metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Chlorido/bromido)[(1,2,5,6-η)-cyclo­octa-1,5-diene](4-iso­propyl-1-methyl-1,2,4-triazol-5-yl­­idene)rhodium(I)

crossmark logo

aDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA, and bDepartment of Chemistry and Biochemistry, The University of Arizona, Tuscon, AZ, 85716, USA
*Correspondence e-mail: Edward.Rajaseelan@millersville.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 July 2021; accepted 6 August 2021; online 13 August 2021)

A new triazole-based neutral RhI complex, [Rh(Cl0.846Br0.154)(C6H11N3)(C8H12)], has been synthesized and structurally characterized. The RhI atom has a distorted square-planar coordination environment, formed by a bidentate cyclo­octa-1,5-diene (COD) ligand, an N-heterocyclic carbene and a halide ligand that shows substitutional disorder (Cl:Br = 0.846:0.154). No significant inter­molecular inter­actions other than van der Waals forces are found in the crystal structure. Diffraction data indicated a two-component inversion twin with a ratio of 0.95 (5):0.05 (5).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Transition-metal complexes containing N-heterocyclic carbene (NHC) ligands have been studied extensively in homogeneous catalysis (Díez-Gonzáles et al., 2009[Díez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612-3676.]), especially in transfer hydrogenation of unsaturated bonds (Ruff et al., 2016[Ruff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327-335.]; Zuo et al., 2014[Zuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791-5801.]). The NHC ligands can be tuned sterically and electronically by having different substituents on the nitro­gen atoms (Gusev, 2009[Gusev, D. G. (2009). Organometallics, 28, 6458-6461.]). Many imidazole- and triazole-based NHC rhodium and iridium complexes have been synthesized and structurally characterized (Herrmann et al., 2006[Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437-2448.]; Wang & Lin, 1998[Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972-975.]; Chianese et al., 2004[Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461-2468.]; Nichol et al., 2009[Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320-4328.], 2010[Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.], 2011[Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860-m1861.], 2012[Nichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158-m159.]; Idrees et al., 2017a[Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.],b[Idrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.]; Rood et al., 2021[Rood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.]). Their catalytic activities in the transfer hydrogenation of ketones and imines have also been studied and reported (Hillier et al., 2001[Hillier, A. C., Lee, H. M., Stevens, E. D. & Nolan, S. P. (2001). Organometallics, 20, 4246-4252.]; Albrecht et al., 2002[Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596-3604.]; Gnanamgari et al., 2007[Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226-1230.]).

The mol­ecular structure of the title complex, [Rh(Cl0.846Br0.154)(C6H11N3)(C8H12)] (3), is illustrated in Fig. 1[link]. The coordination environment around the RhI ion, formed by the bidentate cyclo­octa-1,5-diene (COD), NHC, and halide (Cl,Br) ligands is distorted square-planar. The Rh—C(NHC) bond length is found to be 2.016 (5) Å. The C(NHC)—Rh—(Cl,Br) bond angle is 87.93 (14)°. The N—(carbene)—N bond angle in the triazole-based carbene is 103.1 (4)°. Fig. 2[link] shows the crystal packing diagram of the complex. No non-covalent inter­actions exist between atoms that are closer than the sum of the van der Waals radii.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound (3) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Crystal packing diagram of the title compound (3) along the a axis.

The rhodium–halide bond length in the reported structure is 2.4308 (11) Å, which is longer than previously reported Rh—Cl bond lengths, viz. 2.36–2.42 Å (Skelton et al., 2019[Skelton, B. W., Ou, A. & Dorta, R. (2019). Private communication (refcode: WORJIZ). CCDC, Cambridge, England.], 2020[Skelton, B. W., Ou, A. & Dorta, R. (2020). Private communication (refcode: SOZXIR01). CCDC, Cambridge, England.]; Kalidasan et al., 2015[Kalidasan, M., Nagarajaprakash, R. & Rao, K. M. (2015). Transition Met. Chem. 40, 531-539.]), and shorter than previously reported Rh—Br bond lengths, viz 2.49–2.55 Å (Benaissa et al., 2017[Benaissa, I., Taakili, R., Lugan, N. & Canac, Y. (2017). Dalton Trans. 46, 12293-12305.]; Aznarez et al., 2018[Aznarez, F., Gao, W.-X., Lin, Y.-J., Hahn, F. E. & Jin, G.-X. (2018). Dalton Trans. 47, 9442-9452.]), consistent with a Cl/Br substitutional disorder. The substitutional bromide likely comes from the triazolium salt (2) in the synthesis (Fig. 3[link]).

[Figure 3]
Figure 3
Reaction scheme summarizing the synthesis of the N-heterocyclic carbene ligand (2) and metal complex (3).

Synthesis and crystallization

1-Methyl triazole (1) was purchased from Matrix Scientific and the subsequent syntheses, as shown in Fig. 3[link], were performed using reagent-grade solvents without further purification. NMR spectra were recorded at room temperature in CDCl3 on a 400 MHz Varian spectrometer and referenced to the residual solvent peak (δ in ppm and J in Hz). The triazolium salt (2) was prepared by reacting (1) with isopropyl (i-Pr) bromide in toluene at reflux for 24 h followed by isolation with diethyl ether. The title metal complex (3) was synthesized by in situ transmetallation from the silver carbene complex of (2) (Chianese et al., 2003[Chianese, A. R., Li, X. W., Janzen, M. C., Faller, J. W. & Crabtree, R. H. (2003). Organometallics, 22, 1663-1667.]). The pale-yellow complex (3) was obtained in qu­anti­tative yield.1H NMR: δ 7.89 (s, 1 H, N—C3H—N), 5.67 (m, 1 H, CH of i-Pr), 5.12 (m, 4 H, CH of COD), 4.34 (s, 3 H, CH3-N), 2.42–2.01 (m, 4 H, CH2 of COD), 1.57 (m, 6 H, CH3 of i-Pr). 13C NMR: 184.99 (d, Rh—C, JC-Rh = 50.9), 139.07 (N—C3H—N), 99.80, 99.73, 99.29, 99.22 (CH of COD), 51.44 (CH3—N), 39.79 (CH of i-Pr), 33.08, 32.67, 29.01, 28.63 (CH2 of COD), 24.27, 23.34 (CH3 of i-Pr). Pale-yellow X-ray quality crystals of (3) were grown from 1:1, CH2Cl2/pentane by slow diffusion.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Using only the Cl ligand in the refinement did not account for all electron density at the ligand location, and therefore, a Cl/Br substitutional disorder was introduced for this site. The refinement was stabilized by forcing Cl and Br to have the same atomic coordinates and ADPs, using EXYZ and EADP instructions, respectively, in SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). The resulting occupancies for Cl and Br were about 85% and 15%, respectively. The crystal was refined as a two-component inversion twin with a ratio of 0.95 (5) to 0.05 (5).

Table 1
Experimental details

Crystal data
Chemical formula [Rh(Br0.154Cl0.846)(C6H11N3)(C8H12)]
Mr 378.60
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 9.4146 (13), 11.9706 (17), 13.702 (2)
V3) 1544.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.64
Crystal size (mm) 0.15 × 0.12 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.664, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 16824, 3254, 3015
Rint 0.057
(sin θ/λ)max−1) 0.632
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.057, 1.03
No. of reflections 3254
No. of parameters 177
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.65, −0.42
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.05 (5)
Computer programs: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: SAINT (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(Chlorido/bromido)[(1,2,5,6-η)-cycloocta-1,5-diene](4-isopropyl-1-methyl-\ 1,2,4-triazol-5-ylidene)rhodium(I) top
Crystal data top
[Rh(Br0.154Cl0.846)(C6H11N3)(C8H12)]Dx = 1.628 Mg m3
Mr = 378.60Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3850 reflections
a = 9.4146 (13) Åθ = 2.6–25.5°
b = 11.9706 (17) ŵ = 1.64 mm1
c = 13.702 (2) ÅT = 100 K
V = 1544.2 (4) Å3Plate, clear light colourless
Z = 40.15 × 0.12 × 0.03 mm
F(000) = 771
Data collection top
Bruker APEXII CCD
diffractometer
3015 reflections with I > 2σ(I)
φ and ω scansRint = 0.057
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.7°, θmin = 2.3°
Tmin = 0.664, Tmax = 0.745h = 1111
16824 measured reflectionsk = 1515
3254 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0271P)2 + 0.176P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.65 e Å3
3254 reflectionsΔρmin = 0.42 e Å3
177 parametersAbsolute structure: Refined as an inversion twin.
0 restraintsAbsolute structure parameter: 0.05 (5)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.36461 (3)0.48473 (3)0.25898 (2)0.01379 (10)
Cl10.55744 (11)0.42693 (9)0.15236 (8)0.0233 (4)0.846 (4)
N30.5884 (4)0.5139 (3)0.4182 (3)0.0158 (8)
N10.5001 (4)0.3511 (3)0.4233 (3)0.0166 (9)
N20.6009 (4)0.3527 (3)0.4974 (3)0.0183 (9)
C10.4910 (5)0.4478 (4)0.3733 (3)0.0158 (10)
C70.2352 (5)0.5923 (5)0.3445 (3)0.0173 (11)
H70.28420.62230.40360.021*
C140.1882 (5)0.4807 (5)0.3551 (3)0.0152 (10)
H140.21000.44750.42040.018*
C110.1905 (5)0.4756 (6)0.1477 (3)0.0215 (12)
H110.20790.42120.09360.026*
C60.6157 (6)0.7057 (4)0.4812 (4)0.0242 (11)
H6A0.52360.69760.51380.036*
H6B0.62950.78390.46210.036*
H6C0.69170.68310.52590.036*
C130.0626 (6)0.4277 (5)0.3048 (4)0.0213 (11)
H13A0.02510.44800.34050.026*
H13B0.07270.34540.30770.026*
C120.0468 (5)0.4631 (4)0.1982 (4)0.0220 (12)
H12A0.01050.40660.16300.026*
H12B0.00470.53510.19520.026*
C20.6523 (5)0.4534 (4)0.4915 (3)0.0178 (10)
H20.72500.48170.53270.021*
C50.7597 (5)0.6392 (4)0.3365 (4)0.0264 (12)
H5A0.83720.61780.38050.040*
H5B0.77470.71590.31380.040*
H5C0.75790.58840.28040.040*
C80.1612 (5)0.6824 (4)0.2836 (3)0.0178 (10)
H8A0.17840.75600.31440.021*
H8B0.05750.66850.28500.021*
C40.6193 (5)0.6320 (4)0.3907 (3)0.0172 (10)
H40.54260.65790.34550.021*
C100.2598 (5)0.5757 (5)0.1375 (3)0.0174 (11)
H100.31890.58120.07700.021*
C90.2102 (5)0.6876 (4)0.1767 (4)0.0203 (11)
H9A0.13060.71490.13590.024*
H9B0.28880.74210.17110.024*
C30.4187 (6)0.2494 (4)0.4057 (4)0.0235 (11)
H3A0.45710.21070.34850.035*
H3B0.31900.26870.39390.035*
H3C0.42530.20050.46290.035*
Br10.55744 (11)0.42693 (9)0.15236 (8)0.0233 (4)0.154 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01309 (16)0.01269 (16)0.01558 (16)0.00094 (13)0.00034 (14)0.00176 (14)
Cl10.0209 (6)0.0254 (6)0.0236 (6)0.0018 (4)0.0048 (4)0.0043 (4)
N30.0149 (17)0.013 (2)0.0191 (18)0.0001 (16)0.0009 (13)0.0020 (17)
N10.015 (2)0.014 (2)0.021 (2)0.0024 (16)0.0019 (16)0.0009 (17)
N20.014 (2)0.020 (2)0.021 (2)0.0021 (15)0.0009 (15)0.0000 (17)
C10.013 (2)0.013 (2)0.021 (2)0.0036 (18)0.0033 (19)0.003 (2)
C70.015 (2)0.022 (3)0.014 (2)0.003 (2)0.0024 (19)0.003 (2)
C140.014 (2)0.014 (3)0.018 (2)0.004 (2)0.0045 (16)0.002 (2)
C110.021 (2)0.028 (3)0.015 (2)0.003 (3)0.0064 (17)0.004 (3)
C60.034 (3)0.016 (3)0.023 (2)0.000 (2)0.000 (2)0.0004 (19)
C130.016 (3)0.016 (3)0.032 (3)0.000 (2)0.006 (2)0.003 (2)
C120.019 (3)0.018 (3)0.030 (3)0.001 (2)0.0046 (19)0.001 (2)
C20.018 (2)0.019 (3)0.017 (2)0.0019 (19)0.0027 (19)0.0001 (17)
C50.026 (3)0.020 (3)0.033 (3)0.002 (2)0.007 (2)0.002 (2)
C80.016 (3)0.016 (2)0.021 (2)0.0029 (19)0.0001 (18)0.0018 (18)
C40.021 (3)0.012 (2)0.018 (2)0.002 (2)0.001 (2)0.0037 (17)
C100.020 (3)0.021 (3)0.011 (2)0.005 (2)0.0014 (19)0.001 (2)
C90.020 (3)0.021 (3)0.020 (3)0.003 (2)0.001 (2)0.001 (2)
C30.024 (3)0.013 (3)0.033 (3)0.004 (2)0.003 (2)0.001 (2)
Br10.0209 (6)0.0254 (6)0.0236 (6)0.0018 (4)0.0048 (4)0.0043 (4)
Geometric parameters (Å, º) top
Rh1—Cl12.4308 (11)C6—H6C0.9800
Rh1—C12.016 (5)C6—C41.521 (6)
Rh1—C72.125 (5)C13—H13A0.9900
Rh1—C142.121 (4)C13—H13B0.9900
Rh1—C112.242 (5)C13—C121.528 (7)
Rh1—C102.221 (5)C12—H12A0.9900
Rh1—Br12.4308 (11)C12—H12B0.9900
N3—C11.359 (6)C2—H20.9500
N3—C21.376 (6)C5—H5A0.9800
N3—C41.492 (6)C5—H5B0.9800
N1—N21.390 (5)C5—H5C0.9800
N1—C11.347 (6)C5—C41.519 (7)
N1—C31.458 (6)C8—H8A0.9900
N2—C21.301 (6)C8—H8B0.9900
C7—H71.0000C8—C91.538 (6)
C7—C141.415 (8)C4—H41.0000
C7—C81.530 (7)C10—H101.0000
C14—H141.0000C10—C91.517 (7)
C14—C131.508 (7)C9—H9A0.9900
C11—H111.0000C9—H9B0.9900
C11—C121.527 (7)C3—H3A0.9800
C11—C101.371 (8)C3—H3B0.9800
C6—H6A0.9800C3—H3C0.9800
C6—H6B0.9800
C1—Rh1—Cl187.93 (14)C4—C6—H6C109.5
C1—Rh1—C792.47 (19)C14—C13—H13A108.9
C1—Rh1—C1488.55 (19)C14—C13—H13B108.9
C1—Rh1—C11161.7 (2)C14—C13—C12113.4 (4)
C1—Rh1—C10162.22 (19)H13A—C13—H13B107.7
C1—Rh1—Br187.93 (14)C12—C13—H13A108.9
C7—Rh1—Cl1158.76 (15)C12—C13—H13B108.9
C7—Rh1—C1189.1 (2)C11—C12—C13112.0 (4)
C7—Rh1—C1082.02 (19)C11—C12—H12A109.2
C7—Rh1—Br1158.76 (15)C11—C12—H12B109.2
C14—Rh1—Cl1162.14 (16)C13—C12—H12A109.2
C14—Rh1—C738.9 (2)C13—C12—H12B109.2
C14—Rh1—C1181.30 (16)H12A—C12—H12B107.9
C14—Rh1—C1097.40 (18)N3—C2—H2124.1
C14—Rh1—Br1162.14 (16)N2—C2—N3111.7 (4)
C11—Rh1—Cl197.08 (13)N2—C2—H2124.1
C11—Rh1—Br197.08 (13)H5A—C5—H5B109.5
C10—Rh1—Cl191.19 (13)H5A—C5—H5C109.5
C10—Rh1—C1135.8 (2)H5B—C5—H5C109.5
C10—Rh1—Br191.19 (13)C4—C5—H5A109.5
C1—N3—C2108.6 (4)C4—C5—H5B109.5
C1—N3—C4124.6 (4)C4—C5—H5C109.5
C2—N3—C4126.8 (4)C7—C8—H8A108.7
N2—N1—C3119.4 (4)C7—C8—H8B108.7
C1—N1—N2113.8 (4)C7—C8—C9114.3 (4)
C1—N1—C3126.9 (4)H8A—C8—H8B107.6
C2—N2—N1102.8 (4)C9—C8—H8A108.7
N3—C1—Rh1128.5 (3)C9—C8—H8B108.7
N1—C1—Rh1128.4 (3)N3—C4—C6109.8 (4)
N1—C1—N3103.1 (4)N3—C4—C5110.2 (4)
Rh1—C7—H7113.5N3—C4—H4108.0
C14—C7—Rh170.4 (3)C6—C4—H4108.0
C14—C7—H7113.5C5—C4—C6112.6 (4)
C14—C7—C8125.4 (4)C5—C4—H4108.0
C8—C7—Rh1112.8 (3)Rh1—C10—H10114.0
C8—C7—H7113.5C11—C10—Rh172.9 (3)
Rh1—C14—H14113.8C11—C10—H10114.0
C7—C14—Rh170.7 (3)C11—C10—C9126.1 (4)
C7—C14—H14113.8C9—C10—Rh1107.7 (3)
C7—C14—C13126.5 (5)C9—C10—H10114.0
C13—C14—Rh1109.9 (3)C8—C9—H9A108.9
C13—C14—H14113.8C8—C9—H9B108.9
Rh1—C11—H11114.6C10—C9—C8113.2 (4)
C12—C11—Rh1110.1 (3)C10—C9—H9A108.9
C12—C11—H11114.6C10—C9—H9B108.9
C10—C11—Rh171.3 (3)H9A—C9—H9B107.7
C10—C11—H11114.6N1—C3—H3A109.5
C10—C11—C12123.6 (5)N1—C3—H3B109.5
H6A—C6—H6B109.5N1—C3—H3C109.5
H6A—C6—H6C109.5H3A—C3—H3B109.5
H6B—C6—H6C109.5H3A—C3—H3C109.5
C4—C6—H6A109.5H3B—C3—H3C109.5
C4—C6—H6B109.5
Rh1—C7—C14—C13100.9 (4)C11—C10—C9—C846.9 (6)
Rh1—C7—C8—C98.0 (5)C12—C11—C10—Rh1102.2 (4)
Rh1—C14—C13—C1240.3 (5)C12—C11—C10—C92.4 (7)
Rh1—C11—C12—C1316.0 (6)C2—N3—C1—Rh1178.6 (3)
Rh1—C11—C10—C999.8 (5)C2—N3—C1—N10.9 (5)
Rh1—C10—C9—C834.5 (5)C2—N3—C4—C650.2 (6)
N1—N2—C2—N30.2 (5)C2—N3—C4—C574.5 (5)
N2—N1—C1—Rh1178.7 (3)C8—C7—C14—Rh1104.6 (4)
N2—N1—C1—N30.8 (5)C8—C7—C14—C133.7 (7)
C1—N3—C2—N20.8 (5)C4—N3—C1—Rh11.1 (6)
C1—N3—C4—C6130.1 (5)C4—N3—C1—N1179.4 (4)
C1—N3—C4—C5105.2 (5)C4—N3—C2—N2179.5 (4)
C1—N1—N2—C20.4 (5)C10—C11—C12—C1396.4 (6)
C7—C14—C13—C1239.9 (7)C3—N1—N2—C2179.3 (4)
C7—C8—C9—C1029.2 (6)C3—N1—C1—Rh10.1 (7)
C14—C7—C8—C989.4 (6)C3—N1—C1—N3179.7 (4)
C14—C13—C12—C1137.3 (6)
 

Acknowledgements

JR was supported in this work by the Millersville University Murley Summer Undergraduate Research Fellowship.

References

First citationAlbrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596–3604.  Web of Science CSD CrossRef CAS Google Scholar
First citationAznarez, F., Gao, W.-X., Lin, Y.-J., Hahn, F. E. & Jin, G.-X. (2018). Dalton Trans. 47, 9442–9452.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBenaissa, I., Taakili, R., Lugan, N. & Canac, Y. (2017). Dalton Trans. 46, 12293–12305.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461–2468.  Web of Science CSD CrossRef CAS Google Scholar
First citationChianese, A. R., Li, X. W., Janzen, M. C., Faller, J. W. & Crabtree, R. H. (2003). Organometallics, 22, 1663–1667.  Web of Science CSD CrossRef CAS Google Scholar
First citationDíez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612–3676.  Web of Science PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.  Web of Science CrossRef CAS Google Scholar
First citationGusev, D. G. (2009). Organometallics, 28, 6458–6461.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.  Web of Science CSD CrossRef CAS Google Scholar
First citationHillier, A. C., Lee, H. M., Stevens, E. D. & Nolan, S. P. (2001). Organometallics, 20, 4246–4252.  Web of Science CSD CrossRef CAS Google Scholar
First citationIdrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.  Google Scholar
First citationIdrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.  Google Scholar
First citationKalidasan, M., Nagarajaprakash, R. & Rao, K. M. (2015). Transition Met. Chem. 40, 531–539.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320–4328.  Web of Science CSD CrossRef Google Scholar
First citationNichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158–m159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.  Google Scholar
First citationRuff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327–335.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkelton, B. W., Ou, A. & Dorta, R. (2019). Private communication (refcode: WORJIZ). CCDC, Cambridge, England.  Google Scholar
First citationSkelton, B. W., Ou, A. & Dorta, R. (2020). Private communication (refcode: SOZXIR01). CCDC, Cambridge, England.  Google Scholar
First citationWang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975.  Web of Science CSD CrossRef CAS Google Scholar
First citationZuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791–5801.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds