metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(2,4-dioxo­pentan-3-ido-κ2O,O′)dioxidomolyb­denum(VI): a redetermination

crossmark logo

aDepartment of Chemistry, Otterbein University, Westerville, OH 43081, USA
*Correspondence e-mail: djohnston@otterbein.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 July 2021; accepted 29 July 2021; online 6 August 2021)

The title compound, [Mo(C5H7O2)2O2] or cis-[MoO2(acac)2] (acac is acetyl­acetonate), contains a molybdenum(VI) atom coordinated by two acetyl­acetonate ligands and two doubly bonded oxido ligands in a distorted octa­hedral shape. The mol­ecule is chiral and the asymmetric unit contains two independent mol­ecules (one Δ, one Λ). Extensive C—H⋯O contacts are present throughout the structure. Data were collected at 100 K, providing higher precision of unit-cell parameters and atomic positions than previous determinations [Kamenar et al. (1973[Kamenar, B., Penavic, M. & Prout, C. K. (1973). Cryst. Struct. Commun. 2, 41-44.]). Cryst. Struct. Commun. 2, 41–44.; Krasochka et al. (1975). Zh. Strukt. Khim. 16, 696–698].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound is a versatile starting material for the preparation of cis-dioxidomolybdenum complexes, including complexes containing organodi­nitro­gen ligands (Bustos et al., 1994[Bustos, C., Manzur, C., Carrillo, D., Robert, F. & Gouzerh, P. (1994). Inorg. Chem. 33, 1427-1433.]) and molybdenyl adducts of platinum μ-S dimers (Henderson et al., 2011[Henderson, W., Nicholson, B. K., Bridson, J. H., Kueh, J. T. & Andy Hor, T. S. (2011). Inorg. Chim. Acta, 375, 142-149.]). MoO2(acac)2 has also been used to prepare dioxidomolybdenum(VI) complexes with O,N,N′ chelating ligands (Ceylan et al., 2015[Ceylan, B. İ., Deniz, N. G., Kahraman, S. & Ulkuseven, B. (2015). Spectrochim. Acta A, 141, 272-277.]) and an amine bis­(phenolate) ligand (Bowen & Wile, 2021[Bowen, C. L. & Wile, B. M. (2021). IUCrData, 6, x210516.]). Many of these complexes have been prepared and studied for their catalytic activities, including complexes with acyl­pyrazolo­nate ligands that catalyze the de­oxy­genation of epoxides (Hills et al., 2013[Hills, L., Moyano, R., Montilla, F., Pastor, A., Galindo, A., Álvarez, E., Marchetti, F. & Pettinari, C. (2013). Eur. J. Inorg. Chem. pp. 3352-3361.]; Begines et al., 2018[Begines, E., Carrasco, C. J., Montilla, F., Álvarez, E., Marchetti, F., Pettinari, R., Pettinari, C. & Galindo, A. (2018). Dalton Trans. 47, 197-208.]) and dioxidomol­yb­denum(VI) complexes with salicyl­amide ligands for the epoxidation of olefins (Annese et al., 2019[Annese, C., Caputo, D., D'Accolti, L., Fusco, C., Nacci, A., Rossin, A., Tuci, G. & Giambastiani, G. (2019). Eur. J. Inorg. Chem. pp. 221-229.]). Molybdenum(VI) dioxido complexes with acetyl­acetonato ligands have also been investigated for their catalytic properties in the de­hydrogenation of alcohols (Korstanje et al., 2013[Korstanje, T. J., Folkertsma, E., Lutz, M., Jastrzebski, J. T. B. H. & Klein Gebbink, R. J. M. (2013). Eur. J. Inorg. Chem. pp. 2195-2204.]). These complexes are of particular inter­est due to their close structural similarities to the active sites of several molybdoenyzmes such as sulfite oxidase, xanthine oxidase, and DMSO reductase (Sousa & Fernandes, 2015[Sousa, S. C. A. & Fernandes, A. C. (2015). Coord. Chem. Rev. 284, 67-92.]).

Two previous structural determinations of cis-dioxidobis(acetyl­acetonato)molybdenum(VI) were published in the mid-1970s (Kamenar et al., 1973[Kamenar, B., Penavic, M. & Prout, C. K. (1973). Cryst. Struct. Commun. 2, 41-44.]; Krasochka et al., 1975) based on photographic methods and room-temperature data collections. Additionally, Craven et al. (1971[Craven, B. M., Ramey, K. C. & Wise, W. B. (1971). Inorg. Chem. 10, 2626-2628.]) cite an unpublished diffraction study that also confirms the cis coordination and includes additional structural information consistent with the current study. None of the previously published structure solutions attempted to locate the positions of any of the hydrogen atoms. Several closely related structures have been determined, including cis-dioxido-molybdenum complexes with 1,3-di­phenyl­propane­dianoto ligands (Kojić-Prodić et al., 1974[Kojić-Prodić, B., Rużić-Toroš, Ž., Grdenić, D. & Golič, L. (1974). Acta Cryst. B30, 300-305.]; Korstanje et al., 2013[Korstanje, T. J., Folkertsma, E., Lutz, M., Jastrzebski, J. T. B. H. & Klein Gebbink, R. J. M. (2013). Eur. J. Inorg. Chem. pp. 2195-2204.]) and tert-butyl­acetyl­acetonato ligands (Nass et al., 2001[Nass, M., Schürmann, M., Preut, H. & Krause, N. (2001). Z. Krist. New Cryst. Struct. 216, 461-464.]). The structure of the product from the reaction of cis-[MoO2(acac)2] with the strong Lewis acid B(C6F5)3 (Galsworthy et al., 1997[Galsworthy, J. R., Green, M. L. H., Müller, M. & Prout, K. (1997). J. Chem. Soc. Dalton Trans. pp. 1309-1313.]) displays a nearly linear Mo=O—B arrangement [171.2 (1)°] and lengthening of the donating Mo=O bond by about 0.1 Å.

The asymmetric unit of the title compound contains two crystallographically independent cis-[MoO2(acac)2] mol­ec­ules, one each of the Δ and Λ forms (Fig. 1[link]). The mol­ecular structure adopts a distorted octa­hedral arrangement around the MoVI atoms, with oxido ligands in a cis arrangement and oxido-molybdenum-oxido angles of 105.40 (4) and 105.59 (5)°. As observed previously (Krasochka, 1973[Krasochka, O. N., Sokolova, Yu. A. & Atovmyan, L. O. (1973). Zh. Strukt. Khim. 16, 696-698.]; Kojić-Prodić et al., 1974[Kojić-Prodić, B., Rużić-Toroš, Ž., Grdenić, D. & Golič, L. (1974). Acta Cryst. B30, 300-305.]), the Mo—O bond distances trans to the molybdenum-oxygen double bonds are significantly lengthened [avg = 2.185 (5) Å] relative to the other molybdenum–oxygen distances [avg = 1.999 (11) Å] (see Table 1[link] for selected bond distances and angles). The four molybdenum oxygen distances for the doubly-bonded oxido ligands average 1.7012 (16) Å, in agreement with the average distance found for over 140 similar cis-dioxido molybdenum complexes in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). These metrics are also in agreement with relatively narrow distribution of molybdenum–oxygen distances observed by Mayer (1988[Mayer, J. M. (1988). Inorg. Chem. 27, 3899-3903.]) for cis-dioxido complexes.

Table 1
Selected geometric parameters (Å, °)

Mo1—O1 1.7029 (9) Mo2—O7 1.6996 (9)
Mo1—O2 1.7001 (9) Mo2—O8 1.7021 (9)
Mo1—O3 2.1825 (8) Mo2—O9 2.1808 (8)
Mo1—O4 2.1921 (8) Mo2—O10 2.1848 (9)
Mo1—O5 2.0060 (8) Mo2—O11 1.9898 (8)
Mo1—O6 1.9897 (8) Mo2—O12 2.0106 (8)
       
O2—Mo1—O1 105.40 (4) O7—Mo2—O8 105.59 (5)
[Figure 1]
Figure 1
Displacement ellipsoid (50% probability) diagram of the two independent mol­ecules with the numbering scheme for the non-hydrogen atoms.

All of the hydrogen-bonding contacts are weak C—H⋯O inter­actions with DA distances between 3.3 and 3.5 Å (see Table 2[link] and Fig. 2[link]). There are contacts between C—H atoms and all four of the oxido ligands, including two contacts to O1 and three contacts to O8. Additional C—H contacts are made to most of the acetyl­acetonate oxygen atoms as well.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O8i 0.93 (1) 2.62 (2) 3.4834 (16) 155 (2)
C5—H5B⋯O10ii 0.98 (1) 2.50 (1) 3.4652 (15) 170 (2)
C6—H6A⋯O8 0.97 (1) 2.51 (2) 3.3894 (15) 151 (2)
C8—H8⋯O7iii 0.91 (1) 2.79 (2) 3.4071 (14) 126 (1)
C10—H10A⋯O6iv 0.95 (1) 2.68 (2) 3.3334 (15) 127 (1)
C10—H10C⋯O1v 0.97 (1) 2.50 (2) 3.3126 (15) 141 (2)
C11—H11B⋯O3i 0.99 (1) 2.48 (1) 3.4415 (14) 163 (2)
C15—H15A⋯O1ii 0.93 (1) 2.55 (2) 3.4592 (15) 167 (2)
C15—H15C⋯O4 0.96 (1) 2.53 (2) 3.4018 (15) 152 (2)
C16—H16A⋯O11vi 0.94 (1) 2.66 (2) 3.3127 (15) 128 (2)
C16—H16B⋯O8vii 0.96 (2) 2.52 (2) 3.3971 (17) 153 (2)
C18—H18⋯O2viii 0.92 (1) 2.82 (2) 3.4646 (15) 128 (1)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x, -y+1, -z+1]; (iii) [-x+1, -y+1, -z+2]; (iv) [-x+1, -y+2, -z+1]; (v) x+1, y, z; (vi) [-x, -y, -z+2]; (vii) [x-1, y, z]; (viii) [-x, -y+1, -z+2].
[Figure 2]
Figure 2
Packing diagram (viewed along a), showing extensive weak C—H⋯O contacts (red dotted lines) throughout the crystal structure.

Synthesis and crystallization

The title compound was prepared using the Inorganic Syntheses procedure (Chakravorti & Bandyopadhyay, 1992[Chakravorti, M. C. & Bandyopadhyay, D. (1992). Inorganic Syntheses, Vol. 29, edited by R. N. Grimes, pp. 129-131. New York: John Wiley & Sons.]) with some modifications adapted from Arnáiz (1995[Arnáiz, F. J. (1995). J. Chem. Educ. 72, A7.]). A sample of 3.0 grams of ammonium para-molybdate was dissolved in 6.0 ml of 24%wt aqueous ammonia. A syringe was used to add 7.0 ml of 2,4-penta­nedione with stirring. Concentrated nitric acid (5.0 ml) was added and the solution was stirred for 30 min. The product precipitated as a pale-yellow solid and was isolated by filtration and washed with deionized water (2 × 10 ml), followed by ethanol (1 × 10 ml), and diethyl ether (1 × 10 ml). Over multiple preparations the yield averaged around 90%. Characterization by 1H NMR and FTIR agrees with previously reported values (Chakravorti & Bandyopadhyay, 1992[Chakravorti, M. C. & Bandyopadhyay, D. (1992). Inorganic Syntheses, Vol. 29, edited by R. N. Grimes, pp. 129-131. New York: John Wiley & Sons.]; Arnáiz, 1995[Arnáiz, F. J. (1995). J. Chem. Educ. 72, A7.]).

Three different crystallization methods were utilized: slow evaporation from a concentrated solution in 2,4-penta­nedione, vapor diffusion (di­chloro­methane/diethyl ether), and layering (di­chloro­methane/diethyl ether) in a standard 5 mm NMR tube. All three methods produced crystals, but the highest quality crystals and those used in this study were produced from solvent layering.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Mo(C5H7O2)2O2]
Mr 326.15
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.0111 (3), 12.4143 (4), 12.6847 (4)
α, β, γ (°) 75.649 (1), 89.272 (1), 87.072 (1)
V3) 1220.56 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.09
Crystal size (mm) 0.28 × 0.22 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.676, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 82074, 11855, 10556
Rint 0.035
(sin θ/λ)max−1) 0.835
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.061, 1.04
No. of reflections 11855
No. of parameters 391
No. of restraints 28
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 1.19, −1.11
Computer programs: APEX3 (Bruker, 2020[Bruker (2020). APEX3 and SAINT. Bruker AXS, Madison, Wisconsin, USA.]), SAINT (Bruker, 2020[Bruker (2020). APEX3 and SAINT. Bruker AXS, Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMaker (Palmer, 2019[Palmer, D. C. (2019). CrystalMaker. CrystalMaker Software Ltd, Begbroke, England.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2020); cell refinement: SAINT (Bruker, 2020); data reduction: SAINT (Bruker, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: CrystalMaker (Palmer, 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Bis(2,4-dioxopentan-3-ido-κ2O,O')dioxidomolybdenum(VI) top
Crystal data top
[Mo(C5H7O2)2O2]Z = 4
Mr = 326.15F(000) = 656
Triclinic, P1Dx = 1.775 Mg m3
a = 8.0111 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.4143 (4) ÅCell parameters from 9760 reflections
c = 12.6847 (4) Åθ = 3.0–36.3°
α = 75.649 (1)°µ = 1.09 mm1
β = 89.272 (1)°T = 100 K
γ = 87.072 (1)°Block, yellow
V = 1220.56 (7) Å30.28 × 0.22 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
10556 reflections with I > 2σ(I)
φ and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 36.4°, θmin = 1.7°
Tmin = 0.676, Tmax = 0.747h = 1313
82074 measured reflectionsk = 2020
11855 independent reflectionsl = 2121
Refinement top
Refinement on F228 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.023Only H-atom coordinates refined
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0307P)2 + 0.524P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
11855 reflectionsΔρmax = 1.19 e Å3
391 parametersΔρmin = 1.11 e Å3
Special details top

Refinement. All H atoms were located in a difference-Fourier map. Hydrogen atom positions were refined with C—H distances restrained to 0.98 (2) Å (CH3) or 0.95 (2) Å (ring C) and with Uiso(H) = 1.5Ueq(C) (methyl) or Uiso(H) = 1.2Ueq(C) (ring).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.19729 (2)0.76693 (2)0.56793 (2)0.01071 (2)
O10.01992 (11)0.69604 (7)0.57195 (8)0.01646 (15)
O20.14825 (12)0.86914 (7)0.63247 (7)0.01718 (15)
O30.45296 (11)0.82176 (7)0.55088 (7)0.01484 (14)
O40.32120 (11)0.65709 (7)0.47653 (7)0.01407 (14)
O50.30012 (10)0.65609 (7)0.69609 (7)0.01323 (13)
O60.17058 (11)0.86448 (7)0.41831 (7)0.01522 (14)
C10.37036 (18)0.55651 (10)0.34261 (11)0.0194 (2)
H1A0.408 (2)0.5708 (16)0.2707 (13)0.029*
H1B0.457 (2)0.5162 (15)0.3884 (16)0.029*
H1C0.286 (2)0.5032 (14)0.3486 (16)0.029*
C20.30151 (14)0.65672 (9)0.37795 (9)0.01315 (17)
C30.21648 (16)0.74411 (10)0.30091 (9)0.01650 (19)
H30.205 (2)0.7355 (14)0.2306 (12)0.020*
C40.16005 (14)0.84288 (9)0.32317 (9)0.01329 (17)
C50.08566 (17)0.93714 (10)0.23647 (10)0.0183 (2)
H5A0.170 (2)0.9885 (14)0.2000 (15)0.028*
H5B0.033 (2)0.9095 (15)0.1802 (14)0.028*
H5C0.002 (2)0.9801 (15)0.2663 (16)0.028*
C60.42700 (16)0.58188 (10)0.86696 (9)0.0170 (2)
H6A0.416 (2)0.5069 (12)0.8582 (16)0.026*
H6B0.333 (2)0.5953 (15)0.9090 (15)0.026*
H6C0.5274 (19)0.5743 (15)0.9049 (15)0.026*
C70.42379 (14)0.66499 (9)0.75910 (8)0.01228 (16)
C80.54477 (15)0.74177 (10)0.73039 (9)0.01541 (18)
H80.6317 (19)0.7423 (14)0.7754 (13)0.018*
C90.56069 (13)0.81282 (9)0.62473 (9)0.01234 (17)
C100.71393 (15)0.87800 (10)0.59652 (11)0.0180 (2)
H10A0.689 (2)0.9523 (12)0.5569 (15)0.027*
H10B0.776 (2)0.8840 (15)0.6561 (13)0.027*
H10C0.788 (2)0.8426 (15)0.5532 (15)0.027*
Mo20.31234 (2)0.23314 (2)0.94971 (2)0.01062 (2)
O70.35933 (12)0.13590 (7)1.06697 (7)0.01702 (15)
O80.49058 (11)0.30206 (7)0.91316 (8)0.01682 (15)
O90.18784 (11)0.33673 (7)0.80520 (7)0.01435 (14)
O100.05669 (11)0.17773 (7)0.96628 (7)0.01557 (15)
O110.33915 (11)0.12896 (7)0.85341 (7)0.01430 (14)
O120.20855 (11)0.34966 (7)1.01892 (7)0.01405 (14)
C110.42605 (16)0.05038 (9)0.70948 (10)0.01590 (19)
H11A0.506 (2)0.0052 (14)0.7626 (15)0.024*
H11B0.481 (2)0.0759 (15)0.6381 (12)0.024*
H11C0.338 (2)0.0040 (14)0.6990 (15)0.024*
C120.35213 (13)0.14698 (9)0.74799 (9)0.01179 (16)
C130.29618 (16)0.24372 (9)0.67571 (9)0.01583 (19)
H130.312 (2)0.2494 (14)0.6000 (11)0.019*
C140.20743 (13)0.33250 (9)0.70739 (9)0.01210 (16)
C150.13314 (16)0.42696 (10)0.62128 (10)0.01670 (19)
H15A0.095 (2)0.4053 (15)0.5610 (13)0.025*
H15B0.043 (2)0.4672 (15)0.6472 (16)0.025*
H15C0.219 (2)0.4773 (14)0.5942 (15)0.025*
C160.20236 (16)0.12360 (11)1.04748 (12)0.0219 (2)
H16A0.178 (2)0.0492 (13)1.0454 (17)0.033*
H16B0.280 (2)0.1597 (16)0.9911 (15)0.033*
H16C0.265 (2)0.1222 (16)1.1124 (14)0.033*
C170.04876 (14)0.18876 (9)1.03822 (9)0.01463 (18)
C180.03130 (16)0.26312 (11)1.10536 (10)0.0182 (2)
H180.116 (2)0.2651 (15)1.1543 (14)0.022*
C190.08525 (14)0.34274 (9)1.08878 (9)0.01445 (18)
C200.07649 (18)0.43275 (12)1.14881 (11)0.0220 (2)
H20A0.087 (3)0.5039 (13)1.1019 (16)0.033*
H20B0.027 (2)0.4408 (16)1.1843 (16)0.033*
H20C0.163 (2)0.4253 (17)1.1994 (15)0.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01212 (4)0.01239 (4)0.00833 (4)0.00019 (3)0.00151 (3)0.00391 (3)
O10.0145 (3)0.0165 (4)0.0190 (4)0.0011 (3)0.0029 (3)0.0055 (3)
O20.0220 (4)0.0167 (4)0.0150 (4)0.0011 (3)0.0008 (3)0.0078 (3)
O30.0153 (3)0.0185 (4)0.0102 (3)0.0043 (3)0.0011 (3)0.0016 (3)
O40.0174 (4)0.0143 (3)0.0106 (3)0.0010 (3)0.0004 (3)0.0037 (3)
O50.0147 (3)0.0152 (3)0.0094 (3)0.0023 (3)0.0017 (3)0.0018 (3)
O60.0229 (4)0.0129 (3)0.0099 (3)0.0008 (3)0.0041 (3)0.0031 (3)
C10.0265 (6)0.0172 (5)0.0161 (5)0.0006 (4)0.0036 (4)0.0079 (4)
C20.0152 (4)0.0140 (4)0.0111 (4)0.0026 (3)0.0016 (3)0.0043 (3)
C30.0244 (5)0.0163 (5)0.0096 (4)0.0001 (4)0.0026 (4)0.0048 (3)
C40.0157 (4)0.0138 (4)0.0102 (4)0.0028 (3)0.0027 (3)0.0020 (3)
C50.0240 (5)0.0165 (5)0.0127 (4)0.0004 (4)0.0066 (4)0.0000 (4)
C60.0228 (5)0.0171 (5)0.0096 (4)0.0007 (4)0.0027 (4)0.0004 (3)
C70.0156 (4)0.0126 (4)0.0090 (4)0.0017 (3)0.0015 (3)0.0037 (3)
C80.0176 (5)0.0159 (4)0.0126 (4)0.0016 (4)0.0050 (4)0.0029 (3)
C90.0133 (4)0.0114 (4)0.0134 (4)0.0000 (3)0.0004 (3)0.0051 (3)
C100.0146 (5)0.0172 (5)0.0234 (6)0.0040 (4)0.0003 (4)0.0070 (4)
Mo20.01235 (4)0.01240 (4)0.00711 (4)0.00003 (3)0.00073 (3)0.00262 (3)
O70.0226 (4)0.0168 (4)0.0105 (3)0.0003 (3)0.0010 (3)0.0013 (3)
O80.0153 (4)0.0165 (4)0.0181 (4)0.0016 (3)0.0027 (3)0.0033 (3)
O90.0188 (4)0.0146 (3)0.0095 (3)0.0024 (3)0.0003 (3)0.0034 (3)
O100.0151 (3)0.0185 (4)0.0147 (4)0.0040 (3)0.0028 (3)0.0066 (3)
O110.0214 (4)0.0131 (3)0.0083 (3)0.0013 (3)0.0016 (3)0.0029 (2)
O120.0161 (3)0.0159 (3)0.0115 (3)0.0007 (3)0.0016 (3)0.0062 (3)
C110.0213 (5)0.0137 (4)0.0135 (4)0.0010 (4)0.0031 (4)0.0052 (3)
C120.0132 (4)0.0124 (4)0.0102 (4)0.0018 (3)0.0025 (3)0.0037 (3)
C130.0244 (5)0.0145 (4)0.0085 (4)0.0012 (4)0.0011 (4)0.0031 (3)
C140.0146 (4)0.0116 (4)0.0100 (4)0.0021 (3)0.0006 (3)0.0020 (3)
C150.0233 (5)0.0129 (4)0.0127 (4)0.0002 (4)0.0046 (4)0.0009 (3)
C160.0159 (5)0.0220 (5)0.0248 (6)0.0044 (4)0.0025 (4)0.0002 (4)
C170.0139 (4)0.0151 (4)0.0127 (4)0.0001 (3)0.0004 (3)0.0007 (3)
C180.0185 (5)0.0222 (5)0.0141 (5)0.0002 (4)0.0065 (4)0.0054 (4)
C190.0173 (4)0.0173 (4)0.0091 (4)0.0039 (4)0.0006 (3)0.0050 (3)
C200.0263 (6)0.0251 (6)0.0181 (5)0.0048 (5)0.0002 (4)0.0135 (5)
Geometric parameters (Å, º) top
Mo1—O11.7029 (9)Mo2—O71.6996 (9)
Mo1—O21.7001 (9)Mo2—O81.7021 (9)
Mo1—O32.1825 (8)Mo2—O92.1808 (8)
Mo1—O42.1921 (8)Mo2—O102.1848 (9)
Mo1—O52.0060 (8)Mo2—O111.9898 (8)
Mo1—O61.9897 (8)Mo2—O122.0106 (8)
O3—C91.2624 (13)O9—C141.2623 (13)
O4—C21.2635 (13)O10—C171.2632 (14)
O5—C71.3067 (13)O11—C121.3036 (13)
O6—C41.3041 (13)O12—C191.3104 (14)
C1—H1A0.933 (14)C11—H11A0.984 (14)
C1—H1B0.947 (15)C11—H11B0.988 (14)
C1—H1C0.957 (14)C11—H11C0.962 (14)
C1—C21.5010 (16)C11—C121.4961 (15)
C2—C31.4183 (16)C12—C131.3761 (16)
C3—H30.931 (14)C13—H130.953 (14)
C3—C41.3782 (16)C13—C141.4191 (16)
C4—C51.4971 (16)C14—C151.4942 (16)
C5—H5A0.983 (14)C15—H15A0.932 (14)
C5—H5B0.975 (14)C15—H15B0.961 (14)
C5—H5C0.968 (15)C15—H15C0.957 (14)
C6—H6A0.973 (14)C16—H16A0.941 (14)
C6—H6B0.946 (14)C16—H16B0.961 (15)
C6—H6C0.931 (14)C16—H16C0.955 (15)
C6—C71.4952 (16)C16—C171.4944 (17)
C7—C81.3762 (16)C17—C181.4152 (17)
C8—H80.907 (14)C18—H180.917 (14)
C8—C91.4184 (16)C18—C191.3709 (17)
C9—C101.4955 (16)C19—C201.4986 (17)
C10—H10A0.948 (14)C20—H20A0.942 (15)
C10—H10B0.931 (14)C20—H20B0.950 (15)
C10—H10C0.965 (14)C20—H20C0.935 (15)
O1—Mo1—O3165.66 (4)O7—Mo2—O8105.59 (5)
O1—Mo1—O489.35 (4)O7—Mo2—O9164.58 (4)
O1—Mo1—O593.60 (4)O7—Mo2—O1087.98 (4)
O1—Mo1—O698.03 (4)O7—Mo2—O1195.53 (4)
O2—Mo1—O1105.40 (4)O7—Mo2—O1296.98 (4)
O2—Mo1—O388.56 (4)O8—Mo2—O989.81 (4)
O2—Mo1—O4165.18 (4)O8—Mo2—O10166.15 (4)
O2—Mo1—O597.16 (4)O8—Mo2—O1197.67 (4)
O2—Mo1—O695.35 (4)O8—Mo2—O1294.14 (4)
O3—Mo1—O476.80 (3)O9—Mo2—O1076.68 (3)
O5—Mo1—O381.17 (3)O11—Mo2—O981.38 (3)
O5—Mo1—O482.99 (3)O11—Mo2—O1083.47 (3)
O6—Mo1—O383.63 (3)O11—Mo2—O12159.82 (4)
O6—Mo1—O480.95 (3)O12—Mo2—O982.36 (3)
O6—Mo1—O5160.01 (4)O12—Mo2—O1081.22 (3)
C9—O3—Mo1127.94 (7)C14—O9—Mo2128.23 (7)
C2—O4—Mo1128.41 (7)C17—O10—Mo2127.20 (8)
C7—O5—Mo1130.40 (7)C12—O11—Mo2131.47 (7)
C4—O6—Mo1132.43 (7)C19—O12—Mo2129.74 (7)
H1A—C1—H1B108.5 (17)H11A—C11—H11B109.9 (16)
H1A—C1—H1C105.8 (17)H11A—C11—H11C108.6 (15)
H1B—C1—H1C103.1 (16)H11B—C11—H11C106.5 (15)
C2—C1—H1A115.0 (12)C12—C11—H11A111.4 (11)
C2—C1—H1B113.3 (13)C12—C11—H11B110.9 (10)
C2—C1—H1C110.2 (12)C12—C11—H11C109.4 (11)
O4—C2—C1117.22 (10)O11—C12—C11114.43 (9)
O4—C2—C3123.67 (10)O11—C12—C13124.15 (10)
C3—C2—C1119.10 (10)C13—C12—C11121.35 (10)
C2—C3—H3117.7 (11)C12—C13—H13118.0 (10)
C4—C3—C2123.42 (10)C12—C13—C14123.58 (10)
C4—C3—H3118.8 (11)C14—C13—H13118.3 (10)
O6—C4—C3124.17 (10)O9—C14—C13123.53 (10)
O6—C4—C5114.20 (10)O9—C14—C15117.53 (10)
C3—C4—C5121.60 (10)C13—C14—C15118.93 (10)
C4—C5—H5A112.3 (11)C14—C15—H15A113.4 (12)
C4—C5—H5B110.8 (11)C14—C15—H15B113.3 (12)
C4—C5—H5C111.2 (12)C14—C15—H15C108.1 (11)
H5A—C5—H5B106.9 (16)H15A—C15—H15B107.6 (16)
H5A—C5—H5C107.7 (16)H15A—C15—H15C105.6 (16)
H5B—C5—H5C107.8 (16)H15B—C15—H15C108.5 (15)
H6A—C6—H6B105.2 (16)H16A—C16—H16B110.9 (18)
H6A—C6—H6C101.7 (16)H16A—C16—H16C107.2 (17)
H6B—C6—H6C112.9 (17)H16B—C16—H16C102.8 (17)
C7—C6—H6A110.9 (12)C17—C16—H16A112.3 (12)
C7—C6—H6B110.0 (12)C17—C16—H16B109.7 (12)
C7—C6—H6C115.2 (12)C17—C16—H16C113.5 (12)
O5—C7—C6114.28 (10)O10—C17—C16117.36 (11)
O5—C7—C8124.26 (10)O10—C17—C18123.12 (11)
C8—C7—C6121.45 (10)C18—C17—C16119.44 (11)
C7—C8—H8121.1 (11)C17—C18—H18115.8 (12)
C7—C8—C9123.91 (10)C19—C18—C17124.01 (10)
C9—C8—H8114.2 (11)C19—C18—H18119.2 (11)
O3—C9—C8123.05 (10)O12—C19—C18124.32 (10)
O3—C9—C10117.50 (10)O12—C19—C20114.39 (11)
C8—C9—C10119.42 (10)C18—C19—C20121.27 (11)
C9—C10—H10A112.2 (12)C19—C20—H20A112.1 (13)
C9—C10—H10B114.7 (12)C19—C20—H20B114.9 (12)
C9—C10—H10C109.6 (11)C19—C20—H20C112.8 (13)
H10A—C10—H10B105.2 (16)H20A—C20—H20B102.8 (17)
H10A—C10—H10C108.5 (16)H20A—C20—H20C104.7 (18)
H10B—C10—H10C106.2 (16)H20B—C20—H20C108.6 (18)
Mo1—O3—C9—C814.91 (16)Mo2—O9—C14—C1311.74 (16)
Mo1—O3—C9—C10167.23 (8)Mo2—O9—C14—C15167.95 (8)
Mo1—O4—C2—C1165.78 (8)Mo2—O10—C17—C16167.33 (8)
Mo1—O4—C2—C313.14 (16)Mo2—O10—C17—C1815.86 (16)
Mo1—O5—C7—C6159.72 (8)Mo2—O11—C12—C11160.69 (8)
Mo1—O5—C7—C821.55 (16)Mo2—O11—C12—C1322.43 (17)
Mo1—O6—C4—C321.18 (18)Mo2—O12—C19—C1820.31 (17)
Mo1—O6—C4—C5160.91 (8)Mo2—O12—C19—C20161.61 (8)
O4—C2—C3—C46.18 (19)O10—C17—C18—C1910.74 (19)
O5—C7—C8—C97.08 (18)O11—C12—C13—C144.41 (19)
C1—C2—C3—C4174.93 (11)C11—C12—C13—C14172.26 (11)
C2—C3—C4—O63.75 (19)C12—C13—C14—O98.31 (19)
C2—C3—C4—C5174.01 (11)C12—C13—C14—C15172.00 (11)
C6—C7—C8—C9171.56 (11)C16—C17—C18—C19166.01 (12)
C7—C8—C9—O39.00 (18)C17—C18—C19—O1210.0 (2)
C7—C8—C9—C10168.82 (11)C17—C18—C19—C20167.99 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O8i0.93 (1)2.62 (2)3.4834 (16)155 (2)
C5—H5B···O10ii0.98 (1)2.50 (1)3.4652 (15)170 (2)
C6—H6A···O80.97 (1)2.51 (2)3.3894 (15)151 (2)
C8—H8···O7iii0.91 (1)2.79 (2)3.4071 (14)126 (1)
C10—H10A···O6iv0.95 (1)2.68 (2)3.3334 (15)127 (1)
C10—H10C···O1v0.97 (1)2.50 (2)3.3126 (15)141 (2)
C11—H11B···O3i0.99 (1)2.48 (1)3.4415 (14)163 (2)
C15—H15A···O1ii0.93 (1)2.55 (2)3.4592 (15)167 (2)
C15—H15C···O40.96 (1)2.53 (2)3.4018 (15)152 (2)
C16—H16A···O11vi0.94 (1)2.66 (2)3.3127 (15)128 (2)
C16—H16B···O8vii0.96 (2)2.52 (2)3.3971 (17)153 (2)
C18—H18···O2viii0.92 (1)2.82 (2)3.4646 (15)128 (1)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x+1, y+2, z+1; (v) x+1, y, z; (vi) x, y, z+2; (vii) x1, y, z; (viii) x, y+1, z+2.
 

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Education and Human Resources (grant No. 0942850 to Dean Johnston); Otterbein University Student Research Fund (grant to Calvin King, Aileen Seitz, Mia Sethi).

References

First citationAnnese, C., Caputo, D., D'Accolti, L., Fusco, C., Nacci, A., Rossin, A., Tuci, G. & Giambastiani, G. (2019). Eur. J. Inorg. Chem. pp. 221–229.  Web of Science CSD CrossRef Google Scholar
First citationArnáiz, F. J. (1995). J. Chem. Educ. 72, A7.  Google Scholar
First citationBegines, E., Carrasco, C. J., Montilla, F., Álvarez, E., Marchetti, F., Pettinari, R., Pettinari, C. & Galindo, A. (2018). Dalton Trans. 47, 197–208.  Web of Science CSD CrossRef CAS Google Scholar
First citationBowen, C. L. & Wile, B. M. (2021). IUCrData, 6, x210516.  Google Scholar
First citationBruker (2020). APEX3 and SAINT. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationBustos, C., Manzur, C., Carrillo, D., Robert, F. & Gouzerh, P. (1994). Inorg. Chem. 33, 1427–1433.  CSD CrossRef CAS Web of Science Google Scholar
First citationCeylan, B. İ., Deniz, N. G., Kahraman, S. & Ulkuseven, B. (2015). Spectrochim. Acta A, 141, 272–277.  Web of Science CSD CrossRef Google Scholar
First citationChakravorti, M. C. & Bandyopadhyay, D. (1992). Inorganic Syntheses, Vol. 29, edited by R. N. Grimes, pp. 129–131. New York: John Wiley & Sons.  Google Scholar
First citationCraven, B. M., Ramey, K. C. & Wise, W. B. (1971). Inorg. Chem. 10, 2626–2628.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalsworthy, J. R., Green, M. L. H., Müller, M. & Prout, K. (1997). J. Chem. Soc. Dalton Trans. pp. 1309–1313.  CSD CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHenderson, W., Nicholson, B. K., Bridson, J. H., Kueh, J. T. & Andy Hor, T. S. (2011). Inorg. Chim. Acta, 375, 142–149.  Web of Science CSD CrossRef CAS Google Scholar
First citationHills, L., Moyano, R., Montilla, F., Pastor, A., Galindo, A., Álvarez, E., Marchetti, F. & Pettinari, C. (2013). Eur. J. Inorg. Chem. pp. 3352–3361.  Web of Science CSD CrossRef Google Scholar
First citationKamenar, B., Penavic, M. & Prout, C. K. (1973). Cryst. Struct. Commun. 2, 41–44.  CAS Google Scholar
First citationKojić-Prodić, B., Rużić-Toroš, Ž., Grdenić, D. & Golič, L. (1974). Acta Cryst. B30, 300–305.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationKorstanje, T. J., Folkertsma, E., Lutz, M., Jastrzebski, J. T. B. H. & Klein Gebbink, R. J. M. (2013). Eur. J. Inorg. Chem. pp. 2195–2204.  Web of Science CSD CrossRef Google Scholar
First citationKrasochka, O. N., Sokolova, Yu. A. & Atovmyan, L. O. (1973). Zh. Strukt. Khim. 16, 696–698.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMayer, J. M. (1988). Inorg. Chem. 27, 3899–3903.  CrossRef CAS Web of Science Google Scholar
First citationNass, M., Schürmann, M., Preut, H. & Krause, N. (2001). Z. Krist. New Cryst. Struct. 216, 461–464.  CAS Google Scholar
First citationPalmer, D. C. (2019). CrystalMaker. CrystalMaker Software Ltd, Begbroke, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSousa, S. C. A. & Fernandes, A. C. (2015). Coord. Chem. Rev. 284, 67–92.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds