metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Butyl-3-methyl­imidazolium tri­bromido­(tri­phenyl­phosphane-κP)nickelate(II) butan-1-ol hemisolvate

crossmark logo

aLeibniz-Institut für Katalyse e.V. (LIKAT), Heterogene Photokatalyse, Albert-Einstein-Str. 29a, D-18059 Rostock, Germany, and bUniversität Rostock, Institut für Chemie, Anorganische Festkörperchemie, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany
*Correspondence e-mail: tim.peppel@catalysis.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 15 July 2021; accepted 9 August 2021; online 13 August 2021)

The solvated title salt, (C8H15N2)[NiBr3(P(C6H5)3)]·0.5C4H10O, was obtained in the form of single crystals directly from the reaction mixture. The mol­ecular structure consists of separated 1-butyl-3-methyl­imidazolium cations, tri­bromido­(tri­phenyl­phosphane)nickelate(II) anions and half a solvent mol­ecule of 1-butanol, all connected via multiple hydrogen contacts to form a three-dimensional network. The co-crystallized 1-butanol mol­ecule is disordered and adopts two orientations. The central C—C bonds of both orientations are located on an inversion centre (Wyckoff site 2b of space group P21/n). Thereby, each orientation has again two orientations with the OH group being located either on one or the other side of the C4 alkyl chain. The dried solvent-free compound exhibits a relatively low melting point (m.p. = 412 K).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Nickel(II) complexes exhibiting pseudo-tetra­hedral symmetry [NiX3L] [X: halide, L: neutral ligand, e.g. P(C6H5)3] have been thoroughly characterized for more than 50 years by means of magnetic investigations, UV–vis and far-infrared spectroscopy, NMR and EPR as well as Mössbauer spectroscopy (Figgis et al., 1966[Figgis, B. N., Lewis, J., Mabbs, F. E. & Webb, G. A. (1966). J. Chem. Soc. A, pp. 1411-1421.]; Bradbury et al., 1967[Bradbury, J., Forest, K. P., Nuttall, R. H. & Sharp, D. W. A. (1967). Spectrochim. Acta A, 23, 2701-2704.]; Fischer & Horrocks, 1968[Fischer, R. H. & Horrocks, W. D. Jr (1968). Inorg. Chem. 7, 2659-2662.]; Erich et al., 1969[Erich, U., Frölich, K., Gütlich, P. & Webb, G. A. (1969). Inorg. Nucl. Chem. Lett. 5, 855-859.]; Gerloch et al., 1981[Gerloch, M., Hanton, L. R. & Manning, M. R. (1981). Inorg. Chim. Acta, 48, 205-214.]; Desrochers et al., 2006[Desrochers, P. J., Telser, J., Zvyagin, S. A., Ozarowski, A., Krzystek, J. & Vicic, D. A. (2006). Inorg. Chem. 45, 8930-8941.]). In addition, complexes bearing the [NiBr3P(C6H5)3] anion have been investigated as suitable precatalysts for the generation of Ni–NHC complexes (NHC: N-heterocyclic carbene) in catalytic processes, e.g. selective cross-coupling reactions (Xu et al., 2013[Xu, Y.-C., Zhang, J., Sun, H.-M., Shen, Q. & Zhang, Y. (2013). Dalton Trans. 42, 8437-8445.]; Poulten et al., 2014[Poulten, R. C., López, I., Llobet, A., Mahon, M. F. & Whittlesey, M. K. (2014). Inorg. Chem. 53, 7160-7169.]; Zhang et al., 2015[Zhang, J., Xu, J., Xu, Y., Sun, H., Shen, Q. & Zhang, Y. (2015). Organometallics, 34, 5792-5800.]). Single-crystal structure determinations of complexes with the general formula (cation)[NiBr3P(C6H5)3] are known for the following cations: [As(C6H5)4]+ (Hanton & Raithby, 1980[Hanton, L. R. & Raithby, P. R. (1980). Acta Cryst. B36, 2417-2419.]), (DiPIm)+ (DiPIm: 1,3-diiso­propyl­imidazolium; Xu et al., 2013[Xu, Y.-C., Zhang, J., Sun, H.-M., Shen, Q. & Zhang, Y. (2013). Dalton Trans. 42, 8437-8445.]), (DiPPhIm)+ (DiPPhIm: 1,3-bis­(2,6-diiso­propyl­phen­yl)imidazolium; Xu et al., 2013[Xu, Y.-C., Zhang, J., Sun, H.-M., Shen, Q. & Zhang, Y. (2013). Dalton Trans. 42, 8437-8445.]), and (EMIm)+ (EMIm: 1-ethyl-3-methyl­imidazolium; Peppel et al., 2013[Peppel, T., Hinz, A. & Köckerling, M. (2013). Polyhedron, 52, 482-490.]). We report here the synthesis and crystal structure of (BMIm)+[NiBr3(P(C6H5)3)]·0.5(C4H10O) (BMIm+ is 1-butyl-3-methyl­imidazolium).

The asymmetric unit of the title compound consists of one 1-butyl-3-methyl­imidazolium cation and one tri­bromido­(tri­phenyl­phosphane)nickelate(II) anion (Fig. 1[link]). An additional highly distorted half mol­ecule of 1-butanol is incorporated in the crystal structure. Together with weak C—H⋯Br contacts involving the anion, the OH function of the solvent mol­ecule forms hydrogen bonds to the N atom of the cation, building up an extended three-dimensional hydrogen-bonded network (Table 1[link]). The co-crystallized 1-butanol mol­ecule adopts two orientations. The central C—C bonds of both orientations are located on the inversion centre whereby each orientation has again two orientations with the OH group being located either on one or the other side of the C4 alkyl chain. All bond lengths and angles within the cation as well as the complex anion are in the expected ranges (Peppel et al., 2013[Peppel, T., Hinz, A. & Köckerling, M. (2013). Polyhedron, 52, 482-490.]). The coordination environment around the NiII atom is pseudo-tetra­hedral with Br—Ni—Br angles ranging from 109.95 (2) to 117.94 (2)°, and Br—Ni—P angles ranging from 102.76 (2) to 106.26 (2)°. The packing of the mol­ecular entities is depicted in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1B—H1BA⋯N1 0.85 2.68 3.36 (1) 139
C19—H19A⋯O1A 0.95 2.59 3.17 (1) 120
C2—H2A⋯Br2 0.95 2.95 3.817 (2) 153
C23—H23A⋯Br3i 0.99 2.84 3.718 (3) 148
C20—H20A⋯Br1ii 0.95 3.02 3.906 (3) 156
C8—H8A⋯Br1 0.95 3.08 3.921 (2) 149
C23—H23B⋯Br2iii 0.99 3.13 3.711 (3) 119
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The structure of the mol­ecular cation–anion pair in (BMIm)[NiBr3(P(C6H5)3)]·0.5(C4H10O). Displacement ellipsoids are drawn at the 50% probability level; the disordered co-crystallized 1-butanol mol­ecule has been omitted for clarity.
[Figure 2]
Figure 2
A view of the unit-cell contents of the title compound in a projection down the a axis.

Synthesis and crystallization

The title compound was obtained as blue crystals in multi-gram scale from 1-butyl-3-methyl­imidazolium bromide, tri­phenyl­phosphane and anhydrous nickel(II) bromide in boiling 1-butanol (Peppel et al., 2013[Peppel, T., Hinz, A. & Köckerling, M. (2013). Polyhedron, 52, 482-490.]). 1-Butyl-3-methyl­imidazolium bromide (1.0 g, 4.6 mmol) and tri­phenyl­phosphane (1.2 g, 4.6 mmol) were dissolved in 20 ml of 1-butanol in a Schlenk tube. This solution was added in one portion to a vigorously stirred, nearly boiling suspension of NiBr2 (1.0 g, 4.6 mmol) in 30 ml of 1-butanol. The resulting green precipitate was completely dissolved by heating up the suspension to the boiling point of the solvent. The hot solution was cooled down to 277 K overnight in a refrigerator. The resulting blue crystals were filtered off, washed thoroughly with diethyl ether and dried in vacuum at ambient conditions (2.5 g, 78%).

Analytic data for C26H30Br3N2NiP: m.p. 412 K, elemental analysis % (calc.): C 42.61 (44.62); H 4.28 (4.32); N 4.18 (4.00).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Several low-angle reflections were omitted in the structure refinement because their intensities were affected by the beam stop. The centre of the co-crystallized 1-butanol mol­ecule is located on the Wyckoff site 2b of space group P21/n. It is disordered with two different orientations, which were refined using a split arrangement with the sum of occupational factors being fixed to full occupation. This results in a total of half a mol­ecule per formula unit. The H atoms of the disordered 1-butanol mol­ecule including that attached to the O atom were calculated at idealized positions and refined using riding models.

Table 2
Experimental details

Crystal data
Chemical formula (C8H15N2)[NiBr3(C18H15P)]·0.5C4H10O
Mr 736.99
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 9.9571 (4), 14.4731 (6), 21.4730 (9)
β (°) 102.620 (2)
V3) 3019.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.69
Crystal size (mm) 0.40 × 0.35 × 0.20
 
Data collection
Diffractometer Bruker APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 44088, 6832, 5812
Rint 0.027
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.068, 1.04
No. of reflections 6832
No. of parameters 352
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.27, −0.72
Computer programs: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2019[Brandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2019); software used to prepare material for publication: publCIF (Westrip, 2010).

1-Butyl-3-methylimidazolium tribromido(triphenylphosphane-κP)nickelate(II) butan-1-ol hemisolvate top
Crystal data top
(C8H15N2)[NiBr3(C18H15P)]·0.5C4H10OF(000) = 1476
Mr = 736.99Dx = 1.621 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.9571 (4) ÅCell parameters from 9717 reflections
b = 14.4731 (6) Åθ = 3.4–27.3°
c = 21.4730 (9) ŵ = 4.69 mm1
β = 102.620 (2)°T = 173 K
V = 3019.7 (2) Å3Block, blue
Z = 40.40 × 0.35 × 0.20 mm
Data collection top
Bruker APEX CCD
diffractometer
5812 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.027
φ and ω scansθmax = 27.4°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1211
k = 1818
44088 measured reflectionsl = 2727
6832 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: mixed
wR(F2) = 0.068H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0282P)2 + 3.0233P]
where P = (Fo2 + 2Fc2)/3
6832 reflections(Δ/σ)max = 0.001
352 parametersΔρmax = 1.27 e Å3
0 restraintsΔρmin = 0.72 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.51042 (3)0.23911 (2)0.30017 (2)0.02846 (8)
Br10.35880 (3)0.26583 (2)0.19977 (2)0.03852 (7)
Br20.59646 (3)0.08690 (2)0.31181 (2)0.04115 (7)
Br30.66974 (3)0.36192 (2)0.32458 (2)0.04823 (8)
P10.37606 (5)0.24590 (4)0.37386 (3)0.0227 (1)
C10.2154 (2)0.1831 (2)0.3494 (1)0.0240 (4)
C20.2199 (2)0.0952 (2)0.3241 (1)0.0306 (5)
H2A0.30540.07000.31960.037*
C30.1000 (2)0.0439 (2)0.3053 (1)0.0347 (5)
H3A0.10350.01650.28840.042*
C40.0248 (2)0.0811 (2)0.3113 (1)0.0345 (5)
H4A0.10700.04640.29790.041*
C50.0299 (2)0.1678 (2)0.3364 (1)0.0377 (6)
H5A0.11570.19270.34070.045*
C60.0896 (2)0.2193 (2)0.3556 (1)0.0328 (5)
H6A0.08550.27930.37300.039*
C70.3318 (2)0.3640 (2)0.3896 (1)0.0259 (4)
C80.2805 (3)0.4208 (2)0.3374 (1)0.0346 (5)
H8A0.26550.39610.29540.042*
C90.2512 (3)0.5130 (2)0.3460 (1)0.0399 (6)
H9A0.21440.55080.31020.048*
C100.2757 (3)0.5495 (2)0.4069 (1)0.0388 (6)
H10A0.25690.61280.41300.047*
C110.3272 (3)0.4941 (2)0.4586 (1)0.0409 (6)
H11A0.34430.51980.50030.049*
C120.3545 (3)0.4013 (2)0.4508 (1)0.0351 (5)
H12A0.38840.36340.48690.042*
C130.4593 (2)0.1969 (2)0.4503 (1)0.0276 (5)
C140.3923 (3)0.1379 (2)0.4843 (1)0.0438 (6)
H14A0.29770.12400.46870.053*
C150.4633 (4)0.0992 (2)0.5413 (1)0.0566 (8)
H15A0.41750.05810.56430.068*
C160.5996 (3)0.1203 (2)0.5645 (1)0.0504 (7)
H16A0.64790.09390.60350.060*
C170.6659 (3)0.1792 (2)0.5315 (1)0.0465 (7)
H17A0.75970.19440.54820.056*
C180.5976 (3)0.2172 (2)0.4739 (1)0.0382 (6)
H18A0.64510.25680.45080.046*
N10.3974 (2)0.2444 (2)0.6874 (1)0.0386 (5)
C190.2707 (3)0.2755 (2)0.6827 (1)0.0404 (6)
H19A0.19750.24230.69420.048*
N20.2626 (2)0.3606 (1)0.6592 (1)0.0364 (5)
C200.4739 (3)0.3115 (2)0.6664 (1)0.0416 (6)
H20A0.56820.30770.66460.050*
C210.3894 (3)0.3840 (2)0.6486 (1)0.0396 (6)
H21A0.41310.44090.63170.048*
C220.4472 (4)0.1537 (2)0.7127 (2)0.0542 (8)
H22A0.37180.11960.72490.065*
H22B0.52240.16180.75020.065*
H22C0.48060.11900.67990.065*
C230.1370 (3)0.4170 (2)0.6441 (1)0.0425 (6)
H23A0.15770.47980.66200.051*
H23B0.06650.38930.66450.051*
C240.0810 (3)0.4240 (2)0.5740 (1)0.0485 (7)
H24A0.15090.45240.55350.058*
H24B0.00120.46440.56580.058*
C250.0420 (4)0.3292 (3)0.5448 (2)0.073 (1)
H25A0.12770.29610.54220.088*
H25B0.00270.29380.57410.088*
C260.0481 (4)0.3284 (3)0.4823 (2)0.080 (1)
H26A0.06560.26440.46790.096*
H26B0.00460.36190.45230.096*
H26C0.13530.35830.48430.096*
O1A0.055 (1)0.1262 (8)0.6149 (6)0.083 (3)0.25
H1AA0.13110.13640.64050.125*0.25
C27A0.093 (3)0.072 (2)0.578 (2)0.10 (1)0.25
H27A0.14120.11130.55390.121*0.25
H27B0.15600.02600.59800.121*0.25
C27C0.093 (3)0.072 (2)0.578 (2)0.10 (1)0.25
H27E0.06150.11790.59640.121*0.25
H27F0.16160.03540.59270.121*0.25
H27G0.16940.12570.55330.121*0.25
C28A0.0246 (9)0.0276 (5)0.5250 (4)0.061 (2)0.5
H28A0.08000.07950.50280.073*0.5
H28B0.08790.01210.54280.073*0.5
O1B0.192 (1)0.0781 (8)0.6091 (6)0.069 (3)0.25
H1BA0.19870.12960.62850.103*0.25
C27B0.089 (2)0.077 (2)0.568 (1)0.056 (4)0.25
H27C0.07910.12590.54260.067*0.25
H27D0.01190.06870.58820.067*0.25
C27D0.089 (2)0.077 (2)0.568 (1)0.056 (4)0.25
H27H0.17260.06480.60100.067*0.25
H27I0.08810.12870.54760.067*0.25
H27J0.01330.07530.59380.067*0.25
C28B0.0679 (9)0.0022 (5)0.5252 (4)0.069 (2)0.5
H28C0.06870.05950.54780.083*0.5
H28D0.14240.00400.50340.083*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0268 (2)0.0286 (2)0.0320 (2)0.0005 (1)0.0109 (1)0.0003 (1)
Br10.0476 (2)0.0360 (1)0.0296 (1)0.0026 (1)0.0032 (1)0.0005 (1)
Br20.0331 (1)0.0308 (1)0.0628 (2)0.0057 (1)0.0177 (1)0.0017 (1)
Br30.0392 (2)0.0335 (1)0.0747 (2)0.0103 (1)0.0182 (1)0.0062 (1)
P10.0204 (3)0.0233 (3)0.0240 (3)0.0001 (2)0.0040 (2)0.0001 (2)
C10.022 (1)0.027 (1)0.023 (1)0.0009 (8)0.0045 (8)0.0028 (8)
C20.024 (1)0.029 (1)0.039 (1)0.0000 (9)0.0083 (9)0.001 (1)
C30.033 (1)0.029 (1)0.043 (1)0.006 (1)0.010 (1)0.004 (1)
C40.027 (1)0.038 (1)0.039 (1)0.009 (1)0.006 (1)0.003 (1)
C50.025 (1)0.041 (1)0.049 (2)0.001 (1)0.011 (1)0.001 (1)
C60.028 (1)0.031 (1)0.041 (1)0.0009 (9)0.012 (1)0.004 (1)
C70.022 (1)0.026 (1)0.031 (1)0.0003 (8)0.0071 (9)0.0020 (9)
C80.041 (1)0.030 (1)0.033 (1)0.002 (1)0.008 (1)0.001 (1)
C90.047 (2)0.030 (1)0.045 (1)0.006 (1)0.015 (1)0.007 (1)
C100.038 (1)0.026 (1)0.058 (2)0.001 (1)0.021 (1)0.004 (1)
C110.042 (1)0.040 (1)0.040 (1)0.002 (1)0.008 (1)0.015 (1)
C120.036 (1)0.036 (1)0.032 (1)0.005 (1)0.005 (1)0.004 (1)
C130.030 (1)0.027 (1)0.024 (1)0.0025 (9)0.0030 (9)0.0013 (9)
C140.042 (2)0.054 (2)0.033 (1)0.009 (1)0.003 (1)0.009 (1)
C150.072 (2)0.061 (2)0.034 (1)0.010 (2)0.004 (1)0.015 (1)
C160.063 (2)0.051 (2)0.029 (1)0.011 (1)0.008 (1)0.004 (1)
C170.039 (2)0.055 (2)0.037 (1)0.008 (1)0.009 (1)0.004 (1)
C180.032 (1)0.043 (1)0.036 (1)0.000 (1)0.001 (1)0.003 (1)
N10.045 (1)0.032 (1)0.038 (1)0.0001 (9)0.0055 (9)0.0016 (9)
C190.042 (2)0.038 (1)0.042 (1)0.007 (1)0.010 (1)0.002 (1)
N20.034 (1)0.035 (1)0.040 (1)0.0032 (9)0.0071 (9)0.0012 (9)
C200.036 (1)0.042 (1)0.046 (2)0.005 (1)0.007 (1)0.004 (1)
C210.038 (1)0.035 (1)0.047 (2)0.007 (1)0.010 (1)0.001 (1)
C220.070 (2)0.035 (1)0.056 (2)0.009 (1)0.009 (2)0.002 (1)
C230.035 (1)0.038 (1)0.056 (2)0.001 (1)0.014 (1)0.004 (1)
C240.044 (2)0.044 (2)0.054 (2)0.009 (1)0.001 (1)0.003 (1)
C250.066 (2)0.062 (2)0.080 (2)0.020 (2)0.010 (2)0.023 (2)
C260.062 (2)0.080 (3)0.093 (3)0.006 (2)0.006 (2)0.036 (2)
O1A0.095 (9)0.078 (7)0.083 (8)0.012 (6)0.033 (6)0.021 (7)
C27A0.17 (2)0.054 (9)0.09 (2)0.03 (1)0.05 (2)0.01 (1)
C27C0.17 (2)0.054 (9)0.09 (2)0.03 (1)0.05 (2)0.01 (1)
C28A0.059 (5)0.062 (4)0.064 (5)0.011 (4)0.019 (4)0.009 (4)
O1B0.057 (6)0.058 (6)0.080 (8)0.012 (5)0.011 (6)0.003 (5)
C27B0.079 (9)0.047 (8)0.047 (5)0.012 (7)0.027 (5)0.008 (5)
C27D0.079 (9)0.047 (8)0.047 (5)0.012 (7)0.027 (5)0.008 (5)
C28B0.091 (6)0.046 (4)0.084 (7)0.014 (4)0.048 (5)0.013 (4)
Geometric parameters (Å, º) top
Ni1—P12.2865 (6)C19—H19A0.9500
Ni1—Br22.3570 (4)N2—C211.373 (3)
Ni1—Br32.3638 (4)N2—C231.469 (3)
Ni1—Br12.3779 (4)C20—C211.347 (4)
P1—C131.814 (2)C20—H20A0.9500
P1—C11.815 (2)C21—H21A0.9500
P1—C71.815 (2)C22—H22A0.9800
C1—C21.389 (3)C22—H22B0.9800
C1—C61.390 (3)C22—H22C0.9800
C2—C31.389 (3)C23—C241.490 (4)
C2—H2A0.9500C23—H23A0.9900
C3—C41.385 (3)C23—H23B0.9900
C3—H3A0.9500C24—C251.524 (4)
C4—C51.372 (4)C24—H24A0.9900
C4—H4A0.9500C24—H24B0.9900
C5—C61.388 (3)C25—C261.441 (5)
C5—H5A0.9500C25—H25A0.9900
C6—H6A0.9500C25—H25B0.9900
C7—C121.392 (3)C26—H26A0.9800
C7—C81.394 (3)C26—H26B0.9800
C8—C91.387 (3)C26—H26C0.9800
C8—H8A0.9500O1A—C27A1.23 (3)
C9—C101.381 (4)O1A—H1AA0.8500
C9—H9A0.9500O1A—H27E0.4348
C10—C111.376 (4)C27A—C28A1.58 (4)
C10—H10A0.9500C27A—H27A0.9600
C11—C121.388 (3)C27A—H27B0.9601
C11—H11A0.9500C27A—H27E0.8595
C12—H12A0.9500C27A—H27F0.8765
C13—C141.386 (3)C27A—H27G1.2768
C13—C181.392 (3)C28A—H28A0.9900
C14—C151.390 (4)C28A—H28B0.9900
C14—H14A0.9500O1B—C27B1.20 (3)
C15—C161.375 (4)O1B—H1BA0.8499
C15—H15A0.9500O1B—H27H0.2980
C16—C171.367 (4)C27B—C28B1.46 (3)
C16—H16A0.9500C27B—H27C0.8813
C17—C181.388 (4)C27B—H27D0.9708
C17—H17A0.9500C27B—H27H0.9844
C18—H18A0.9500C27B—H27I0.8620
N1—C191.322 (4)C27B—H27J1.0301
N1—C201.371 (3)C28B—H28C0.9599
N1—C221.465 (3)C28B—H28D0.9601
C19—N21.327 (3)
P1—Ni1—Br2102.76 (2)H22A—C22—H22B109.5
P1—Ni1—Br3106.26 (2)N1—C22—H22C109.5
Br2—Ni1—Br3117.94 (2)H22A—C22—H22C109.5
P1—Ni1—Br1105.60 (2)H22B—C22—H22C109.5
Br2—Ni1—Br1113.09 (2)N2—C23—C24112.0 (2)
Br3—Ni1—Br1109.95 (2)N2—C23—H23A109.2
C13—P1—C1105.4 (1)C24—C23—H23A109.2
C13—P1—C7106.4 (1)N2—C23—H23B109.2
C1—P1—C7106.9 (1)C24—C23—H23B109.2
C13—P1—Ni1112.87 (8)H23A—C23—H23B107.9
C1—P1—Ni1112.98 (7)C23—C24—C25111.1 (3)
C7—P1—Ni1111.83 (7)C23—C24—H24A109.4
C2—C1—C6119.3 (2)C25—C24—H24A109.4
C2—C1—P1118.0 (2)C23—C24—H24B109.4
C6—C1—P1122.7 (2)C25—C24—H24B109.4
C3—C2—C1120.3 (2)H24A—C24—H24B108.0
C3—C2—H2A119.9C26—C25—C24116.2 (3)
C1—C2—H2A119.9C26—C25—H25A108.2
C4—C3—C2119.8 (2)C24—C25—H25A108.2
C4—C3—H3A120.1C26—C25—H25B108.2
C2—C3—H3A120.1C24—C25—H25B108.2
C5—C4—C3120.2 (2)H25A—C25—H25B107.4
C5—C4—H4A119.9C25—C26—H26A109.5
C3—C4—H4A119.9C25—C26—H26B109.5
C4—C5—C6120.3 (2)H26A—C26—H26B109.5
C4—C5—H5A119.8C25—C26—H26C109.5
C6—C5—H5A119.8H26A—C26—H26C109.5
C5—C6—C1120.1 (2)H26B—C26—H26C109.5
C5—C6—H6A120.0C27A—O1A—H1AA99.8
C1—C6—H6A120.0C27A—O1A—H27E25.8
C12—C7—C8119.1 (2)H1AA—O1A—H27E109.9
C12—C7—P1123.0 (2)O1A—C27A—C28A116 (2)
C8—C7—P1117.8 (2)O1A—C27A—H27A103.9
C9—C8—C7120.7 (2)C28A—C27A—H27A103.7
C9—C8—H8A119.6O1A—C27A—H27B114.6
C7—C8—H8A119.6C28A—C27A—H27B110.2
C10—C9—C8119.7 (2)H27A—C27A—H27B107.0
C10—C9—H9A120.1O1A—C27A—H27E12.7
C8—C9—H9A120.1C28A—C27A—H27E111.3
C11—C10—C9119.9 (2)H27A—C27A—H27E94.5
C11—C10—H10A120.0H27B—C27A—H27E126.4
C9—C10—H10A120.0O1A—C27A—H27F118.6
C10—C11—C12120.9 (2)C28A—C27A—H27F114.1
C10—C11—H11A119.5H27A—C27A—H27F96.1
C12—C11—H11A119.5H27B—C27A—H27F10.9
C11—C12—C7119.6 (2)H27E—C27A—H27F129.1
C11—C12—H12A120.2O1A—C27A—H27G100.5
C7—C12—H12A120.2C28A—C27A—H27G111.6
C14—C13—C18119.3 (2)H27A—C27A—H27G8.0
C14—C13—P1122.8 (2)H27B—C27A—H27G102.4
C18—C13—P1117.9 (2)H27E—C27A—H27G92.3
C13—C14—C15120.1 (3)H27F—C27A—H27G91.5
C13—C14—H14A119.9C27A—C28A—H28A106.3
C15—C14—H14A119.9C27A—C28A—H28B113.3
C16—C15—C14120.1 (3)H28A—C28A—H28B107.0
C16—C15—H15A120.0C27B—O1B—H1BA109.7
C14—C15—H15A120.0C27B—O1B—H27H39.7
C17—C16—C15120.1 (2)H1BA—O1B—H27H145.9
C17—C16—H16A119.9O1B—C27B—C28B117 (1)
C15—C16—H16A119.9O1B—C27B—H27C114.4
C16—C17—C18120.7 (3)C28B—C27B—H27C105.0
C16—C17—H17A119.7O1B—C27B—H27D107.6
C18—C17—H17A119.7C28B—C27B—H27D99.2
C17—C18—C13119.7 (3)H27C—C27B—H27D112.7
C17—C18—H18A120.2O1B—C27B—H27H11.2
C13—C18—H18A120.2C28B—C27B—H27H107.0
C19—N1—C20108.8 (2)H27C—C27B—H27H123.8
C19—N1—C22125.0 (3)H27D—C27B—H27H106.3
C20—N1—C22126.2 (2)O1B—C27B—H27I106.3
N1—C19—N2108.9 (2)C28B—C27B—H27I112.2
N1—C19—H19A125.6H27C—C27B—H27I8.5
N2—C19—H19A125.6H27D—C27B—H27I114.5
C19—N2—C21108.1 (2)H27H—C27B—H27I116.1
C19—N2—C23125.3 (2)O1B—C27B—H27J102.2
C21—N2—C23126.5 (2)C28B—C27B—H27J107.0
C21—C20—N1106.7 (2)H27C—C27B—H27J111.0
C21—C20—H20A126.6H27D—C27B—H27J8.0
N1—C20—H20A126.6H27H—C27B—H27J102.2
C20—C21—N2107.5 (2)H27I—C27B—H27J111.6
C20—C21—H21A126.3C27B—C28B—H28C112.3
N2—C21—H21A126.3C27B—C28B—H28D107.8
N1—C22—H22A109.5H28C—C28B—H28D107.5
N1—C22—H22B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1B—H1BA···N10.852.683.36 (1)139
C19—H19A···O1A0.952.593.17 (1)120
C2—H2A···Br20.952.953.817 (2)153
C23—H23A···Br3i0.992.843.718 (3)148
C20—H20A···Br1ii0.953.023.906 (3)156
C8—H8A···Br10.953.083.921 (2)149
C23—H23B···Br2iii0.993.133.711 (3)119
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Dr A. Villinger (Universität Rostock) for maintaining the functionality of the X-ray facilities. The publication of this article was funded by the Open Access Fund of the Leibniz Association.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. SPP 1191 to M.K.).

References

First citationBradbury, J., Forest, K. P., Nuttall, R. H. & Sharp, D. W. A. (1967). Spectrochim. Acta A, 23, 2701–2704.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesrochers, P. J., Telser, J., Zvyagin, S. A., Ozarowski, A., Krzystek, J. & Vicic, D. A. (2006). Inorg. Chem. 45, 8930–8941.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationErich, U., Frölich, K., Gütlich, P. & Webb, G. A. (1969). Inorg. Nucl. Chem. Lett. 5, 855–859.  CrossRef CAS Web of Science Google Scholar
First citationFiggis, B. N., Lewis, J., Mabbs, F. E. & Webb, G. A. (1966). J. Chem. Soc. A, pp. 1411–1421.  CrossRef Web of Science Google Scholar
First citationFischer, R. H. & Horrocks, W. D. Jr (1968). Inorg. Chem. 7, 2659–2662.  CrossRef CAS Web of Science Google Scholar
First citationGerloch, M., Hanton, L. R. & Manning, M. R. (1981). Inorg. Chim. Acta, 48, 205–214.  CrossRef CAS Web of Science Google Scholar
First citationHanton, L. R. & Raithby, P. R. (1980). Acta Cryst. B36, 2417–2419.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPeppel, T., Hinz, A. & Köckerling, M. (2013). Polyhedron, 52, 482–490.  Web of Science CSD CrossRef CAS Google Scholar
First citationPoulten, R. C., López, I., Llobet, A., Mahon, M. F. & Whittlesey, M. K. (2014). Inorg. Chem. 53, 7160–7169.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y.-C., Zhang, J., Sun, H.-M., Shen, Q. & Zhang, Y. (2013). Dalton Trans. 42, 8437–8445.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, J., Xu, J., Xu, Y., Sun, H., Shen, Q. & Zhang, Y. (2015). Organometallics, 34, 5792–5800.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds