metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(4-Benzyl-1-methyl-1,2,4-triazol-5-yl­­idene)[(1,2,5,6-η)-cyclo­octa-1,5-diene](tri­phenyl­phosphane-κP)iridium(I) tetra­fluorido­borate

crossmark logo

aDepartment of Chemistry, Millersville University, Millersville PA, 17551, USA, and bDepartment of Chemistry and Biochemistry, The University of Arizona, Tuscon, AZ, 85716, USA
*Correspondence e-mail: edward.rajaseelan@millersville.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 August 2021; accepted 12 August 2021; online 17 August 2021)

A new triazole-based N-heterocyclic carbene iridium(I) cationic complex with a tetra­fluorido­borate counter-anion, [Ir(C10H11N3)(C8H12)(C18H15P)]BF4, has been synthesized and structurally characterized. The cationic complex exhibits a distorted square-planar environment around the IrI ion. One significant non-standard hydrogen-bonding inter­action exists between a hydrogen atom on the N-heterocyclic carbene ligand and a fluorine atom from the counter-ion, BF4. In the crystal, ππ stacking inter­actions are observed between one of the phenyl rings and the triazole ring. Both inter­molecular and intra­molecular C—H⋯π(ring) inter­actions are also observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Transition-metal complexes containing N-heterocyclic carbene (NHC) ligands are of inter­est for their many useful applications in synthesis and catalysis (Díez-González et al., 2009[Díez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612-3676.]; Herrmann, 2002[Herrmann, W. A. (2002). Angew. Chem. Int. Ed., 41, 1290-1309.]; Ruff et al., 2016[Ruff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327-335.]; Zuo et al., 2014[Zuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791-5801.]; Albrecht et al., 2002[Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596-3604.]; Gnanamgari et al., 2007[Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226-1230.]). The NHC ligands can be tuned sterically and electronically by having different substituents on the nitro­gen atoms (Gusev, 2009[Gusev, D. G. (2009). Organometallics, 28, 6458-6461.]). Many imidazole- and triazole-based NHC rhodium and iridium complexes have been synthesized and structurally characterized (Herrmann et al., 2006[Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437-2448.]; Wang & Lin, 1998[Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972-975.]; Chianese et al., 2004[Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461-2468.]; Nichol et al., 2009[Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem., pp. 4320-4328.], 2010[Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.], 2011[Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860-m1861.], 2012[Nichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158-m159.]; Idrees et al., 2017a[Idrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.],b[Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.]; Rood et al., 2021[Rood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.]).

The mol­ecular structure of the title salt, [Ir(C10H11N3)(C8H12)(C18H15P)]BF4 (4), comprises an IrI cation complex and a tetra­fluorido­borate counter-anion, illustrated in Fig. 1[link]. The coordination environment around the IrI ion, formed by the bidentate cyclo­octa-1,5-diene (COD), NHC, and tri­phenyl­phosphane ligands, results in a distorted square-planar environment. The Ir—C19(NHC) bond length is 2.039 (3) Å. The carbene(C19)—Ir—P bond angle is 89.52 (9)°. The carbene atom, C19, deviates from the expected bond angle of an sp2 hybridized atom with an N1—C19—N3 angle of 102.6 (3)°.

[Figure 1]
Figure 1
The mol­ecular entities in the crystal structure of the title compound (4). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2[link] shows the crystal packing of the complex. There is one non-covalent F⋯H inter­action between F2 of the tetra­fluorido­borate anion and H20, which is connected to C20(NHC), that is significantly shorter than the sum of the van der Waals radii (Fig. 2[link], Table 1[link]). An intra­molecular distorted parallel ππ stacking inter­action is observed between the triazole ring and one of the phenyl rings (C7–C12) at the phosphane (Fig. 3[link]) with an inter­centroid distance of 3.682 (2) Å and a slippage of 1.584 Å. The dihedral angle between the triazole and the phenyl phosphane ring planes is 13.0 (2)°. Both intra­molecular and inter­molecular C—H⋯π(ring) inter­actions impact the orientations of phenyl rings. The COD ligand and the phenyl wingtip of the triazole are oriented via an intra­molecular C32—H32⋯π [phenyl wingtip of triazole; (C23–C28)] inter­action that has an H⋯centroid distance of 2.88 Å and a C—H⋯centroid angle of 133°. Inter­molecular, distorted perpendicular T-shaped orientations are observed between phenyl rings (Fig. 4[link]). The (C7–C12) ring at the phosphane and the wingtip (C23–C28) phenyl ring show a nearly perpendicular orientation (Fig. 4[link]a) with a dihedral angle between the two ring planes of 85.98 (18)°; however, this orientation is not directly associated with C—H⋯π inter­actions. An inter­molecular C9—H9⋯π[phenyl C1(phosphane)] inter­action has an H⋯centroid distance of 2.77 Å and a C—H⋯centroid angle of 153° (Fig. 4[link]b).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C20—H20⋯F2i 0.95 2.29 3.131 (4) 147
Symmetry code: (i) [-x+1, -y+1, -z].
[Figure 2]
Figure 2
Crystal packing unit-cell diagram of the title compound (4). Non-covalent inter­actions are shown as dotted green lines.
[Figure 3]
Figure 3
View of the title compound (4) showing a distorted inter­molecular parallel inter­action between a phenyl ring (C7) of the tri­phenyl­phosphane ligand and the NHC ring.
[Figure 4]
Figure 4
Views of inter­molecular inter­actions of the title compound (4) showing T-shaped, distorted perpendicular inter­actions. (a) View of the near perpendicular orientation of a phenyl ring (C7) of the tri­phenyl­phosphane ligand on one moiety and the phenyl ring (C23) attached to the NHC ligand; (b) view of distorted perpendicular arranged phenyl rings that are influenced by the C9—H9⋯π[phenyl ring(C1)] inter­molecular inter­actions.

Synthesis and crystallization

1-Methyl triazole (1) was purchased from Matrix Scientific. All other compounds used in the syntheses as shown in Fig. 5[link] were obtained from Sigma–Aldrich and Strem and used as received; all syntheses were performed under a nitro­gen atmosphere. NMR spectra were recorded at room temperature in CDCl3 on a 400 MHz (operating at 162 MHz for 31P) Varian spectrometer and referenced to the residual solvent peak (δ in ppm).

[Figure 5]
Figure 5
Reaction scheme showing the synthesis of the N-heterocyclic carbene (2) and the subsequent formation of the title ionic compound (4).

1-Methyl-4-benzyl-1,2,4-triazolium bromide (2): 1-Methyl-1,2,4-triazole (1) (1.230 g, 14.80 mmol) and benzyl bromide (5.010 g, 29.29 mmol) were added to toluene (10 ml) and the mixture was refluxed for 48 h. Once cooled, ether was added and the product was filtered off as a white powder, yield: 2.78 g (57%). 1H NMR: δ 11.62 (s, 1 H, N—C5H—N), 8.71 (s, 1 H, N—C3—N), 7.62–7.60 (m, 2 H, Harom), 7.15–7.26 (m, 3 H, Harom), 5.83 (s, 2 H, CH2Ph), 4.22 (s, 3 H, CH3) 13C NMR: δ 143.52 (N—CH—N), 142.65 (N—CH—N), 131.56, 130.09, 129.79, 129.40 (Carom), 52.32 (CH2Ph), 39.62 (CH3).

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](1-methyl-4-benzyl-1,2,4-triazol-5-yl­idene)chloro­iridium (3): Triazolium bromide (2) (51.92 mg, 0.298 mmol) and Ag2O (34.53 mg, 0.149 mmol) were stirred under dark conditions for 1.5 h in CH2Cl2 (10 ml). The mixture was then filtered through Celite into [Ir(COD)Cl]2 (100 mg, 0.149 mmol) and stirred in the dark for 1.5 h. The resulting solution was filtered through Celite and the solvent was removed under reduced pressure. The orange solid product (3) was placed under vacuum to dry, yield: 132 mg (100%). 1H NMR: δ 7.71 (s, 1 H, N–C3H–N), 7.38–7.31 (m, 5 H, Harom), 5.68 (m, 2 H, CHCOD), 5.29 (s, 2 H, CH2Ph), 4.73 (m, 2 H, CHCOD), 4.14 (s, 3 H, CH3), 3.03–2.75 [m, 2 H, (CH2)COD], 2.25 [m, 2 H, (CH2)COD], 2.10 [m, 2 H, (CH2)COD], 1.98–1.85 [m, 2 H, (CH2)COD]. 13C NMR: δ 183.13 (Ir—C), 141.63 (N—C3H—N), 129.20, 128.99, 128.79, 128.45 (Carom), 87.05, 86.71, 52.10, 52.05 (CHCOD), 52.69 (CH2Ph), 39.60 (CH3), 33.80, 33.13, 29.68, 29.15 (CH2)COD.

(4-Benzyl-1-methyl-1,2,4-triazol-5-yl­idene)[(1,2,5,6-η)-cyclo­octa-1,5-diene](tri­phenyl­phosphane-κP)iridium(I) tetra­fluorido­borate (4): Tri­phenyl­phosphane (80.8 mg, 0.308 mmol) and AgBF4 (59.95 mg, 0.308 mmol) were added directly to (3) (132 mg, 0.308 mmol) in CH2Cl2 (10 ml). The solution was stirred under dark conditions for 1.5 h. The mixture was filtered through Celite, and the solvent was removed under reduced pressure. The bright-orange solid product (4) was dried under vacuum, yield: 210 mg (91.7%). 1H NMR: δ 7.89 (s, 1 H, N—C3H—N) 7.53–7.26 (m, 20 H, Harom), 5.29 (s, 2 H, CH2Ph), 5.38, 5.34, 4.85, 4.82 (m, 4 H, CHCOD), 3.69 (s, 3 H, CH3), 2.33 [m, 5 H, (CH2)COD], 2.08 [m, 3 H, (CH2)COD]. 13C NMR: δ 179.25 (Ir—C), 143.65 (N—C3H—N), 134.23–133.71 (Carom), 88.28, 88.17, 86.24, 86.12 (CHCOD), 52.02 (CH2Ph), 39.76 (CH3), 31.97, 31.44, 30.24, 29.82 (CH2)COD. 31P NMR: δ 17.08.

The title compound (4) was crystallized by slow diffusion of pentane into a CH2Cl2 solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ir(C10H11N3)(C8H12)(C18H15P)]BF4
Mr 822.67
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.7158 (17), 13.075 (2), 13.2554 (19)
α, β, γ (°) 77.680 (5), 78.110 (5), 67.114 (6)
V3) 1655.9 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.13
Crystal size (mm) 0.20 × 0.09 × 0.04
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.596, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 67109, 6342, 5672
Rint 0.059
(sin θ/λ)max−1) 0.612
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.052, 1.05
No. of reflections 6342
No. of parameters 416
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.26, −0.46
Computer programs: SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), APEX2 (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: SAINT (Bruker, 2013); cell refinement: APEX2 (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(4-Benzyl-1-methyl-1,2,4-triazol-5-ylidene)[(1,2,5,6-η)-cycloocta-1,5-diene](triphenylphosphane-κP)iridium(I) tetrafluoridoborate top
Crystal data top
[Ir(C10H11N3)(C8H12)(C18H15P)]BF4Z = 2
Mr = 822.67F(000) = 816
Triclinic, P1Dx = 1.650 Mg m3
a = 10.7158 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.075 (2) ÅCell parameters from 9445 reflections
c = 13.2554 (19) Åθ = 2.4–25.7°
α = 77.680 (5)°µ = 4.13 mm1
β = 78.110 (5)°T = 100 K
γ = 67.114 (6)°Plate, clear light red
V = 1655.9 (4) Å30.20 × 0.09 × 0.04 mm
Data collection top
Bruker APEXII CCD
diffractometer
5672 reflections with I > 2σ(I)
φ and ω scansRint = 0.059
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.8°, θmin = 1.6°
Tmin = 0.596, Tmax = 0.745h = 1313
67109 measured reflectionsk = 1515
6342 independent reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0247P)2 + 1.1818P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
6342 reflectionsΔρmax = 1.26 e Å3
416 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.34407 (2)0.83541 (2)0.28200 (2)0.01759 (5)
P10.12536 (8)0.83532 (7)0.28916 (6)0.01633 (17)
F20.4434 (2)0.39812 (19)0.15141 (17)0.0457 (6)
F10.3358 (3)0.43725 (18)0.31219 (16)0.0488 (6)
F40.4370 (2)0.25669 (18)0.2837 (2)0.0513 (6)
F30.2451 (2)0.3691 (2)0.21395 (18)0.0550 (7)
N10.3451 (3)0.9438 (2)0.0525 (2)0.0207 (6)
N30.4149 (3)0.7670 (2)0.0628 (2)0.0203 (6)
N20.3729 (3)0.9230 (2)0.0497 (2)0.0254 (6)
C190.3684 (3)0.8500 (3)0.1236 (2)0.0183 (7)
C70.1030 (3)0.7845 (3)0.1776 (2)0.0179 (7)
C320.5665 (3)0.7983 (3)0.2821 (3)0.0253 (8)
H320.6266000.7683290.2185370.030*
C120.1238 (3)0.6723 (3)0.1783 (2)0.0216 (7)
H120.1328830.6221090.2421160.026*
C10.0069 (3)0.9751 (3)0.2855 (2)0.0178 (7)
C140.1431 (3)0.6395 (3)0.4289 (2)0.0214 (7)
H140.2289320.6079760.3882060.026*
C130.0628 (3)0.7527 (3)0.4041 (2)0.0185 (7)
C170.1060 (4)0.7313 (3)0.5514 (3)0.0259 (8)
H170.1906980.7627920.5934550.031*
C80.0849 (3)0.8575 (3)0.0824 (2)0.0203 (7)
H80.0688200.9346690.0801990.024*
C30.0835 (4)1.1709 (3)0.3063 (2)0.0245 (8)
H30.0646321.2317980.3192690.029*
C90.0902 (3)0.8179 (3)0.0080 (2)0.0227 (7)
H90.0765550.8683030.0715100.027*
C20.0192 (3)1.0652 (3)0.3053 (2)0.0218 (7)
H20.1078751.0543150.3182140.026*
C360.3090 (4)0.8736 (3)0.4425 (2)0.0252 (8)
H360.2104180.9025500.4729810.030*
C240.7091 (4)0.6176 (3)0.0575 (3)0.0295 (8)
H240.6910060.6630400.0079340.035*
C150.0973 (4)0.5734 (3)0.5127 (3)0.0274 (8)
H150.1513180.4962860.5284670.033*
C160.0268 (4)0.6188 (3)0.5739 (3)0.0290 (8)
H160.0573650.5727760.6311370.035*
C180.0605 (3)0.7981 (3)0.4664 (2)0.0217 (7)
H180.1144960.8753580.4510640.026*
C270.7615 (4)0.4819 (3)0.2459 (3)0.0293 (8)
H270.7804850.4335620.3098450.035*
C330.4969 (3)0.9138 (3)0.2672 (3)0.0249 (8)
H330.5175030.9514170.1951530.030*
C40.2130 (4)1.1872 (3)0.2885 (2)0.0256 (8)
H40.2832081.2591210.2898320.031*
C50.2409 (3)1.0984 (3)0.2686 (2)0.0219 (7)
H50.3300691.1099590.2565150.026*
C60.1389 (3)0.9931 (3)0.2665 (2)0.0210 (7)
H60.1581220.9330560.2520590.025*
C100.1153 (3)0.7053 (3)0.0066 (3)0.0264 (8)
H100.1214400.6780080.0690570.032*
C200.4150 (3)0.8144 (3)0.0389 (3)0.0256 (8)
H200.4428050.7728120.0954300.031*
C230.6015 (3)0.5949 (3)0.1266 (3)0.0253 (8)
C220.4580 (3)0.6446 (3)0.1003 (3)0.0235 (7)
H22A0.4515090.6063480.0456870.028*
H22B0.3947300.6309620.1629380.028*
C210.2877 (4)1.0604 (3)0.0705 (3)0.0276 (8)
H21A0.3523501.0977570.0367390.041*
H21B0.2706881.0630870.1455520.041*
H21C0.2014761.0988400.0411470.041*
C350.3892 (4)0.9431 (3)0.4535 (3)0.0304 (8)
H35A0.4618950.8962980.4971870.036*
H35B0.3272281.0069220.4900350.036*
C110.1313 (4)0.6327 (3)0.0871 (3)0.0269 (8)
H110.1474330.5556110.0888510.032*
C340.4544 (4)0.9885 (3)0.3492 (3)0.0331 (9)
H34A0.3886071.0624630.3229740.040*
H34B0.5358271.0005690.3606820.040*
C310.6165 (4)0.7308 (3)0.3840 (3)0.0317 (9)
H31A0.6362070.7793550.4217150.038*
H31B0.7029750.6678230.3683600.038*
C290.3652 (4)0.7579 (3)0.4454 (3)0.0305 (8)
H290.2989590.7193620.4774330.037*
C280.6297 (4)0.5259 (3)0.2215 (3)0.0305 (8)
H280.5583530.5092680.2691370.037*
C250.8396 (4)0.5758 (3)0.0823 (3)0.0356 (9)
H250.9109960.5929790.0351680.043*
C300.5129 (4)0.6837 (3)0.4547 (3)0.0379 (10)
H30A0.5295450.6090860.4374500.045*
H30B0.5282500.6731060.5280220.045*
C260.8661 (4)0.5072 (3)0.1787 (3)0.0360 (9)
H260.9556890.4783810.1975240.043*
B10.3653 (4)0.3650 (3)0.2407 (3)0.0281 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01833 (7)0.02064 (7)0.01524 (7)0.00768 (5)0.00406 (5)0.00269 (5)
P10.0179 (4)0.0173 (4)0.0148 (4)0.0073 (3)0.0025 (3)0.0024 (3)
F20.0573 (15)0.0482 (14)0.0381 (13)0.0324 (12)0.0197 (11)0.0193 (11)
F10.0662 (17)0.0370 (13)0.0301 (12)0.0019 (12)0.0027 (11)0.0138 (10)
F40.0429 (14)0.0252 (12)0.0688 (17)0.0010 (11)0.0017 (12)0.0032 (11)
F30.0442 (15)0.088 (2)0.0366 (13)0.0345 (14)0.0070 (11)0.0061 (13)
N10.0186 (14)0.0229 (15)0.0180 (14)0.0061 (12)0.0021 (11)0.0005 (11)
N30.0175 (14)0.0228 (15)0.0179 (14)0.0035 (12)0.0021 (11)0.0049 (11)
N20.0236 (15)0.0374 (18)0.0144 (14)0.0113 (14)0.0005 (11)0.0034 (12)
C190.0106 (15)0.0245 (18)0.0196 (16)0.0064 (13)0.0019 (13)0.0032 (14)
C70.0135 (15)0.0224 (17)0.0185 (16)0.0072 (13)0.0026 (12)0.0031 (13)
C320.0130 (16)0.037 (2)0.0281 (18)0.0064 (15)0.0045 (14)0.0129 (15)
C120.0253 (18)0.0220 (17)0.0194 (16)0.0091 (14)0.0073 (14)0.0018 (13)
C10.0199 (17)0.0190 (17)0.0136 (15)0.0070 (13)0.0014 (13)0.0016 (12)
C140.0248 (18)0.0242 (18)0.0168 (16)0.0095 (15)0.0038 (13)0.0041 (13)
C130.0249 (18)0.0190 (17)0.0148 (15)0.0107 (14)0.0065 (13)0.0002 (13)
C170.0262 (19)0.034 (2)0.0208 (17)0.0163 (16)0.0002 (14)0.0044 (15)
C80.0205 (17)0.0216 (17)0.0197 (16)0.0101 (14)0.0016 (13)0.0010 (13)
C30.032 (2)0.0219 (18)0.0202 (17)0.0085 (15)0.0039 (15)0.0074 (14)
C90.0218 (18)0.0299 (19)0.0150 (16)0.0087 (15)0.0036 (13)0.0006 (14)
C20.0247 (18)0.0228 (18)0.0190 (16)0.0090 (14)0.0037 (14)0.0036 (13)
C360.0250 (18)0.043 (2)0.0109 (15)0.0148 (16)0.0001 (13)0.0082 (14)
C240.030 (2)0.028 (2)0.0290 (19)0.0052 (16)0.0065 (16)0.0095 (15)
C150.041 (2)0.0196 (18)0.0247 (18)0.0127 (16)0.0126 (16)0.0010 (14)
C160.040 (2)0.036 (2)0.0178 (17)0.0239 (18)0.0052 (16)0.0031 (15)
C180.0247 (18)0.0231 (18)0.0166 (16)0.0084 (14)0.0027 (14)0.0023 (13)
C270.034 (2)0.0157 (17)0.038 (2)0.0018 (15)0.0210 (17)0.0021 (15)
C330.0254 (19)0.034 (2)0.0228 (17)0.0188 (16)0.0012 (14)0.0067 (15)
C40.032 (2)0.0196 (18)0.0181 (17)0.0015 (15)0.0040 (14)0.0017 (13)
C50.0211 (17)0.0265 (18)0.0130 (15)0.0064 (15)0.0013 (13)0.0021 (13)
C60.0258 (18)0.0242 (18)0.0140 (16)0.0119 (15)0.0016 (13)0.0001 (13)
C100.0295 (19)0.033 (2)0.0207 (17)0.0122 (16)0.0027 (15)0.0118 (15)
C200.0189 (17)0.035 (2)0.0193 (17)0.0065 (15)0.0002 (14)0.0062 (15)
C230.0242 (18)0.0250 (19)0.0290 (19)0.0075 (15)0.0024 (15)0.0126 (15)
C220.0213 (18)0.0225 (18)0.0265 (18)0.0067 (14)0.0035 (14)0.0056 (14)
C210.0285 (19)0.0248 (19)0.0276 (19)0.0092 (16)0.0041 (15)0.0003 (15)
C350.031 (2)0.038 (2)0.0280 (19)0.0140 (17)0.0000 (16)0.0173 (16)
C110.030 (2)0.0226 (18)0.0320 (19)0.0102 (15)0.0076 (16)0.0074 (15)
C340.038 (2)0.034 (2)0.037 (2)0.0190 (18)0.0045 (17)0.0126 (17)
C310.0222 (19)0.034 (2)0.036 (2)0.0003 (16)0.0154 (16)0.0083 (17)
C290.039 (2)0.044 (2)0.0149 (17)0.0227 (18)0.0137 (15)0.0059 (15)
C280.037 (2)0.0237 (19)0.032 (2)0.0105 (16)0.0053 (16)0.0071 (15)
C250.024 (2)0.048 (2)0.043 (2)0.0145 (18)0.0019 (17)0.0251 (19)
C300.044 (2)0.034 (2)0.035 (2)0.0083 (19)0.0227 (19)0.0001 (17)
C260.023 (2)0.036 (2)0.050 (2)0.0000 (17)0.0159 (18)0.0173 (19)
B10.028 (2)0.027 (2)0.024 (2)0.0063 (18)0.0014 (17)0.0040 (17)
Geometric parameters (Å, º) top
Ir1—P12.3264 (9)C36—C291.389 (5)
Ir1—C192.039 (3)C24—H240.9500
Ir1—C322.241 (3)C24—C231.403 (5)
Ir1—C362.212 (3)C24—C251.372 (5)
Ir1—C332.204 (3)C15—H150.9500
Ir1—C292.204 (3)C15—C161.387 (5)
P1—C71.837 (3)C16—H160.9500
P1—C11.823 (3)C18—H180.9500
P1—C131.838 (3)C27—H270.9500
F2—B11.394 (5)C27—C281.381 (5)
F1—B11.385 (5)C27—C261.383 (5)
F4—B11.382 (5)C33—H331.0000
F3—B11.383 (5)C33—C341.499 (5)
N1—N21.387 (4)C4—H40.9500
N1—C191.349 (4)C4—C51.392 (5)
N1—C211.458 (4)C5—H50.9500
N3—C191.364 (4)C5—C61.387 (4)
N3—C201.358 (4)C6—H60.9500
N3—C221.485 (4)C10—H100.9500
N2—C201.297 (4)C10—C111.390 (5)
C7—C121.394 (4)C20—H200.9500
C7—C81.408 (4)C23—C221.502 (5)
C32—H321.0000C23—C281.395 (5)
C32—C331.390 (5)C22—H22A0.9900
C32—C311.520 (5)C22—H22B0.9900
C12—H120.9500C21—H21A0.9800
C12—C111.389 (5)C21—H21B0.9800
C1—C21.399 (4)C21—H21C0.9800
C1—C61.408 (4)C35—H35A0.9900
C14—H140.9500C35—H35B0.9900
C14—C131.399 (4)C35—C341.526 (5)
C14—C151.384 (5)C11—H110.9500
C13—C181.389 (4)C34—H34A0.9900
C17—H170.9500C34—H34B0.9900
C17—C161.385 (5)C31—H31A0.9900
C17—C181.399 (4)C31—H31B0.9900
C8—H80.9500C31—C301.532 (5)
C8—C91.387 (4)C29—H291.0000
C3—H30.9500C29—C301.515 (5)
C3—C21.393 (5)C28—H280.9500
C3—C41.382 (5)C25—H250.9500
C9—H90.9500C25—C261.407 (5)
C9—C101.387 (5)C30—H30A0.9900
C2—H20.9500C30—H30B0.9900
C36—H361.0000C26—H260.9500
C36—C351.518 (5)
C19—Ir1—P189.52 (9)C28—C27—C26121.0 (3)
C19—Ir1—C3292.03 (12)C26—C27—H27119.5
C19—Ir1—C36162.76 (13)Ir1—C33—H33113.9
C19—Ir1—C3389.07 (12)C32—C33—Ir173.19 (19)
C19—Ir1—C29159.50 (13)C32—C33—H33113.9
C32—Ir1—P1168.59 (9)C32—C33—C34125.5 (3)
C36—Ir1—P194.42 (9)C34—C33—Ir1108.8 (2)
C36—Ir1—C3287.42 (12)C34—C33—H33113.9
C33—Ir1—P1154.95 (9)C3—C4—H4119.9
C33—Ir1—C3236.44 (13)C3—C4—C5120.2 (3)
C33—Ir1—C3680.27 (12)C5—C4—H4119.9
C33—Ir1—C2994.84 (13)C4—C5—H5119.9
C29—Ir1—P195.18 (10)C6—C5—C4120.2 (3)
C29—Ir1—C3279.59 (13)C6—C5—H5119.9
C29—Ir1—C3636.67 (13)C1—C6—H6119.9
C7—P1—Ir1113.78 (10)C5—C6—C1120.2 (3)
C7—P1—C13104.54 (14)C5—C6—H6119.9
C1—P1—Ir1113.37 (11)C9—C10—H10120.3
C1—P1—C7102.82 (14)C9—C10—C11119.4 (3)
C1—P1—C13104.00 (14)C11—C10—H10120.3
C13—P1—Ir1116.84 (10)N3—C20—H20124.0
N2—N1—C21117.9 (3)N2—C20—N3112.1 (3)
C19—N1—N2113.6 (3)N2—C20—H20124.0
C19—N1—C21128.4 (3)C24—C23—C22121.1 (3)
C19—N3—C22126.3 (3)C28—C23—C24118.8 (3)
C20—N3—C19108.9 (3)C28—C23—C22120.1 (3)
C20—N3—C22124.8 (3)N3—C22—C23112.5 (3)
C20—N2—N1102.8 (3)N3—C22—H22A109.1
N1—C19—Ir1128.8 (2)N3—C22—H22B109.1
N1—C19—N3102.6 (3)C23—C22—H22A109.1
N3—C19—Ir1128.6 (2)C23—C22—H22B109.1
C12—C7—P1122.6 (2)H22A—C22—H22B107.8
C12—C7—C8118.0 (3)N1—C21—H21A109.5
C8—C7—P1118.6 (2)N1—C21—H21B109.5
Ir1—C32—H32114.0N1—C21—H21C109.5
C33—C32—Ir170.37 (19)H21A—C21—H21B109.5
C33—C32—H32114.0H21A—C21—H21C109.5
C33—C32—C31124.1 (3)H21B—C21—H21C109.5
C31—C32—Ir1112.6 (2)C36—C35—H35A108.9
C31—C32—H32114.0C36—C35—H35B108.9
C7—C12—H12119.5C36—C35—C34113.2 (3)
C11—C12—C7121.0 (3)H35A—C35—H35B107.8
C11—C12—H12119.5C34—C35—H35A108.9
C2—C1—P1120.8 (2)C34—C35—H35B108.9
C2—C1—C6118.8 (3)C12—C11—C10120.3 (3)
C6—C1—P1120.4 (2)C12—C11—H11119.8
C13—C14—H14120.0C10—C11—H11119.8
C15—C14—H14120.0C33—C34—C35114.4 (3)
C15—C14—C13119.9 (3)C33—C34—H34A108.7
C14—C13—P1118.2 (2)C33—C34—H34B108.7
C18—C13—P1122.7 (2)C35—C34—H34A108.7
C18—C13—C14119.2 (3)C35—C34—H34B108.7
C16—C17—H17120.2H34A—C34—H34B107.6
C16—C17—C18119.5 (3)C32—C31—H31A109.0
C18—C17—H17120.2C32—C31—H31B109.0
C7—C8—H8119.7C32—C31—C30113.0 (3)
C9—C8—C7120.7 (3)H31A—C31—H31B107.8
C9—C8—H8119.7C30—C31—H31A109.0
C2—C3—H3120.0C30—C31—H31B109.0
C4—C3—H3120.0Ir1—C29—H29113.6
C4—C3—C2120.0 (3)C36—C29—Ir171.98 (18)
C8—C9—H9119.7C36—C29—H29113.6
C10—C9—C8120.5 (3)C36—C29—C30126.3 (3)
C10—C9—H9119.7C30—C29—Ir1109.9 (2)
C1—C2—H2119.7C30—C29—H29113.6
C3—C2—C1120.6 (3)C27—C28—C23119.8 (4)
C3—C2—H2119.7C27—C28—H28120.1
Ir1—C36—H36114.2C23—C28—H28120.1
C35—C36—Ir1112.2 (2)C24—C25—H25120.5
C35—C36—H36114.2C24—C25—C26119.0 (4)
C29—C36—Ir171.35 (19)C26—C25—H25120.5
C29—C36—H36114.2C31—C30—H30A108.8
C29—C36—C35123.3 (3)C31—C30—H30B108.8
C23—C24—H24119.2C29—C30—C31113.8 (3)
C25—C24—H24119.2C29—C30—H30A108.8
C25—C24—C23121.5 (3)C29—C30—H30B108.8
C14—C15—H15119.7H30A—C30—H30B107.7
C14—C15—C16120.6 (3)C27—C26—C25119.8 (3)
C16—C15—H15119.7C27—C26—H26120.1
C17—C16—C15120.0 (3)C25—C26—H26120.1
C17—C16—H16120.0F1—B1—F2109.1 (3)
C15—C16—H16120.0F4—B1—F2109.9 (3)
C13—C18—C17120.7 (3)F4—B1—F1109.6 (3)
C13—C18—H18119.6F4—B1—F3109.5 (3)
C17—C18—H18119.6F3—B1—F2109.0 (3)
C28—C27—H27119.5F3—B1—F1109.7 (3)
Ir1—P1—C7—C1291.9 (3)C13—C14—C15—C161.1 (5)
Ir1—P1—C7—C878.1 (3)C8—C7—C12—C112.3 (5)
Ir1—P1—C1—C216.2 (3)C8—C9—C10—C111.8 (5)
Ir1—P1—C1—C6166.2 (2)C3—C4—C5—C60.1 (5)
Ir1—P1—C13—C1454.1 (3)C9—C10—C11—C120.7 (5)
Ir1—P1—C13—C18126.2 (2)C2—C1—C6—C50.7 (4)
Ir1—C32—C33—C34101.5 (3)C2—C3—C4—C50.6 (5)
Ir1—C32—C31—C3011.3 (4)C36—C35—C34—C3332.2 (5)
Ir1—C36—C35—C3410.4 (4)C36—C29—C30—C3144.6 (5)
Ir1—C36—C29—C30101.8 (3)C24—C23—C22—N348.2 (4)
Ir1—C33—C34—C3537.2 (4)C24—C23—C28—C270.2 (5)
Ir1—C29—C30—C3137.2 (4)C24—C25—C26—C270.8 (5)
P1—C7—C12—C11167.8 (3)C15—C14—C13—P1177.7 (2)
P1—C7—C8—C9169.3 (2)C15—C14—C13—C181.9 (5)
P1—C1—C2—C3177.6 (2)C16—C17—C18—C130.3 (5)
P1—C1—C6—C5176.9 (2)C18—C17—C16—C150.5 (5)
P1—C13—C18—C17178.1 (2)C33—C32—C31—C3092.3 (4)
N1—N2—C20—N30.1 (4)C4—C3—C2—C10.5 (5)
N2—N1—C19—Ir1179.9 (2)C4—C5—C6—C10.7 (5)
N2—N1—C19—N31.0 (3)C6—C1—C2—C30.1 (5)
C19—N1—N2—C200.7 (3)C20—N3—C19—Ir1179.8 (2)
C19—N3—C20—N20.5 (4)C20—N3—C19—N10.9 (3)
C19—N3—C22—C2381.1 (4)C20—N3—C22—C2399.2 (4)
C7—P1—C1—C2139.5 (3)C23—C24—C25—C261.0 (5)
C7—P1—C1—C642.9 (3)C22—N3—C19—Ir10.5 (4)
C7—P1—C13—C1472.6 (3)C22—N3—C19—N1179.4 (3)
C7—P1—C13—C18107.0 (3)C22—N3—C20—N2179.8 (3)
C7—C12—C11—C101.4 (5)C22—C23—C28—C27178.9 (3)
C7—C8—C9—C100.8 (5)C21—N1—N2—C20176.9 (3)
C32—C33—C34—C3545.2 (5)C21—N1—C19—Ir14.4 (5)
C32—C31—C30—C2932.4 (4)C21—N1—C19—N3176.7 (3)
C12—C7—C8—C91.2 (5)C35—C36—C29—Ir1104.8 (3)
C1—P1—C7—C12145.1 (3)C35—C36—C29—C303.0 (5)
C1—P1—C7—C844.9 (3)C31—C32—C33—Ir1104.6 (3)
C1—P1—C13—C14179.9 (2)C31—C32—C33—C343.1 (5)
C1—P1—C13—C180.5 (3)C29—C36—C35—C3492.1 (4)
C14—C13—C18—C171.5 (5)C28—C27—C26—C252.1 (5)
C14—C15—C16—C170.1 (5)C28—C23—C22—N3131.0 (3)
C13—P1—C7—C1236.7 (3)C25—C24—C23—C22177.7 (3)
C13—P1—C7—C8153.3 (2)C25—C24—C23—C281.5 (5)
C13—P1—C1—C2111.7 (3)C26—C27—C28—C231.5 (5)
C13—P1—C1—C665.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20···F2i0.952.293.131 (4)147
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

EBN was supported in this work by the Millersville University Murley Summer Undergraduate Research Fellowship.

References

First citationAlbrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596–3604.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461–2468.  Web of Science CSD CrossRef CAS Google Scholar
First citationDíez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612–3676.  Web of Science PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.  Web of Science CrossRef CAS Google Scholar
First citationGusev, D. G. (2009). Organometallics, 28, 6458–6461.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A. (2002). Angew. Chem. Int. Ed., 41, 1290–1309.  CrossRef CAS Google Scholar
First citationHerrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.  Web of Science CSD CrossRef CAS Google Scholar
First citationIdrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.  Google Scholar
First citationIdrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem., pp. 4320-4328.  Google Scholar
First citationNichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158–m159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.  Google Scholar
First citationRuff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327–335.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975.  Web of Science CSD CrossRef CAS Google Scholar
First citationZuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791–5801.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds