metal-organic compounds
(Chlorido/bromido)[(1,2,5,6-η)-cycloocta-1,5-diene](4-isopropyl-1-methyl-1,2,4-triazol-5-ylidene)rhodium(I)
aDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA, and bDepartment of Chemistry and Biochemistry, The University of Arizona, Tuscon, AZ, 85716, USA
*Correspondence e-mail: Edward.Rajaseelan@millersville.edu
A new triazole-based neutral RhI complex, [Rh(Cl0.846Br0.154)(C6H11N3)(C8H12)], has been synthesized and structurally characterized. The RhI atom has a distorted square-planar coordination environment, formed by a bidentate cycloocta-1,5-diene (COD) ligand, an N-heterocyclic carbene and a halide ligand that shows substitutional disorder (Cl:Br = 0.846:0.154). No significant intermolecular interactions other than are found in the Diffraction data indicated a two-component with a ratio of 0.95 (5):0.05 (5).
CCDC reference: 2101889
Structure description
Transition-metal complexes containing N-heterocyclic carbene (NHC) ligands have been studied extensively in et al., 2009), especially in transfer hydrogenation of unsaturated bonds (Ruff et al., 2016; Zuo et al., 2014). The NHC ligands can be tuned sterically and electronically by having different substituents on the nitrogen atoms (Gusev, 2009). Many imidazole- and triazole-based NHC rhodium and iridium complexes have been synthesized and structurally characterized (Herrmann et al., 2006; Wang & Lin, 1998; Chianese et al., 2004; Nichol et al., 2009, 2010, 2011, 2012; Idrees et al., 2017a,b; Rood et al., 2021). Their catalytic activities in the transfer hydrogenation of and have also been studied and reported (Hillier et al., 2001; Albrecht et al., 2002; Gnanamgari et al., 2007).
(Díez-GonzálesThe molecular structure of the title complex, [Rh(Cl0.846Br0.154)(C6H11N3)(C8H12)] (3), is illustrated in Fig. 1. The coordination environment around the RhI ion, formed by the bidentate cycloocta-1,5-diene (COD), NHC, and halide (Cl,Br) ligands is distorted square-planar. The Rh—C(NHC) bond length is found to be 2.016 (5) Å. The C(NHC)—Rh—(Cl,Br) bond angle is 87.93 (14)°. The N—(carbene)—N bond angle in the triazole-based carbene is 103.1 (4)°. Fig. 2 shows the crystal packing diagram of the complex. No non-covalent interactions exist between atoms that are closer than the sum of the van der Waals radii.
The rhodium–halide bond length in the reported structure is 2.4308 (11) Å, which is longer than previously reported Rh—Cl bond lengths, viz. 2.36–2.42 Å (Skelton et al., 2019, 2020; Kalidasan et al., 2015), and shorter than previously reported Rh—Br bond lengths, viz 2.49–2.55 Å (Benaissa et al., 2017; Aznarez et al., 2018), consistent with a Cl/Br substitutional disorder. The substitutional bromide likely comes from the triazolium salt (2) in the synthesis (Fig. 3).
Synthesis and crystallization
1-Methyl triazole (1) was purchased from Matrix Scientific and the subsequent syntheses, as shown in Fig. 3, were performed using reagent-grade solvents without further purification. NMR spectra were recorded at room temperature in CDCl3 on a 400 MHz Varian spectrometer and referenced to the residual solvent peak (δ in ppm and J in Hz). The triazolium salt (2) was prepared by reacting (1) with isopropyl (i-Pr) bromide in toluene at reflux for 24 h followed by isolation with diethyl ether. The title metal complex (3) was synthesized by in situ transmetallation from the silver carbene complex of (2) (Chianese et al., 2003). The pale-yellow complex (3) was obtained in quantitative yield.1H NMR: δ 7.89 (s, 1 H, N—C3H—N), 5.67 (m, 1 H, CH of i-Pr), 5.12 (m, 4 H, CH of COD), 4.34 (s, 3 H, CH3-N), 2.42–2.01 (m, 4 H, CH2 of COD), 1.57 (m, 6 H, CH3 of i-Pr). 13C NMR: 184.99 (d, Rh—C, JC-Rh = 50.9), 139.07 (N—C3H—N), 99.80, 99.73, 99.29, 99.22 (CH of COD), 51.44 (CH3—N), 39.79 (CH of i-Pr), 33.08, 32.67, 29.01, 28.63 (CH2 of COD), 24.27, 23.34 (CH3 of i-Pr). Pale-yellow X-ray quality crystals of (3) were grown from 1:1, CH2Cl2/pentane by slow diffusion.
Refinement
Crystal data, data collection and structure . Using only the Cl ligand in the did not account for all electron density at the ligand location, and therefore, a Cl/Br substitutional disorder was introduced for this site. The was stabilized by forcing Cl and Br to have the same atomic coordinates and ADPs, using EXYZ and EADP instructions, respectively, in SHELXL (Sheldrick, 2015b). The resulting occupancies for Cl and Br were about 85% and 15%, respectively. The crystal was refined as a two-component with a ratio of 0.95 (5) to 0.05 (5).
details are summarized in Table 1Structural data
CCDC reference: 2101889
https://doi.org/10.1107/S2414314621008117/wm4151sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314621008117/wm4151Isup2.hkl
Data collection: SAINT (Bruker, 2007); cell
APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Rh(Br0.154Cl0.846)(C6H11N3)(C8H12)] | Dx = 1.628 Mg m−3 |
Mr = 378.60 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 3850 reflections |
a = 9.4146 (13) Å | θ = 2.6–25.5° |
b = 11.9706 (17) Å | µ = 1.64 mm−1 |
c = 13.702 (2) Å | T = 100 K |
V = 1544.2 (4) Å3 | Plate, clear light colourless |
Z = 4 | 0.15 × 0.12 × 0.03 mm |
F(000) = 771 |
Bruker APEXII CCD diffractometer | 3015 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.057 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 26.7°, θmin = 2.3° |
Tmin = 0.664, Tmax = 0.745 | h = −11→11 |
16824 measured reflections | k = −15→15 |
3254 independent reflections | l = −17→17 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0271P)2 + 0.176P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.057 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.65 e Å−3 |
3254 reflections | Δρmin = −0.42 e Å−3 |
177 parameters | Absolute structure: Refined as an inversion twin. |
0 restraints | Absolute structure parameter: 0.05 (5) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Rh1 | 0.36461 (3) | 0.48473 (3) | 0.25898 (2) | 0.01379 (10) | |
Cl1 | 0.55744 (11) | 0.42693 (9) | 0.15236 (8) | 0.0233 (4) | 0.846 (4) |
N3 | 0.5884 (4) | 0.5139 (3) | 0.4182 (3) | 0.0158 (8) | |
N1 | 0.5001 (4) | 0.3511 (3) | 0.4233 (3) | 0.0166 (9) | |
N2 | 0.6009 (4) | 0.3527 (3) | 0.4974 (3) | 0.0183 (9) | |
C1 | 0.4910 (5) | 0.4478 (4) | 0.3733 (3) | 0.0158 (10) | |
C7 | 0.2352 (5) | 0.5923 (5) | 0.3445 (3) | 0.0173 (11) | |
H7 | 0.2842 | 0.6223 | 0.4036 | 0.021* | |
C14 | 0.1882 (5) | 0.4807 (5) | 0.3551 (3) | 0.0152 (10) | |
H14 | 0.2100 | 0.4475 | 0.4204 | 0.018* | |
C11 | 0.1905 (5) | 0.4756 (6) | 0.1477 (3) | 0.0215 (12) | |
H11 | 0.2079 | 0.4212 | 0.0936 | 0.026* | |
C6 | 0.6157 (6) | 0.7057 (4) | 0.4812 (4) | 0.0242 (11) | |
H6A | 0.5236 | 0.6976 | 0.5138 | 0.036* | |
H6B | 0.6295 | 0.7839 | 0.4621 | 0.036* | |
H6C | 0.6917 | 0.6831 | 0.5259 | 0.036* | |
C13 | 0.0626 (6) | 0.4277 (5) | 0.3048 (4) | 0.0213 (11) | |
H13A | −0.0251 | 0.4480 | 0.3405 | 0.026* | |
H13B | 0.0727 | 0.3454 | 0.3077 | 0.026* | |
C12 | 0.0468 (5) | 0.4631 (4) | 0.1982 (4) | 0.0220 (12) | |
H12A | −0.0105 | 0.4066 | 0.1630 | 0.026* | |
H12B | −0.0047 | 0.5351 | 0.1952 | 0.026* | |
C2 | 0.6523 (5) | 0.4534 (4) | 0.4915 (3) | 0.0178 (10) | |
H2 | 0.7250 | 0.4817 | 0.5327 | 0.021* | |
C5 | 0.7597 (5) | 0.6392 (4) | 0.3365 (4) | 0.0264 (12) | |
H5A | 0.8372 | 0.6178 | 0.3805 | 0.040* | |
H5B | 0.7747 | 0.7159 | 0.3138 | 0.040* | |
H5C | 0.7579 | 0.5884 | 0.2804 | 0.040* | |
C8 | 0.1612 (5) | 0.6824 (4) | 0.2836 (3) | 0.0178 (10) | |
H8A | 0.1784 | 0.7560 | 0.3144 | 0.021* | |
H8B | 0.0575 | 0.6685 | 0.2850 | 0.021* | |
C4 | 0.6193 (5) | 0.6320 (4) | 0.3907 (3) | 0.0172 (10) | |
H4 | 0.5426 | 0.6579 | 0.3455 | 0.021* | |
C10 | 0.2598 (5) | 0.5757 (5) | 0.1375 (3) | 0.0174 (11) | |
H10 | 0.3189 | 0.5812 | 0.0770 | 0.021* | |
C9 | 0.2102 (5) | 0.6876 (4) | 0.1767 (4) | 0.0203 (11) | |
H9A | 0.1306 | 0.7149 | 0.1359 | 0.024* | |
H9B | 0.2888 | 0.7421 | 0.1711 | 0.024* | |
C3 | 0.4187 (6) | 0.2494 (4) | 0.4057 (4) | 0.0235 (11) | |
H3A | 0.4571 | 0.2107 | 0.3485 | 0.035* | |
H3B | 0.3190 | 0.2687 | 0.3939 | 0.035* | |
H3C | 0.4253 | 0.2005 | 0.4629 | 0.035* | |
Br1 | 0.55744 (11) | 0.42693 (9) | 0.15236 (8) | 0.0233 (4) | 0.154 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rh1 | 0.01309 (16) | 0.01269 (16) | 0.01558 (16) | 0.00094 (13) | 0.00034 (14) | −0.00176 (14) |
Cl1 | 0.0209 (6) | 0.0254 (6) | 0.0236 (6) | 0.0018 (4) | 0.0048 (4) | −0.0043 (4) |
N3 | 0.0149 (17) | 0.013 (2) | 0.0191 (18) | −0.0001 (16) | −0.0009 (13) | −0.0020 (17) |
N1 | 0.015 (2) | 0.014 (2) | 0.021 (2) | 0.0024 (16) | −0.0019 (16) | −0.0009 (17) |
N2 | 0.014 (2) | 0.020 (2) | 0.021 (2) | 0.0021 (15) | −0.0009 (15) | 0.0000 (17) |
C1 | 0.013 (2) | 0.013 (2) | 0.021 (2) | 0.0036 (18) | 0.0033 (19) | −0.003 (2) |
C7 | 0.015 (2) | 0.022 (3) | 0.014 (2) | 0.003 (2) | 0.0024 (19) | −0.003 (2) |
C14 | 0.014 (2) | 0.014 (3) | 0.018 (2) | 0.004 (2) | 0.0045 (16) | 0.002 (2) |
C11 | 0.021 (2) | 0.028 (3) | 0.015 (2) | 0.003 (3) | −0.0064 (17) | −0.004 (3) |
C6 | 0.034 (3) | 0.016 (3) | 0.023 (2) | 0.000 (2) | 0.000 (2) | −0.0004 (19) |
C13 | 0.016 (3) | 0.016 (3) | 0.032 (3) | 0.000 (2) | 0.006 (2) | 0.003 (2) |
C12 | 0.019 (3) | 0.018 (3) | 0.030 (3) | −0.001 (2) | −0.0046 (19) | −0.001 (2) |
C2 | 0.018 (2) | 0.019 (3) | 0.017 (2) | 0.0019 (19) | −0.0027 (19) | −0.0001 (17) |
C5 | 0.026 (3) | 0.020 (3) | 0.033 (3) | −0.002 (2) | 0.007 (2) | 0.002 (2) |
C8 | 0.016 (3) | 0.016 (2) | 0.021 (2) | 0.0029 (19) | 0.0001 (18) | −0.0018 (18) |
C4 | 0.021 (3) | 0.012 (2) | 0.018 (2) | −0.002 (2) | −0.001 (2) | 0.0037 (17) |
C10 | 0.020 (3) | 0.021 (3) | 0.011 (2) | 0.005 (2) | −0.0014 (19) | −0.001 (2) |
C9 | 0.020 (3) | 0.021 (3) | 0.020 (3) | 0.003 (2) | 0.001 (2) | 0.001 (2) |
C3 | 0.024 (3) | 0.013 (3) | 0.033 (3) | −0.004 (2) | 0.003 (2) | −0.001 (2) |
Br1 | 0.0209 (6) | 0.0254 (6) | 0.0236 (6) | 0.0018 (4) | 0.0048 (4) | −0.0043 (4) |
Rh1—Cl1 | 2.4308 (11) | C6—H6C | 0.9800 |
Rh1—C1 | 2.016 (5) | C6—C4 | 1.521 (6) |
Rh1—C7 | 2.125 (5) | C13—H13A | 0.9900 |
Rh1—C14 | 2.121 (4) | C13—H13B | 0.9900 |
Rh1—C11 | 2.242 (5) | C13—C12 | 1.528 (7) |
Rh1—C10 | 2.221 (5) | C12—H12A | 0.9900 |
Rh1—Br1 | 2.4308 (11) | C12—H12B | 0.9900 |
N3—C1 | 1.359 (6) | C2—H2 | 0.9500 |
N3—C2 | 1.376 (6) | C5—H5A | 0.9800 |
N3—C4 | 1.492 (6) | C5—H5B | 0.9800 |
N1—N2 | 1.390 (5) | C5—H5C | 0.9800 |
N1—C1 | 1.347 (6) | C5—C4 | 1.519 (7) |
N1—C3 | 1.458 (6) | C8—H8A | 0.9900 |
N2—C2 | 1.301 (6) | C8—H8B | 0.9900 |
C7—H7 | 1.0000 | C8—C9 | 1.538 (6) |
C7—C14 | 1.415 (8) | C4—H4 | 1.0000 |
C7—C8 | 1.530 (7) | C10—H10 | 1.0000 |
C14—H14 | 1.0000 | C10—C9 | 1.517 (7) |
C14—C13 | 1.508 (7) | C9—H9A | 0.9900 |
C11—H11 | 1.0000 | C9—H9B | 0.9900 |
C11—C12 | 1.527 (7) | C3—H3A | 0.9800 |
C11—C10 | 1.371 (8) | C3—H3B | 0.9800 |
C6—H6A | 0.9800 | C3—H3C | 0.9800 |
C6—H6B | 0.9800 | ||
C1—Rh1—Cl1 | 87.93 (14) | C4—C6—H6C | 109.5 |
C1—Rh1—C7 | 92.47 (19) | C14—C13—H13A | 108.9 |
C1—Rh1—C14 | 88.55 (19) | C14—C13—H13B | 108.9 |
C1—Rh1—C11 | 161.7 (2) | C14—C13—C12 | 113.4 (4) |
C1—Rh1—C10 | 162.22 (19) | H13A—C13—H13B | 107.7 |
C1—Rh1—Br1 | 87.93 (14) | C12—C13—H13A | 108.9 |
C7—Rh1—Cl1 | 158.76 (15) | C12—C13—H13B | 108.9 |
C7—Rh1—C11 | 89.1 (2) | C11—C12—C13 | 112.0 (4) |
C7—Rh1—C10 | 82.02 (19) | C11—C12—H12A | 109.2 |
C7—Rh1—Br1 | 158.76 (15) | C11—C12—H12B | 109.2 |
C14—Rh1—Cl1 | 162.14 (16) | C13—C12—H12A | 109.2 |
C14—Rh1—C7 | 38.9 (2) | C13—C12—H12B | 109.2 |
C14—Rh1—C11 | 81.30 (16) | H12A—C12—H12B | 107.9 |
C14—Rh1—C10 | 97.40 (18) | N3—C2—H2 | 124.1 |
C14—Rh1—Br1 | 162.14 (16) | N2—C2—N3 | 111.7 (4) |
C11—Rh1—Cl1 | 97.08 (13) | N2—C2—H2 | 124.1 |
C11—Rh1—Br1 | 97.08 (13) | H5A—C5—H5B | 109.5 |
C10—Rh1—Cl1 | 91.19 (13) | H5A—C5—H5C | 109.5 |
C10—Rh1—C11 | 35.8 (2) | H5B—C5—H5C | 109.5 |
C10—Rh1—Br1 | 91.19 (13) | C4—C5—H5A | 109.5 |
C1—N3—C2 | 108.6 (4) | C4—C5—H5B | 109.5 |
C1—N3—C4 | 124.6 (4) | C4—C5—H5C | 109.5 |
C2—N3—C4 | 126.8 (4) | C7—C8—H8A | 108.7 |
N2—N1—C3 | 119.4 (4) | C7—C8—H8B | 108.7 |
C1—N1—N2 | 113.8 (4) | C7—C8—C9 | 114.3 (4) |
C1—N1—C3 | 126.9 (4) | H8A—C8—H8B | 107.6 |
C2—N2—N1 | 102.8 (4) | C9—C8—H8A | 108.7 |
N3—C1—Rh1 | 128.5 (3) | C9—C8—H8B | 108.7 |
N1—C1—Rh1 | 128.4 (3) | N3—C4—C6 | 109.8 (4) |
N1—C1—N3 | 103.1 (4) | N3—C4—C5 | 110.2 (4) |
Rh1—C7—H7 | 113.5 | N3—C4—H4 | 108.0 |
C14—C7—Rh1 | 70.4 (3) | C6—C4—H4 | 108.0 |
C14—C7—H7 | 113.5 | C5—C4—C6 | 112.6 (4) |
C14—C7—C8 | 125.4 (4) | C5—C4—H4 | 108.0 |
C8—C7—Rh1 | 112.8 (3) | Rh1—C10—H10 | 114.0 |
C8—C7—H7 | 113.5 | C11—C10—Rh1 | 72.9 (3) |
Rh1—C14—H14 | 113.8 | C11—C10—H10 | 114.0 |
C7—C14—Rh1 | 70.7 (3) | C11—C10—C9 | 126.1 (4) |
C7—C14—H14 | 113.8 | C9—C10—Rh1 | 107.7 (3) |
C7—C14—C13 | 126.5 (5) | C9—C10—H10 | 114.0 |
C13—C14—Rh1 | 109.9 (3) | C8—C9—H9A | 108.9 |
C13—C14—H14 | 113.8 | C8—C9—H9B | 108.9 |
Rh1—C11—H11 | 114.6 | C10—C9—C8 | 113.2 (4) |
C12—C11—Rh1 | 110.1 (3) | C10—C9—H9A | 108.9 |
C12—C11—H11 | 114.6 | C10—C9—H9B | 108.9 |
C10—C11—Rh1 | 71.3 (3) | H9A—C9—H9B | 107.7 |
C10—C11—H11 | 114.6 | N1—C3—H3A | 109.5 |
C10—C11—C12 | 123.6 (5) | N1—C3—H3B | 109.5 |
H6A—C6—H6B | 109.5 | N1—C3—H3C | 109.5 |
H6A—C6—H6C | 109.5 | H3A—C3—H3B | 109.5 |
H6B—C6—H6C | 109.5 | H3A—C3—H3C | 109.5 |
C4—C6—H6A | 109.5 | H3B—C3—H3C | 109.5 |
C4—C6—H6B | 109.5 | ||
Rh1—C7—C14—C13 | −100.9 (4) | C11—C10—C9—C8 | 46.9 (6) |
Rh1—C7—C8—C9 | −8.0 (5) | C12—C11—C10—Rh1 | 102.2 (4) |
Rh1—C14—C13—C12 | −40.3 (5) | C12—C11—C10—C9 | 2.4 (7) |
Rh1—C11—C12—C13 | −16.0 (6) | C2—N3—C1—Rh1 | −178.6 (3) |
Rh1—C11—C10—C9 | −99.8 (5) | C2—N3—C1—N1 | 0.9 (5) |
Rh1—C10—C9—C8 | −34.5 (5) | C2—N3—C4—C6 | −50.2 (6) |
N1—N2—C2—N3 | 0.2 (5) | C2—N3—C4—C5 | 74.5 (5) |
N2—N1—C1—Rh1 | 178.7 (3) | C8—C7—C14—Rh1 | 104.6 (4) |
N2—N1—C1—N3 | −0.8 (5) | C8—C7—C14—C13 | 3.7 (7) |
C1—N3—C2—N2 | −0.8 (5) | C4—N3—C1—Rh1 | 1.1 (6) |
C1—N3—C4—C6 | 130.1 (5) | C4—N3—C1—N1 | −179.4 (4) |
C1—N3—C4—C5 | −105.2 (5) | C4—N3—C2—N2 | 179.5 (4) |
C1—N1—N2—C2 | 0.4 (5) | C10—C11—C12—C13 | −96.4 (6) |
C7—C14—C13—C12 | 39.9 (7) | C3—N1—N2—C2 | 179.3 (4) |
C7—C8—C9—C10 | 29.2 (6) | C3—N1—C1—Rh1 | −0.1 (7) |
C14—C7—C8—C9 | −89.4 (6) | C3—N1—C1—N3 | −179.7 (4) |
C14—C13—C12—C11 | 37.3 (6) |
Acknowledgements
JR was supported in this work by the Millersville University Murley Summer Undergraduate Research Fellowship.
References
Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596–3604. Web of Science CSD CrossRef CAS Google Scholar
Aznarez, F., Gao, W.-X., Lin, Y.-J., Hahn, F. E. & Jin, G.-X. (2018). Dalton Trans. 47, 9442–9452. Web of Science CSD CrossRef CAS PubMed Google Scholar
Benaissa, I., Taakili, R., Lugan, N. & Canac, Y. (2017). Dalton Trans. 46, 12293–12305. Web of Science CSD CrossRef CAS PubMed Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461–2468. Web of Science CSD CrossRef CAS Google Scholar
Chianese, A. R., Li, X. W., Janzen, M. C., Faller, J. W. & Crabtree, R. H. (2003). Organometallics, 22, 1663–1667. Web of Science CSD CrossRef CAS Google Scholar
Díez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612–3676. Web of Science PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230. Web of Science CrossRef CAS Google Scholar
Gusev, D. G. (2009). Organometallics, 28, 6458–6461. Web of Science CrossRef CAS Google Scholar
Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448. Web of Science CSD CrossRef CAS Google Scholar
Hillier, A. C., Lee, H. M., Stevens, E. D. & Nolan, S. P. (2001). Organometallics, 20, 4246–4252. Web of Science CSD CrossRef CAS Google Scholar
Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081. Google Scholar
Idrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411. Google Scholar
Kalidasan, M., Nagarajaprakash, R. & Rao, K. M. (2015). Transition Met. Chem. 40, 531–539. Web of Science CSD CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320–4328. Web of Science CSD CrossRef Google Scholar
Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158–m159. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597. Google Scholar
Ruff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327–335. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Skelton, B. W., Ou, A. & Dorta, R. (2019). Private communication (refcode: WORJIZ). CCDC, Cambridge, England. Google Scholar
Skelton, B. W., Ou, A. & Dorta, R. (2020). Private communication (refcode: SOZXIR01). CCDC, Cambridge, England. Google Scholar
Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975. Web of Science CSD CrossRef CAS Google Scholar
Zuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791–5801. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.