15 | 1.460 (4) |
N6—C16 | 1.144 (3) | C15—H15A | 0.9800 |
N5—C14 | 1.141 (4) | C15—H15B | 0.9800 |
C9—C10 | 1.395 (3) | C15—H15C | 0.9800 |
C9—C8 | 1.395 (3) | ||
N1—Ag1—N3 | 172.78 (7) | O2—C12—C9 | 118.8 (2) |
O5—S1—C13 | 103.79 (11) | N4—C12—C9 | 118.3 (2) |
O3—S1—O5 | 113.68 (11) | N1—C5—H5 | 118.5 |
O3—S1—C13 | 101.70 (11) | N1—C5—C4 | 122.9 (2) |
O4—S1—O5 | 115.49 (12) | C4—C5—H5 | 118.5 |
O4—S1—O3 | 116.01 (13) | O1—C6—N2 | 123.2 (2) |
O4—S1—C13 | 103.62 (11) | O1—C6—C3 | 119.5 (2) |
C11—N3—Ag1 | 119.93 (16) | N2—C6—C3 | 117.3 (2) |
C7—N3—Ag1 | 121.89 (15) | N1—C1—C2 | 123.0 (2) |
C7—N3—C11 | 118.0 (2) | N1—C1—H1 | 118.5 |
C5—N1—Ag1 | 122.04 (16) | C2—C1—H1 | 118.5 |
C1—N1—Ag1 | 120.28 (16) | C3—C4—H4 | 120.3 |
C1—N1—C5 | 117.6 (2) | C5—C4—C3 | 119.4 (2) |
H2A—N2—H2B | 120.0 | C5—C4—H4 | 120.3 |
C6—N2—H2A | 120.0 | N3—C7—C8 | 122.9 (2) |
C6—N2—H2B | 120.0 | N3—C7—H7 | 118.5 |
H4A—N4—H4B | 120.0 | C8—C7—H7 | 118.5 |
C12—N4—H4A | 120.0 | N6—C16—C17 | 179.3 (3) |
C12—N4—H4B | 120.0 | C16—C17—H17A | 109.5 |
C10—C9—C12 | 118.3 (2) | C16—C17—H17B | 109.5 |
C8—C9—C10 | 118.2 (2) | C16—C17—H17C | 109.5 |
C8—C9—C12 | 123.5 (2) | H17A—C17—H17B | 109.5 |
C2—C3—C6 | 123.5 (2) | H17A—C17—H17C | 109.5 |
C4—C3—C2 | 117.9 (2) | H17B—C17—H17C | 109.5 |
C4—C3—C6 | 118.5 (2) | N5—C14—C15 | 178.8 (3) |
C3—C2—H2 | 120.5 | F1—C13—S1 | 110.99 (17) |
C1—C2—C3 | 119.1 (2) | F3—C13—S1 | 111.58 (16) |
C1—C2—H2 | 120.5 | F3—C13—F1 | 107.2 (2) |
C9—C10—H10 | 120.3 | F2—C13—S1 | 111.75 (17) |
C11—C10—C9 | 119.4 (2) | F2—C13—F1 | 107.49 (19) |
C11—C10—H10 | 120.3 | F2—C13—F3 | 107.6 (2) |
C9—C8—H8 | 120.5 | C14—C15—H15A | 109.5 |
C7—C8—C9 | 118.9 (2) | C14—C15—H15B | 109.5 |
C7—C8—H8 | 120.5 | C14—C15—H15C | 109.5 |
N3—C11—C10 | 122.6 (2) | H15A—C15—H15B | 109.5 |
N3—C11—H11 | 118.7 | H15A—C15—H15C | 109.5 |
C10—C11—H11 | 118.7 | H15B—C15—H15C | 109.5 |
O2—C12—N4 | 122.8 (2) | ||
Ag1—N3—C11—C10 | 174.85 (16) | C2—C3—C4—C5 | −0.8 (3) |
Ag1—N3—C7—C8 | −175.54 (17) | C10—C9—C8—C7 | −1.2 (3) |
Ag1—N1—C5—C4 | 176.85 (17) | C10—C9—C12—O2 | 17.8 (3) |
Ag1—N1—C1—C2 | −177.40 (17) | C10—C9—C12—N4 | −162.0 (2) |
O5—S1—C13—F1 | −172.06 (16) | C8—C9—C10—C11 | 0.4 (3) |
O5—S1—C13—F3 | 68.43 (19) | C8—C9—C12—O2 | −161.1 (2) |
O5—S1—C13—F2 | −52.1 (2) | C8—C9—C12—N4 | 19.1 (3) |
O3—S1—C13—F1 | 69.70 (18) | C11—N3—C7—C8 | −0.6 (3) |
O3—S1—C13—F3 | −49.8 (2) | C12—C9—C10—C11 | −178.5 (2) |
O3—S1—C13—F2 | −170.33 (18) | C12—C9—C8—C7 | 177.7 (2) |
N1—C5—C4—C3 | 0.6 (3) | C5—N1—C1—C2 | −0.7 (3) |
O4—S1—C13—F1 | −51.0 (2) | C6—C3—C2—C1 | 179.0 (2) |
O4—S1—C13—F3 | −170.54 (18) | C6—C3—C4—C5 | −179.5 (2) |
O4—S1—C13—F2 | 68.9 (2) | C1—N1—C5—C4 | 0.2 (3) |
C9—C10—C11—N3 | 0.3 (3) | C4—C3—C2—C1 | 0.4 (3) |
C9—C8—C7—N3 | 1.3 (3) | C4—C3—C6—O1 | 11.6 (3) |
C3—C2—C1—N1 | 0.4 (3) | C4—C3—C6—N2 | −167.8 (2) |
C2—C3—C6—O1 | −167.0 (2) | C7—N3—C11—C10 | −0.2 (3) |
C2—C3—C6—N2 | 13.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O2i | 0.88 | 2.06 | 2.898 (3) | 160 |
N2—H2B···O3 | 0.88 | 2.09 | 2.939 (3) | 162 |
N4—H4A···O1ii | 0.88 | 2.05 | 2.927 (3) | 171 |
N4—H4B···O5iii | 0.88 | 2.22 | 3.033 (3) | 154 |
Symmetry codes: (i) x+1, y, z−1; (ii) x−1, y, z+1; (iii) −x+1, −y+1, −z+1. |
Acknowledgements
We are thankful for the support of the Department of Chemistry and Biochemistry at the University of the Incarnate Word and the X-ray Diffraction Laboratory at The University of Texas at San Antonio.
Funding information
Funding for this research was provided by: The Welch Foundation (award No. BN0032).
References
Aakeröy, C. B. & Beatty, A. M. (1998). Cryst. Eng. 1, 39–49. Google Scholar
Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (1998). J. Chem. Soc. Dalton Trans. pp. 1943–1946. Google Scholar
Abu-Youssef, M. A., Dey, R., Gohar, Y., Massoud, A. A. A., Öhrström, L. & Langer, V. (2007). Inorg. Chem. 46, 5893–5903. PubMed CAS Google Scholar
Alkorta, I., Trujillo, C., Sánchez-Sanz, G. & Elguero, J. (2020). Crystals, 10, 137. CrossRef Google Scholar
Bhogala, B. R., Thallapally, P. K. & Nangia, A. (2004). Cryst. Growth Des. 4, 215–218. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Lian, Z. X., Cai, J., Chen, C. H. & Luo, H. B. (2007). CrystEngComm, 9, 319–327. CSD CrossRef CAS Google Scholar
Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Titov, A. A., Filippov, O. A., Smol'yakov, A. F., Baranova, K. F., Titova, E. M., Averin, A. A. & Shubina, E. S. (2019). Eur. J. Inorg. Chem. pp. 821–827. CSD CrossRef Google Scholar
Titov, A. A., Smol'yakov, A. F., Baranova, K. F., Filippov, O. A. & Shubina, E. S. (2018). Mendeleev Commun. 28, 387–389. CSD CrossRef CAS Google Scholar
Yeşilel, O. Z., Günay, G., Semerci, F. & Erkmen, D. (2012). Z. Kristallogr. Cryst. Mater. 227, 694–701. Google Scholar
Yu, X. Y., Zhang, R., Li, S. L., Yu, S. H., Gao, L., Yan, W. F., Jin, J. & Luo, Y. N. (2020). Inorg. Chem. Commun. 116, 107897. CSD CrossRef Google Scholar
Zierkiewicz, W., Michalczyk, M. & Scheiner, S. (2018). Phys. Chem. Chem. Phys. 20, 22498–22509. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.