metal-organic compounds
1-Butyl-3-methylimidazolium tribromido(triphenylphosphane-κP)nickelate(II) butan-1-ol hemisolvate
aLeibniz-Institut für Katalyse e.V. (LIKAT), Heterogene Photokatalyse, Albert-Einstein-Str. 29a, D-18059 Rostock, Germany, and bUniversität Rostock, Institut für Chemie, Anorganische Festkörperchemie, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany
*Correspondence e-mail: tim.peppel@catalysis.de
The solvated title salt, (C8H15N2)[NiBr3(P(C6H5)3)]·0.5C4H10O, was obtained in the form of single crystals directly from the reaction mixture. The molecular structure consists of separated 1-butyl-3-methylimidazolium cations, tribromido(triphenylphosphane)nickelate(II) anions and half a solvent molecule of 1-butanol, all connected via multiple hydrogen contacts to form a three-dimensional network. The co-crystallized 1-butanol molecule is disordered and adopts two orientations. The central C—C bonds of both orientations are located on an inversion centre (Wyckoff site 2b of P21/n). Thereby, each orientation has again two orientations with the OH group being located either on one or the other side of the C4 alkyl chain. The dried solvent-free compound exhibits a relatively low melting point (m.p. = 412 K).
Keywords: crystal structure; nickel; coordination compound; ionic liquid.
CCDC reference: 2102393
Structure description
Nickel(II) complexes exhibiting pseudo-tetrahedral symmetry [NiX3L]− [X: halide, L: neutral ligand, e.g. P(C6H5)3] have been thoroughly characterized for more than 50 years by means of magnetic investigations, UV–vis and far-infrared spectroscopy, NMR and EPR as well as Mössbauer spectroscopy (Figgis et al., 1966; Bradbury et al., 1967; Fischer & Horrocks, 1968; Erich et al., 1969; Gerloch et al., 1981; Desrochers et al., 2006). In addition, complexes bearing the [NiBr3P(C6H5)3]− anion have been investigated as suitable precatalysts for the generation of Ni–NHC complexes (NHC: N-heterocyclic carbene) in catalytic processes, e.g. selective cross-coupling reactions (Xu et al., 2013; Poulten et al., 2014; Zhang et al., 2015). Single-crystal structure determinations of complexes with the general formula (cation)[NiBr3P(C6H5)3] are known for the following cations: [As(C6H5)4]+ (Hanton & Raithby, 1980), (DiPIm)+ (DiPIm: 1,3-diisopropylimidazolium; Xu et al., 2013), (DiPPhIm)+ (DiPPhIm: 1,3-bis(2,6-diisopropylphenyl)imidazolium; Xu et al., 2013), and (EMIm)+ (EMIm: 1-ethyl-3-methylimidazolium; Peppel et al., 2013). We report here the synthesis and of (BMIm)+[NiBr3(P(C6H5)3)]−·0.5(C4H10O) (BMIm+ is 1-butyl-3-methylimidazolium).
The ). An additional highly distorted half molecule of 1-butanol is incorporated in the Together with weak C—H⋯Br contacts involving the anion, the OH function of the solvent molecule forms hydrogen bonds to the N atom of the cation, building up an extended three-dimensional hydrogen-bonded network (Table 1). The co-crystallized 1-butanol molecule adopts two orientations. The central C—C bonds of both orientations are located on the inversion centre whereby each orientation has again two orientations with the OH group being located either on one or the other side of the C4 alkyl chain. All bond lengths and angles within the cation as well as the complex anion are in the expected ranges (Peppel et al., 2013). The coordination environment around the NiII atom is pseudo-tetrahedral with Br—Ni—Br angles ranging from 109.95 (2) to 117.94 (2)°, and Br—Ni—P angles ranging from 102.76 (2) to 106.26 (2)°. The packing of the molecular entities is depicted in Fig. 2.
of the title compound consists of one 1-butyl-3-methylimidazolium cation and one tribromido(triphenylphosphane)nickelate(II) anion (Fig. 1Synthesis and crystallization
The title compound was obtained as blue crystals in multi-gram scale from 1-butyl-3-methylimidazolium bromide, triphenylphosphane and anhydrous nickel(II) bromide in boiling 1-butanol (Peppel et al., 2013). 1-Butyl-3-methylimidazolium bromide (1.0 g, 4.6 mmol) and triphenylphosphane (1.2 g, 4.6 mmol) were dissolved in 20 ml of 1-butanol in a Schlenk tube. This solution was added in one portion to a vigorously stirred, nearly boiling suspension of NiBr2 (1.0 g, 4.6 mmol) in 30 ml of 1-butanol. The resulting green precipitate was completely dissolved by heating up the suspension to the boiling point of the solvent. The hot solution was cooled down to 277 K overnight in a refrigerator. The resulting blue crystals were filtered off, washed thoroughly with diethyl ether and dried in vacuum at ambient conditions (2.5 g, 78%).
Analytic data for C26H30Br3N2NiP: m.p. 412 K, elemental analysis % (calc.): C 42.61 (44.62); H 4.28 (4.32); N 4.18 (4.00).
Refinement
Crystal data, data collection and structure . Several low-angle reflections were omitted in the structure because their intensities were affected by the beam stop. The centre of the co-crystallized 1-butanol molecule is located on the Wyckoff site 2b of P21/n. It is disordered with two different orientations, which were refined using a split arrangement with the sum of occupational factors being fixed to full occupation. This results in a total of half a molecule per formula unit. The H atoms of the disordered 1-butanol molecule including that attached to the O atom were calculated at idealized positions and refined using riding models.
details are summarized in Table 2
|
Structural data
CCDC reference: 2102393
https://doi.org/10.1107/S241431462100818X/wm4149sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431462100818X/wm4149Isup2.hkl
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2019); software used to prepare material for publication: publCIF (Westrip, 2010).(C8H15N2)[NiBr3(C18H15P)]·0.5C4H10O | F(000) = 1476 |
Mr = 736.99 | Dx = 1.621 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.9571 (4) Å | Cell parameters from 9717 reflections |
b = 14.4731 (6) Å | θ = 3.4–27.3° |
c = 21.4730 (9) Å | µ = 4.69 mm−1 |
β = 102.620 (2)° | T = 173 K |
V = 3019.7 (2) Å3 | Block, blue |
Z = 4 | 0.40 × 0.35 × 0.20 mm |
Bruker APEX CCD diffractometer | 5812 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.027 |
φ and ω scans | θmax = 27.4°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −12→11 |
k = −18→18 | |
44088 measured reflections | l = −27→27 |
6832 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: mixed |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0282P)2 + 3.0233P] where P = (Fo2 + 2Fc2)/3 |
6832 reflections | (Δ/σ)max = 0.001 |
352 parameters | Δρmax = 1.27 e Å−3 |
0 restraints | Δρmin = −0.72 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.51042 (3) | 0.23911 (2) | 0.30017 (2) | 0.02846 (8) | |
Br1 | 0.35880 (3) | 0.26583 (2) | 0.19977 (2) | 0.03852 (7) | |
Br2 | 0.59646 (3) | 0.08690 (2) | 0.31181 (2) | 0.04115 (7) | |
Br3 | 0.66974 (3) | 0.36192 (2) | 0.32458 (2) | 0.04823 (8) | |
P1 | 0.37606 (5) | 0.24590 (4) | 0.37386 (3) | 0.0227 (1) | |
C1 | 0.2154 (2) | 0.1831 (2) | 0.3494 (1) | 0.0240 (4) | |
C2 | 0.2199 (2) | 0.0952 (2) | 0.3241 (1) | 0.0306 (5) | |
H2A | 0.3054 | 0.0700 | 0.3196 | 0.037* | |
C3 | 0.1000 (2) | 0.0439 (2) | 0.3053 (1) | 0.0347 (5) | |
H3A | 0.1035 | −0.0165 | 0.2884 | 0.042* | |
C4 | −0.0248 (2) | 0.0811 (2) | 0.3113 (1) | 0.0345 (5) | |
H4A | −0.1070 | 0.0464 | 0.2979 | 0.041* | |
C5 | −0.0299 (2) | 0.1678 (2) | 0.3364 (1) | 0.0377 (6) | |
H5A | −0.1157 | 0.1927 | 0.3407 | 0.045* | |
C6 | 0.0896 (2) | 0.2193 (2) | 0.3556 (1) | 0.0328 (5) | |
H6A | 0.0855 | 0.2793 | 0.3730 | 0.039* | |
C7 | 0.3318 (2) | 0.3640 (2) | 0.3896 (1) | 0.0259 (4) | |
C8 | 0.2805 (3) | 0.4208 (2) | 0.3374 (1) | 0.0346 (5) | |
H8A | 0.2655 | 0.3961 | 0.2954 | 0.042* | |
C9 | 0.2512 (3) | 0.5130 (2) | 0.3460 (1) | 0.0399 (6) | |
H9A | 0.2144 | 0.5508 | 0.3102 | 0.048* | |
C10 | 0.2757 (3) | 0.5495 (2) | 0.4069 (1) | 0.0388 (6) | |
H10A | 0.2569 | 0.6128 | 0.4130 | 0.047* | |
C11 | 0.3272 (3) | 0.4941 (2) | 0.4586 (1) | 0.0409 (6) | |
H11A | 0.3443 | 0.5198 | 0.5003 | 0.049* | |
C12 | 0.3545 (3) | 0.4013 (2) | 0.4508 (1) | 0.0351 (5) | |
H12A | 0.3884 | 0.3634 | 0.4869 | 0.042* | |
C13 | 0.4593 (2) | 0.1969 (2) | 0.4503 (1) | 0.0276 (5) | |
C14 | 0.3923 (3) | 0.1379 (2) | 0.4843 (1) | 0.0438 (6) | |
H14A | 0.2977 | 0.1240 | 0.4687 | 0.053* | |
C15 | 0.4633 (4) | 0.0992 (2) | 0.5413 (1) | 0.0566 (8) | |
H15A | 0.4175 | 0.0581 | 0.5643 | 0.068* | |
C16 | 0.5996 (3) | 0.1203 (2) | 0.5645 (1) | 0.0504 (7) | |
H16A | 0.6479 | 0.0939 | 0.6035 | 0.060* | |
C17 | 0.6659 (3) | 0.1792 (2) | 0.5315 (1) | 0.0465 (7) | |
H17A | 0.7597 | 0.1944 | 0.5482 | 0.056* | |
C18 | 0.5976 (3) | 0.2172 (2) | 0.4739 (1) | 0.0382 (6) | |
H18A | 0.6451 | 0.2568 | 0.4508 | 0.046* | |
N1 | 0.3974 (2) | 0.2444 (2) | 0.6874 (1) | 0.0386 (5) | |
C19 | 0.2707 (3) | 0.2755 (2) | 0.6827 (1) | 0.0404 (6) | |
H19A | 0.1975 | 0.2423 | 0.6942 | 0.048* | |
N2 | 0.2626 (2) | 0.3606 (1) | 0.6592 (1) | 0.0364 (5) | |
C20 | 0.4739 (3) | 0.3115 (2) | 0.6664 (1) | 0.0416 (6) | |
H20A | 0.5682 | 0.3077 | 0.6646 | 0.050* | |
C21 | 0.3894 (3) | 0.3840 (2) | 0.6486 (1) | 0.0396 (6) | |
H21A | 0.4131 | 0.4409 | 0.6317 | 0.048* | |
C22 | 0.4472 (4) | 0.1537 (2) | 0.7127 (2) | 0.0542 (8) | |
H22A | 0.3718 | 0.1196 | 0.7249 | 0.065* | |
H22B | 0.5224 | 0.1618 | 0.7502 | 0.065* | |
H22C | 0.4806 | 0.1190 | 0.6799 | 0.065* | |
C23 | 0.1370 (3) | 0.4170 (2) | 0.6441 (1) | 0.0425 (6) | |
H23A | 0.1577 | 0.4798 | 0.6620 | 0.051* | |
H23B | 0.0665 | 0.3893 | 0.6645 | 0.051* | |
C24 | 0.0810 (3) | 0.4240 (2) | 0.5740 (1) | 0.0485 (7) | |
H24A | 0.1509 | 0.4524 | 0.5535 | 0.058* | |
H24B | −0.0012 | 0.4644 | 0.5658 | 0.058* | |
C25 | 0.0420 (4) | 0.3292 (3) | 0.5448 (2) | 0.073 (1) | |
H25A | 0.1277 | 0.2961 | 0.5422 | 0.088* | |
H25B | −0.0027 | 0.2938 | 0.5741 | 0.088* | |
C26 | −0.0481 (4) | 0.3284 (3) | 0.4823 (2) | 0.080 (1) | |
H26A | −0.0656 | 0.2644 | 0.4679 | 0.096* | |
H26B | −0.0046 | 0.3619 | 0.4523 | 0.096* | |
H26C | −0.1353 | 0.3583 | 0.4843 | 0.096* | |
O1A | 0.055 (1) | 0.1262 (8) | 0.6149 (6) | 0.083 (3) | 0.25 |
H1AA | 0.1311 | 0.1364 | 0.6405 | 0.125* | 0.25 |
C27A | 0.093 (3) | 0.072 (2) | 0.578 (2) | 0.10 (1) | 0.25 |
H27A | 0.1412 | 0.1113 | 0.5539 | 0.121* | 0.25 |
H27B | 0.1560 | 0.0260 | 0.5980 | 0.121* | 0.25 |
C27C | 0.093 (3) | 0.072 (2) | 0.578 (2) | 0.10 (1) | 0.25 |
H27E | 0.0615 | 0.1179 | 0.5964 | 0.121* | 0.25 |
H27F | 0.1616 | 0.0354 | 0.5927 | 0.121* | 0.25 |
H27G | 0.1694 | 0.1257 | 0.5533 | 0.121* | 0.25 |
C28A | −0.0246 (9) | 0.0276 (5) | 0.5250 (4) | 0.061 (2) | 0.5 |
H28A | −0.0800 | 0.0795 | 0.5028 | 0.073* | 0.5 |
H28B | −0.0879 | −0.0121 | 0.5428 | 0.073* | 0.5 |
O1B | 0.192 (1) | 0.0781 (8) | 0.6091 (6) | 0.069 (3) | 0.25 |
H1BA | 0.1987 | 0.1296 | 0.6285 | 0.103* | 0.25 |
C27B | 0.089 (2) | 0.077 (2) | 0.568 (1) | 0.056 (4) | 0.25 |
H27C | 0.0791 | 0.1259 | 0.5426 | 0.067* | 0.25 |
H27D | 0.0119 | 0.0687 | 0.5882 | 0.067* | 0.25 |
C27D | 0.089 (2) | 0.077 (2) | 0.568 (1) | 0.056 (4) | 0.25 |
H27H | 0.1726 | 0.0648 | 0.6010 | 0.067* | 0.25 |
H27I | 0.0881 | 0.1287 | 0.5476 | 0.067* | 0.25 |
H27J | 0.0133 | 0.0753 | 0.5938 | 0.067* | 0.25 |
C28B | 0.0679 (9) | −0.0022 (5) | 0.5252 (4) | 0.069 (2) | 0.5 |
H28C | 0.0687 | −0.0595 | 0.5478 | 0.083* | 0.5 |
H28D | 0.1424 | −0.0040 | 0.5034 | 0.083* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0268 (2) | 0.0286 (2) | 0.0320 (2) | −0.0005 (1) | 0.0109 (1) | 0.0003 (1) |
Br1 | 0.0476 (2) | 0.0360 (1) | 0.0296 (1) | −0.0026 (1) | 0.0032 (1) | −0.0005 (1) |
Br2 | 0.0331 (1) | 0.0308 (1) | 0.0628 (2) | 0.0057 (1) | 0.0177 (1) | 0.0017 (1) |
Br3 | 0.0392 (2) | 0.0335 (1) | 0.0747 (2) | −0.0103 (1) | 0.0182 (1) | −0.0062 (1) |
P1 | 0.0204 (3) | 0.0233 (3) | 0.0240 (3) | −0.0001 (2) | 0.0040 (2) | −0.0001 (2) |
C1 | 0.022 (1) | 0.027 (1) | 0.023 (1) | −0.0009 (8) | 0.0045 (8) | 0.0028 (8) |
C2 | 0.024 (1) | 0.029 (1) | 0.039 (1) | 0.0000 (9) | 0.0083 (9) | −0.001 (1) |
C3 | 0.033 (1) | 0.029 (1) | 0.043 (1) | −0.006 (1) | 0.010 (1) | −0.004 (1) |
C4 | 0.027 (1) | 0.038 (1) | 0.039 (1) | −0.009 (1) | 0.006 (1) | 0.003 (1) |
C5 | 0.025 (1) | 0.041 (1) | 0.049 (2) | 0.001 (1) | 0.011 (1) | 0.001 (1) |
C6 | 0.028 (1) | 0.031 (1) | 0.041 (1) | 0.0009 (9) | 0.012 (1) | −0.004 (1) |
C7 | 0.022 (1) | 0.026 (1) | 0.031 (1) | −0.0003 (8) | 0.0071 (9) | −0.0020 (9) |
C8 | 0.041 (1) | 0.030 (1) | 0.033 (1) | 0.002 (1) | 0.008 (1) | −0.001 (1) |
C9 | 0.047 (2) | 0.030 (1) | 0.045 (1) | 0.006 (1) | 0.015 (1) | 0.007 (1) |
C10 | 0.038 (1) | 0.026 (1) | 0.058 (2) | 0.001 (1) | 0.021 (1) | −0.004 (1) |
C11 | 0.042 (1) | 0.040 (1) | 0.040 (1) | 0.002 (1) | 0.008 (1) | −0.015 (1) |
C12 | 0.036 (1) | 0.036 (1) | 0.032 (1) | 0.005 (1) | 0.005 (1) | −0.004 (1) |
C13 | 0.030 (1) | 0.027 (1) | 0.024 (1) | 0.0025 (9) | 0.0030 (9) | −0.0013 (9) |
C14 | 0.042 (2) | 0.054 (2) | 0.033 (1) | −0.009 (1) | 0.003 (1) | 0.009 (1) |
C15 | 0.072 (2) | 0.061 (2) | 0.034 (1) | −0.010 (2) | 0.004 (1) | 0.015 (1) |
C16 | 0.063 (2) | 0.051 (2) | 0.029 (1) | 0.011 (1) | −0.008 (1) | 0.004 (1) |
C17 | 0.039 (2) | 0.055 (2) | 0.037 (1) | 0.008 (1) | −0.009 (1) | −0.004 (1) |
C18 | 0.032 (1) | 0.043 (1) | 0.036 (1) | 0.000 (1) | −0.001 (1) | 0.003 (1) |
N1 | 0.045 (1) | 0.032 (1) | 0.038 (1) | 0.0001 (9) | 0.0055 (9) | −0.0016 (9) |
C19 | 0.042 (2) | 0.038 (1) | 0.042 (1) | −0.007 (1) | 0.010 (1) | 0.002 (1) |
N2 | 0.034 (1) | 0.035 (1) | 0.040 (1) | −0.0032 (9) | 0.0071 (9) | 0.0012 (9) |
C20 | 0.036 (1) | 0.042 (1) | 0.046 (2) | −0.005 (1) | 0.007 (1) | −0.004 (1) |
C21 | 0.038 (1) | 0.035 (1) | 0.047 (2) | −0.007 (1) | 0.010 (1) | 0.001 (1) |
C22 | 0.070 (2) | 0.035 (1) | 0.056 (2) | 0.009 (1) | 0.009 (2) | 0.002 (1) |
C23 | 0.035 (1) | 0.038 (1) | 0.056 (2) | 0.001 (1) | 0.014 (1) | 0.004 (1) |
C24 | 0.044 (2) | 0.044 (2) | 0.054 (2) | 0.009 (1) | 0.001 (1) | −0.003 (1) |
C25 | 0.066 (2) | 0.062 (2) | 0.080 (2) | 0.020 (2) | −0.010 (2) | −0.023 (2) |
C26 | 0.062 (2) | 0.080 (3) | 0.093 (3) | 0.006 (2) | 0.006 (2) | −0.036 (2) |
O1A | 0.095 (9) | 0.078 (7) | 0.083 (8) | −0.012 (6) | 0.033 (6) | −0.021 (7) |
C27A | 0.17 (2) | 0.054 (9) | 0.09 (2) | −0.03 (1) | 0.05 (2) | 0.01 (1) |
C27C | 0.17 (2) | 0.054 (9) | 0.09 (2) | −0.03 (1) | 0.05 (2) | 0.01 (1) |
C28A | 0.059 (5) | 0.062 (4) | 0.064 (5) | 0.011 (4) | 0.019 (4) | 0.009 (4) |
O1B | 0.057 (6) | 0.058 (6) | 0.080 (8) | −0.012 (5) | −0.011 (6) | −0.003 (5) |
C27B | 0.079 (9) | 0.047 (8) | 0.047 (5) | 0.012 (7) | 0.027 (5) | 0.008 (5) |
C27D | 0.079 (9) | 0.047 (8) | 0.047 (5) | 0.012 (7) | 0.027 (5) | 0.008 (5) |
C28B | 0.091 (6) | 0.046 (4) | 0.084 (7) | 0.014 (4) | 0.048 (5) | 0.013 (4) |
Ni1—P1 | 2.2865 (6) | C19—H19A | 0.9500 |
Ni1—Br2 | 2.3570 (4) | N2—C21 | 1.373 (3) |
Ni1—Br3 | 2.3638 (4) | N2—C23 | 1.469 (3) |
Ni1—Br1 | 2.3779 (4) | C20—C21 | 1.347 (4) |
P1—C13 | 1.814 (2) | C20—H20A | 0.9500 |
P1—C1 | 1.815 (2) | C21—H21A | 0.9500 |
P1—C7 | 1.815 (2) | C22—H22A | 0.9800 |
C1—C2 | 1.389 (3) | C22—H22B | 0.9800 |
C1—C6 | 1.390 (3) | C22—H22C | 0.9800 |
C2—C3 | 1.389 (3) | C23—C24 | 1.490 (4) |
C2—H2A | 0.9500 | C23—H23A | 0.9900 |
C3—C4 | 1.385 (3) | C23—H23B | 0.9900 |
C3—H3A | 0.9500 | C24—C25 | 1.524 (4) |
C4—C5 | 1.372 (4) | C24—H24A | 0.9900 |
C4—H4A | 0.9500 | C24—H24B | 0.9900 |
C5—C6 | 1.388 (3) | C25—C26 | 1.441 (5) |
C5—H5A | 0.9500 | C25—H25A | 0.9900 |
C6—H6A | 0.9500 | C25—H25B | 0.9900 |
C7—C12 | 1.392 (3) | C26—H26A | 0.9800 |
C7—C8 | 1.394 (3) | C26—H26B | 0.9800 |
C8—C9 | 1.387 (3) | C26—H26C | 0.9800 |
C8—H8A | 0.9500 | O1A—C27A | 1.23 (3) |
C9—C10 | 1.381 (4) | O1A—H1AA | 0.8500 |
C9—H9A | 0.9500 | O1A—H27E | 0.4348 |
C10—C11 | 1.376 (4) | C27A—C28A | 1.58 (4) |
C10—H10A | 0.9500 | C27A—H27A | 0.9600 |
C11—C12 | 1.388 (3) | C27A—H27B | 0.9601 |
C11—H11A | 0.9500 | C27A—H27E | 0.8595 |
C12—H12A | 0.9500 | C27A—H27F | 0.8765 |
C13—C14 | 1.386 (3) | C27A—H27G | 1.2768 |
C13—C18 | 1.392 (3) | C28A—H28A | 0.9900 |
C14—C15 | 1.390 (4) | C28A—H28B | 0.9900 |
C14—H14A | 0.9500 | O1B—C27B | 1.20 (3) |
C15—C16 | 1.375 (4) | O1B—H1BA | 0.8499 |
C15—H15A | 0.9500 | O1B—H27H | 0.2980 |
C16—C17 | 1.367 (4) | C27B—C28B | 1.46 (3) |
C16—H16A | 0.9500 | C27B—H27C | 0.8813 |
C17—C18 | 1.388 (4) | C27B—H27D | 0.9708 |
C17—H17A | 0.9500 | C27B—H27H | 0.9844 |
C18—H18A | 0.9500 | C27B—H27I | 0.8620 |
N1—C19 | 1.322 (4) | C27B—H27J | 1.0301 |
N1—C20 | 1.371 (3) | C28B—H28C | 0.9599 |
N1—C22 | 1.465 (3) | C28B—H28D | 0.9601 |
C19—N2 | 1.327 (3) | ||
P1—Ni1—Br2 | 102.76 (2) | H22A—C22—H22B | 109.5 |
P1—Ni1—Br3 | 106.26 (2) | N1—C22—H22C | 109.5 |
Br2—Ni1—Br3 | 117.94 (2) | H22A—C22—H22C | 109.5 |
P1—Ni1—Br1 | 105.60 (2) | H22B—C22—H22C | 109.5 |
Br2—Ni1—Br1 | 113.09 (2) | N2—C23—C24 | 112.0 (2) |
Br3—Ni1—Br1 | 109.95 (2) | N2—C23—H23A | 109.2 |
C13—P1—C1 | 105.4 (1) | C24—C23—H23A | 109.2 |
C13—P1—C7 | 106.4 (1) | N2—C23—H23B | 109.2 |
C1—P1—C7 | 106.9 (1) | C24—C23—H23B | 109.2 |
C13—P1—Ni1 | 112.87 (8) | H23A—C23—H23B | 107.9 |
C1—P1—Ni1 | 112.98 (7) | C23—C24—C25 | 111.1 (3) |
C7—P1—Ni1 | 111.83 (7) | C23—C24—H24A | 109.4 |
C2—C1—C6 | 119.3 (2) | C25—C24—H24A | 109.4 |
C2—C1—P1 | 118.0 (2) | C23—C24—H24B | 109.4 |
C6—C1—P1 | 122.7 (2) | C25—C24—H24B | 109.4 |
C3—C2—C1 | 120.3 (2) | H24A—C24—H24B | 108.0 |
C3—C2—H2A | 119.9 | C26—C25—C24 | 116.2 (3) |
C1—C2—H2A | 119.9 | C26—C25—H25A | 108.2 |
C4—C3—C2 | 119.8 (2) | C24—C25—H25A | 108.2 |
C4—C3—H3A | 120.1 | C26—C25—H25B | 108.2 |
C2—C3—H3A | 120.1 | C24—C25—H25B | 108.2 |
C5—C4—C3 | 120.2 (2) | H25A—C25—H25B | 107.4 |
C5—C4—H4A | 119.9 | C25—C26—H26A | 109.5 |
C3—C4—H4A | 119.9 | C25—C26—H26B | 109.5 |
C4—C5—C6 | 120.3 (2) | H26A—C26—H26B | 109.5 |
C4—C5—H5A | 119.8 | C25—C26—H26C | 109.5 |
C6—C5—H5A | 119.8 | H26A—C26—H26C | 109.5 |
C5—C6—C1 | 120.1 (2) | H26B—C26—H26C | 109.5 |
C5—C6—H6A | 120.0 | C27A—O1A—H1AA | 99.8 |
C1—C6—H6A | 120.0 | C27A—O1A—H27E | 25.8 |
C12—C7—C8 | 119.1 (2) | H1AA—O1A—H27E | 109.9 |
C12—C7—P1 | 123.0 (2) | O1A—C27A—C28A | 116 (2) |
C8—C7—P1 | 117.8 (2) | O1A—C27A—H27A | 103.9 |
C9—C8—C7 | 120.7 (2) | C28A—C27A—H27A | 103.7 |
C9—C8—H8A | 119.6 | O1A—C27A—H27B | 114.6 |
C7—C8—H8A | 119.6 | C28A—C27A—H27B | 110.2 |
C10—C9—C8 | 119.7 (2) | H27A—C27A—H27B | 107.0 |
C10—C9—H9A | 120.1 | O1A—C27A—H27E | 12.7 |
C8—C9—H9A | 120.1 | C28A—C27A—H27E | 111.3 |
C11—C10—C9 | 119.9 (2) | H27A—C27A—H27E | 94.5 |
C11—C10—H10A | 120.0 | H27B—C27A—H27E | 126.4 |
C9—C10—H10A | 120.0 | O1A—C27A—H27F | 118.6 |
C10—C11—C12 | 120.9 (2) | C28A—C27A—H27F | 114.1 |
C10—C11—H11A | 119.5 | H27A—C27A—H27F | 96.1 |
C12—C11—H11A | 119.5 | H27B—C27A—H27F | 10.9 |
C11—C12—C7 | 119.6 (2) | H27E—C27A—H27F | 129.1 |
C11—C12—H12A | 120.2 | O1A—C27A—H27G | 100.5 |
C7—C12—H12A | 120.2 | C28A—C27A—H27G | 111.6 |
C14—C13—C18 | 119.3 (2) | H27A—C27A—H27G | 8.0 |
C14—C13—P1 | 122.8 (2) | H27B—C27A—H27G | 102.4 |
C18—C13—P1 | 117.9 (2) | H27E—C27A—H27G | 92.3 |
C13—C14—C15 | 120.1 (3) | H27F—C27A—H27G | 91.5 |
C13—C14—H14A | 119.9 | C27A—C28A—H28A | 106.3 |
C15—C14—H14A | 119.9 | C27A—C28A—H28B | 113.3 |
C16—C15—C14 | 120.1 (3) | H28A—C28A—H28B | 107.0 |
C16—C15—H15A | 120.0 | C27B—O1B—H1BA | 109.7 |
C14—C15—H15A | 120.0 | C27B—O1B—H27H | 39.7 |
C17—C16—C15 | 120.1 (2) | H1BA—O1B—H27H | 145.9 |
C17—C16—H16A | 119.9 | O1B—C27B—C28B | 117 (1) |
C15—C16—H16A | 119.9 | O1B—C27B—H27C | 114.4 |
C16—C17—C18 | 120.7 (3) | C28B—C27B—H27C | 105.0 |
C16—C17—H17A | 119.7 | O1B—C27B—H27D | 107.6 |
C18—C17—H17A | 119.7 | C28B—C27B—H27D | 99.2 |
C17—C18—C13 | 119.7 (3) | H27C—C27B—H27D | 112.7 |
C17—C18—H18A | 120.2 | O1B—C27B—H27H | 11.2 |
C13—C18—H18A | 120.2 | C28B—C27B—H27H | 107.0 |
C19—N1—C20 | 108.8 (2) | H27C—C27B—H27H | 123.8 |
C19—N1—C22 | 125.0 (3) | H27D—C27B—H27H | 106.3 |
C20—N1—C22 | 126.2 (2) | O1B—C27B—H27I | 106.3 |
N1—C19—N2 | 108.9 (2) | C28B—C27B—H27I | 112.2 |
N1—C19—H19A | 125.6 | H27C—C27B—H27I | 8.5 |
N2—C19—H19A | 125.6 | H27D—C27B—H27I | 114.5 |
C19—N2—C21 | 108.1 (2) | H27H—C27B—H27I | 116.1 |
C19—N2—C23 | 125.3 (2) | O1B—C27B—H27J | 102.2 |
C21—N2—C23 | 126.5 (2) | C28B—C27B—H27J | 107.0 |
C21—C20—N1 | 106.7 (2) | H27C—C27B—H27J | 111.0 |
C21—C20—H20A | 126.6 | H27D—C27B—H27J | 8.0 |
N1—C20—H20A | 126.6 | H27H—C27B—H27J | 102.2 |
C20—C21—N2 | 107.5 (2) | H27I—C27B—H27J | 111.6 |
C20—C21—H21A | 126.3 | C27B—C28B—H28C | 112.3 |
N2—C21—H21A | 126.3 | C27B—C28B—H28D | 107.8 |
N1—C22—H22A | 109.5 | H28C—C28B—H28D | 107.5 |
N1—C22—H22B | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1B—H1BA···N1 | 0.85 | 2.68 | 3.36 (1) | 139 |
C19—H19A···O1A | 0.95 | 2.59 | 3.17 (1) | 120 |
C2—H2A···Br2 | 0.95 | 2.95 | 3.817 (2) | 153 |
C23—H23A···Br3i | 0.99 | 2.84 | 3.718 (3) | 148 |
C20—H20A···Br1ii | 0.95 | 3.02 | 3.906 (3) | 156 |
C8—H8A···Br1 | 0.95 | 3.08 | 3.921 (2) | 149 |
C23—H23B···Br2iii | 0.99 | 3.13 | 3.711 (3) | 119 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, −y+1/2, z+1/2; (iii) x−1/2, −y+1/2, z+1/2. |
Acknowledgements
The authors thank Dr A. Villinger (Universität Rostock) for maintaining the functionality of the X-ray facilities. The publication of this article was funded by the Open Access Fund of the Leibniz Association.
Funding information
Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. SPP 1191 to M.K.).
References
Bradbury, J., Forest, K. P., Nuttall, R. H. & Sharp, D. W. A. (1967). Spectrochim. Acta A, 23, 2701–2704. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desrochers, P. J., Telser, J., Zvyagin, S. A., Ozarowski, A., Krzystek, J. & Vicic, D. A. (2006). Inorg. Chem. 45, 8930–8941. Web of Science CSD CrossRef PubMed CAS Google Scholar
Erich, U., Frölich, K., Gütlich, P. & Webb, G. A. (1969). Inorg. Nucl. Chem. Lett. 5, 855–859. CrossRef CAS Web of Science Google Scholar
Figgis, B. N., Lewis, J., Mabbs, F. E. & Webb, G. A. (1966). J. Chem. Soc. A, pp. 1411–1421. CrossRef Web of Science Google Scholar
Fischer, R. H. & Horrocks, W. D. Jr (1968). Inorg. Chem. 7, 2659–2662. CrossRef CAS Web of Science Google Scholar
Gerloch, M., Hanton, L. R. & Manning, M. R. (1981). Inorg. Chim. Acta, 48, 205–214. CrossRef CAS Web of Science Google Scholar
Hanton, L. R. & Raithby, P. R. (1980). Acta Cryst. B36, 2417–2419. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Peppel, T., Hinz, A. & Köckerling, M. (2013). Polyhedron, 52, 482–490. Web of Science CSD CrossRef CAS Google Scholar
Poulten, R. C., López, I., Llobet, A., Mahon, M. F. & Whittlesey, M. K. (2014). Inorg. Chem. 53, 7160–7169. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, Y.-C., Zhang, J., Sun, H.-M., Shen, Q. & Zhang, Y. (2013). Dalton Trans. 42, 8437–8445. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhang, J., Xu, J., Xu, Y., Sun, H., Shen, Q. & Zhang, Y. (2015). Organometallics, 34, 5792–5800. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.