metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[octa­carbonyl­hepta­kis­­(tetra­hydro­furan)­diironmanganesedisodium(2 MnFe)]

crossmark logo

aDepartment of Chemistry, PO Box 6949, Radford University, Radford, VA 24142, USA, and bDepartment of Chemistry, 1204 Boston Avenue, Texas Tech University, Lubbock, TX 79409, USA
*Correspondence e-mail: gharakas@radford.edu

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 11 August 2021; accepted 14 August 2021; online 27 August 2021)

The reaction of Na2Fe(CO)4 with an excess of MnCl2 in tetra­hydro­furan (THF) produced {Fe2Mn(C4H8O)2Na2(C4H8O)5(CO)8]n or C36H56Fe2MnNa2O15. The compound is a xenophilic dianion with short iron–manganese bond lengths of 2.6274 (10) and 2.6294 (10) Å. The sodium cations of the dianion are coordinated to THF ligands and have isocarbonyl inter­actions forming a polymeric (two-dimensional) structure in the crystal. One of the THF mol­ecules was modeled with the carbon atoms being statistically disordered.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The term xenophilic transition-metal cluster was first used to describe the unusual structure of {μ-Mn(THF)2}Fe2(CO)8 (Harakas & Whittlesey, 1996[Harakas, G. N. & Whittlesey, B. R. (1996). J. Am. Chem. Soc. 118, 4210-4211.]). In a xenophilic cluster, two transition metals with open d-shells form a direct, unbridged bond between a metal center attached to π-acceptor ligands and one that is bound only to donor ligands that have no π-acceptor capabilities (Whittlesey, 2000[Whittlesey, B. R. (2000). Coord. Chem. Rev. 206-207, 395-418.]). The title compound, Na2{μ-Mn(THF)2}Fe2(CO)8, has unsupported metal–metal bonds of 2.6274 (10) and 2.6294 (10) Å between the Mn(THF)2 and two Fe(CO)4 fragments (Fig. 1[link]). The Mn—Fe bond lengths are significantly shorter than those of 2.813 (3) Å observed for FeMn2(CO)14 (Agron et al.,1967[Agron, P. A., Ellison, R. D. & Levy, H. A. (1967). Acta Cryst. 23, 1079-1086.]) and 2.841 (4) Å for (μ-C5H5)(OC)2FeMn(CO)5 (Hansen, et al., 1966[Hansen, P. J. & Jacobson, R. A. (1966). J. Organomet. Chem. 6, 389-398.]). The Fe—Mn bond distances for {μ-Mn(THF)2}Fe2(CO)8 are 2.633 (1) and 2.601 (1) Å (Harakas & Whittlesey, 1996[Harakas, G. N. & Whittlesey, B. R. (1996). J. Am. Chem. Soc. 118, 4210-4211.]). Despite the similarity of metal–metal bond lengths, the Fe—Mn—Fe bond angle of 136.81 (3)° for the dianion is considerable larger than 112.8 (1)°, which was observed for neutral {μ-Mn(THF)2}Fe2(CO)8. The sodium cations of the title complex are bound to the dianion via isocarbonyl linkages. The isocarbonyl linkages to the sodium cations create a two-dimensional network (Fig. 2[link]).

[Figure 1]
Figure 1
The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. One tetra­hydro­furan mol­ecule coordinating Na2 is statistically disordered. For clarity, atoms C33–C36 are shown isotropically with a 50% probability level and atoms C33A–C36A are not shown.
[Figure 2]
Figure 2
Packing diagram of the title compound, viewed along the a axis, highlighting the stacking of layers.

Synthesis and crystallization

All manipulations were conducted using inert atmosphere techniques. In a dry box Na2Fe(CO)4 (0.997 g, 4.66 mmol) and MnCl2 (1.181 g, 9.384 mmol) were added to a 150 mL Schlenk flask with a magnetic stirring bar. The flask was closed with a rubber septum then transferred to a Schlenk line. To this flask, 75 mL of anhydrous THF were added and the reaction mixture was stirred rapidly. The solution formed a deep yellow–orange color as the THF was added. The mixture was stirred for 30 minutes then allowed to settle for 24 h. The bright-orange solution was deca­nted from the solids into another Schlenk flask. The solution was placed into a freezer at −15°C. Large block-like yellow crystals formed after several days. At 25 °C the complex rapidly decomposes when exposed to oxygen and when the crystals are removed from the mother liquor. A single crystal was coated with NVH oil and mounted on a MiTeGen loop under a stream of argon gas then cooled to −45°C for data collection.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 1[link]. One tetra­hydro­furan mol­ecule coordinating Na2 was modeled for disorder with the C33—C36 atoms statistically disordered. The H atoms on the disordered THF molecule C33–C36/C33A–C36A were not located.

Table 1
Experimental details

Crystal data
Chemical formula [Fe2MnNa2(C4H8O)7(CO)8]
Mr 933.36
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 228
a, b, c (Å) 9.3839 (11), 9.9442 (11), 24.348 (3)
α, β, γ (°) 95.154 (5), 92.640 (5), 99.414 (5)
V3) 2228.1 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.00
Crystal size (mm) 0.39 × 0.35 × 0.31
 
Data collection
Diffractometer Bruker D8 Quest Eco, Photon PII 7
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.68, 0.73
No. of measured, independent and observed [I > 2σ(I)] reflections 154320, 12761, 10027
Rint 0.057
(sin θ/λ)max−1) 0.701
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.090, 0.217, 1.12
No. of reflections 12761
No. of parameters 541
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.89, −1.78
Computer programs: APEX3 and SAINT (Bruker, 2019[Bruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2019); cell refinement: SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/2 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: shelXle (Hübschle et al., 2011).

Poly[octacarbonylheptakis(tetrahydrofuran)diironmanganesedisodium(2 MnFe)] top
Crystal data top
[Fe2MnNa2(C4H8O)7(CO)8]Z = 2
Mr = 933.36F(000) = 966
Triclinic, P1Dx = 1.391 Mg m3
a = 9.3839 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9442 (11) ÅCell parameters from 9427 reflections
c = 24.348 (3) Åθ = 2.8–29.7°
α = 95.154 (5)°µ = 1.00 mm1
β = 92.640 (5)°T = 228 K
γ = 99.414 (5)°Cube, yellow
V = 2228.1 (4) Å30.39 × 0.35 × 0.31 mm
Data collection top
Bruker D8 Quest Eco, Photon PII 7
diffractometer
10027 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.057
phi and ω scansθmax = 29.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1313
Tmin = 0.68, Tmax = 0.73k = 1313
154320 measured reflectionsl = 3434
12761 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.090H-atom parameters constrained
wR(F2) = 0.217 w = 1/[σ2(Fo2) + (0.0431P)2 + 11.8029P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
12761 reflectionsΔρmax = 0.89 e Å3
541 parametersΔρmin = 1.77 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.48239 (8)0.26076 (7)0.18023 (3)0.03809 (18)
Fe20.79486 (7)0.55567 (7)0.32428 (3)0.03322 (16)
Mn10.71446 (8)0.35449 (7)0.24588 (3)0.03290 (16)
Na10.2691 (2)0.3843 (3)0.36059 (10)0.0526 (6)
Na20.6115 (3)0.7720 (2)0.16011 (9)0.0469 (5)
O10.7818 (6)0.7222 (5)0.23192 (19)0.0660 (12)
O20.8840 (8)0.7683 (5)0.4142 (2)0.0891 (19)
O30.5154 (5)0.4355 (7)0.3595 (2)0.0789 (16)
O41.0325 (4)0.4044 (5)0.33895 (19)0.0599 (11)
O50.5983 (7)0.5281 (5)0.1459 (2)0.0813 (17)
O60.6271 (5)0.0226 (4)0.17057 (19)0.0570 (11)
O70.3016 (6)0.2677 (6)0.2747 (2)0.0799 (16)
O80.2773 (8)0.1757 (8)0.0860 (3)0.121 (3)
O90.7649 (4)0.1760 (4)0.28376 (16)0.0454 (8)
O100.8976 (5)0.3564 (5)0.19223 (17)0.0568 (10)
O110.2429 (7)0.1979 (6)0.4098 (2)0.0818 (16)
O120.2849 (6)0.5508 (7)0.4348 (3)0.095 (2)
O130.4276 (6)0.7701 (6)0.2220 (2)0.0802 (16)
O140.4509 (7)0.7502 (5)0.0810 (2)0.0772 (15)
O150.8067 (8)0.8112 (8)0.1062 (3)0.103 (2)
C10.7869 (6)0.6505 (6)0.2674 (2)0.0420 (11)
C20.8491 (8)0.6852 (6)0.3783 (2)0.0539 (15)
C30.6276 (6)0.4794 (7)0.3437 (2)0.0492 (13)
C40.9358 (5)0.4632 (5)0.3307 (2)0.0383 (10)
C50.5563 (7)0.4215 (6)0.1616 (2)0.0520 (14)
C60.5742 (6)0.1216 (5)0.1755 (2)0.0399 (10)
C70.3776 (7)0.2664 (7)0.2378 (2)0.0527 (14)
C80.3572 (7)0.2088 (7)0.1237 (3)0.0628 (17)
C90.8819 (7)0.0999 (6)0.2771 (3)0.0598 (16)
H9A0.9738030.1617250.2750330.072*
H9B0.8642890.0362120.2433950.072*
C100.8842 (10)0.0245 (8)0.3269 (4)0.086 (3)
H10A0.947290.0789280.3568350.103*
H10B0.9181170.0628260.3185620.103*
C110.7309 (13)0.0016 (10)0.3420 (4)0.106 (3)
H11A0.6788830.0859720.3240620.127*
H11B0.7254560.0016040.3820530.127*
C120.6697 (9)0.1166 (9)0.3220 (4)0.079 (2)
H12A0.5731560.083880.3040110.095*
H12B0.6613560.1844590.3529870.095*
C131.0337 (9)0.4396 (13)0.2019 (3)0.111 (4)
H13A1.0955790.3969520.2261620.133*
H13B1.0231520.5289180.2202310.133*
C141.0999 (10)0.4576 (12)0.1496 (4)0.096 (3)
H14A1.1106520.5535840.1418140.115*
H14B1.1956310.4303060.1506530.115*
C151.0039 (12)0.3712 (15)0.1082 (4)0.129 (5)
H15A1.0562390.3083180.0871910.155*
H15B0.9623030.4268540.0824690.155*
C160.8913 (12)0.2957 (12)0.1373 (4)0.129 (5)
H16A0.7963910.2973770.1190360.155*
H16B0.9048880.1999930.1370590.155*
C170.1889 (12)0.1797 (12)0.4620 (4)0.103 (3)
H17A0.0843580.1796030.4603330.124*
H17B0.2355430.254490.4891310.124*
C180.2193 (18)0.0494 (12)0.4780 (5)0.140 (5)
H18A0.2908310.0639180.5094840.168*
H18B0.1308540.0072460.4882380.168*
C190.274 (2)0.0141 (13)0.4315 (6)0.178 (8)
H19A0.3681850.0382390.4416430.214*
H19B0.2078380.0985310.417830.214*
C200.2889 (13)0.0753 (10)0.3900 (4)0.104 (3)
H20A0.229860.0336850.3566560.125*
H20B0.3901670.0944160.3806240.125*
C210.1654 (10)0.5705 (13)0.4651 (4)0.114 (4)
H21A0.1083130.4815870.4706170.137*
H21B0.1035970.6216060.4445360.137*
C220.2130 (12)0.6441 (13)0.5170 (4)0.114 (4)
H22A0.198410.5835950.5465760.137*
H22B0.1588790.7194730.5243420.137*
C230.3688 (11)0.6981 (10)0.5141 (4)0.090 (3)
H23A0.425690.6710670.5447810.108*
H23B0.3857260.7982830.5154690.108*
C240.4078 (10)0.6345 (10)0.4593 (4)0.088 (3)
H24A0.4420220.7061190.4356020.105*
H24B0.4850490.5807850.4650580.105*
C250.3947 (9)0.6781 (9)0.2624 (3)0.076 (2)
H25A0.4822440.6709290.2847410.091*
H25B0.3522610.5867720.2449620.091*
C260.2899 (12)0.7358 (13)0.2970 (4)0.108 (3)
H26A0.3393210.7936170.3292640.129*
H26B0.2194050.6628480.3096650.129*
C270.2170 (10)0.8196 (11)0.2590 (4)0.094 (3)
H27A0.1212790.7703320.2450630.113*
H27B0.2059030.907610.2783910.113*
C280.3118 (9)0.8401 (11)0.2142 (5)0.104 (4)
H28A0.2583390.8056690.1788380.125*
H28B0.3479930.9380860.2134210.125*
C290.3942 (12)0.6280 (9)0.0499 (4)0.097 (3)
H29A0.3134560.5793950.0684060.116*
H29B0.4686020.5696490.0465490.116*
C300.3450 (16)0.6546 (11)0.0033 (4)0.129 (5)
H30A0.2431180.6130510.0109310.155*
H30B0.4017580.6153190.0315260.155*
C310.3622 (11)0.8036 (10)0.0046 (3)0.089 (3)
H31A0.2678870.8332080.008090.107*
H31B0.4191650.8331610.0354160.107*
C320.4391 (13)0.8591 (9)0.0489 (4)0.108 (4)
H32A0.5357330.9078450.0428020.13*
H32B0.3857720.9239160.0681910.13*
C330.947 (3)0.872 (4)0.1287 (10)0.118 (10)0.5
C341.020 (5)0.819 (9)0.094 (4)0.31 (4)0.5
C33A0.876 (5)0.924 (3)0.085 (2)0.184 (19)0.5
C350.963 (3)0.752 (3)0.0441 (12)0.111 (8)0.5
C34A1.037 (4)0.884 (5)0.0834 (15)0.20 (3)0.5
C360.849 (6)0.705 (3)0.080 (3)0.27 (3)0.5
C35A0.952 (3)0.862 (4)0.0364 (10)0.111 (8)0.5
C36A0.826 (3)0.782 (5)0.0497 (8)0.167 (18)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0406 (4)0.0376 (4)0.0362 (3)0.0126 (3)0.0065 (3)0.0024 (3)
Fe20.0342 (3)0.0371 (3)0.0296 (3)0.0117 (3)0.0000 (2)0.0004 (2)
Mn10.0361 (4)0.0339 (3)0.0300 (3)0.0113 (3)0.0008 (3)0.0019 (3)
Na10.0336 (10)0.0715 (15)0.0541 (13)0.0139 (10)0.0075 (9)0.0017 (11)
Na20.0604 (13)0.0418 (11)0.0404 (11)0.0134 (10)0.0029 (9)0.0065 (9)
O10.079 (3)0.063 (3)0.055 (3)0.005 (2)0.009 (2)0.022 (2)
O20.158 (6)0.055 (3)0.052 (3)0.028 (3)0.017 (3)0.016 (2)
O30.037 (2)0.131 (5)0.065 (3)0.005 (3)0.016 (2)0.002 (3)
O40.043 (2)0.074 (3)0.066 (3)0.028 (2)0.0087 (19)0.008 (2)
O50.130 (5)0.041 (2)0.068 (3)0.004 (3)0.031 (3)0.016 (2)
O60.059 (3)0.038 (2)0.073 (3)0.0169 (18)0.007 (2)0.0112 (19)
O70.065 (3)0.119 (5)0.059 (3)0.028 (3)0.017 (2)0.003 (3)
O80.113 (5)0.135 (6)0.103 (5)0.043 (4)0.067 (4)0.048 (4)
O90.051 (2)0.0416 (19)0.048 (2)0.0212 (16)0.0018 (16)0.0069 (16)
O100.049 (2)0.072 (3)0.048 (2)0.009 (2)0.0145 (18)0.001 (2)
O110.100 (4)0.085 (4)0.069 (3)0.028 (3)0.029 (3)0.022 (3)
O120.055 (3)0.127 (5)0.089 (4)0.005 (3)0.007 (3)0.042 (4)
O130.078 (3)0.092 (4)0.088 (4)0.040 (3)0.033 (3)0.041 (3)
O140.120 (5)0.057 (3)0.053 (3)0.022 (3)0.025 (3)0.001 (2)
O150.110 (5)0.114 (5)0.094 (4)0.027 (4)0.057 (4)0.022 (4)
C10.044 (3)0.046 (3)0.036 (2)0.009 (2)0.005 (2)0.002 (2)
C20.082 (4)0.042 (3)0.039 (3)0.021 (3)0.009 (3)0.002 (2)
C30.036 (3)0.071 (4)0.042 (3)0.016 (3)0.002 (2)0.004 (3)
C40.030 (2)0.042 (3)0.041 (2)0.0052 (19)0.0004 (18)0.005 (2)
C50.076 (4)0.043 (3)0.037 (3)0.020 (3)0.016 (3)0.001 (2)
C60.046 (3)0.031 (2)0.041 (2)0.008 (2)0.004 (2)0.0037 (19)
C70.049 (3)0.062 (4)0.049 (3)0.020 (3)0.003 (3)0.004 (3)
C80.059 (4)0.063 (4)0.062 (4)0.019 (3)0.026 (3)0.016 (3)
C90.059 (4)0.042 (3)0.079 (4)0.017 (3)0.008 (3)0.004 (3)
C100.089 (6)0.064 (5)0.110 (7)0.029 (4)0.027 (5)0.020 (4)
C110.139 (9)0.091 (7)0.106 (7)0.050 (6)0.031 (7)0.050 (6)
C120.088 (5)0.086 (5)0.082 (5)0.039 (4)0.033 (4)0.045 (4)
C130.060 (5)0.193 (11)0.061 (5)0.025 (6)0.017 (4)0.015 (6)
C140.074 (5)0.139 (9)0.071 (5)0.008 (5)0.021 (4)0.022 (5)
C150.091 (7)0.220 (14)0.060 (5)0.011 (8)0.015 (5)0.018 (7)
C160.118 (8)0.143 (9)0.094 (7)0.043 (7)0.054 (6)0.069 (7)
C170.122 (8)0.121 (8)0.083 (6)0.047 (7)0.044 (6)0.029 (6)
C180.237 (16)0.101 (8)0.103 (8)0.056 (9)0.075 (10)0.040 (7)
C190.34 (2)0.095 (9)0.129 (11)0.083 (12)0.087 (14)0.034 (8)
C200.137 (9)0.084 (6)0.097 (7)0.031 (6)0.038 (6)0.005 (5)
C210.063 (5)0.160 (10)0.105 (7)0.013 (6)0.010 (5)0.055 (7)
C220.105 (8)0.150 (10)0.068 (5)0.015 (7)0.020 (5)0.029 (6)
C230.103 (7)0.088 (6)0.070 (5)0.006 (5)0.018 (5)0.004 (4)
C240.075 (5)0.089 (6)0.094 (6)0.014 (5)0.005 (5)0.013 (5)
C250.070 (5)0.080 (5)0.083 (5)0.013 (4)0.016 (4)0.033 (4)
C260.097 (7)0.154 (10)0.074 (6)0.013 (7)0.014 (5)0.028 (6)
C270.073 (5)0.105 (7)0.105 (7)0.024 (5)0.019 (5)0.005 (6)
C280.063 (5)0.123 (8)0.148 (9)0.045 (5)0.032 (5)0.065 (7)
C290.134 (8)0.062 (5)0.083 (6)0.002 (5)0.035 (6)0.003 (4)
C300.213 (14)0.100 (8)0.071 (6)0.042 (8)0.055 (7)0.016 (5)
C310.106 (7)0.100 (7)0.061 (5)0.019 (5)0.008 (4)0.018 (4)
C320.159 (10)0.060 (5)0.099 (7)0.020 (5)0.056 (7)0.003 (5)
C330.078 (14)0.18 (3)0.082 (14)0.008 (16)0.030 (11)0.031 (15)
C340.14 (4)0.46 (11)0.38 (10)0.15 (6)0.09 (5)0.12 (9)
C33A0.22 (4)0.074 (15)0.28 (5)0.04 (2)0.17 (4)0.03 (2)
C350.084 (15)0.14 (2)0.104 (17)0.014 (15)0.041 (13)0.031 (16)
C34A0.14 (3)0.28 (5)0.12 (2)0.12 (3)0.08 (2)0.08 (3)
C360.30 (5)0.077 (16)0.47 (7)0.04 (2)0.32 (6)0.02 (3)
C35A0.13 (2)0.14 (2)0.070 (13)0.006 (18)0.040 (13)0.036 (15)
C36A0.092 (17)0.34 (5)0.049 (10)0.03 (3)0.002 (10)0.017 (19)
Geometric parameters (Å, º) top
Fe1—C61.743 (5)O15—C361.31 (3)
Fe1—C51.744 (6)O15—C33A1.36 (3)
Fe1—C81.750 (6)O15—C36A1.41 (2)
Fe1—C71.752 (6)O15—C331.42 (3)
Fe1—Mn12.6294 (10)C9—C101.483 (10)
Fe2—C31.733 (6)C10—C111.488 (13)
Fe2—C41.739 (5)C11—C121.470 (10)
Fe2—C11.749 (5)C13—C141.454 (11)
Fe2—C21.750 (6)C14—C151.440 (13)
Fe2—Mn12.6274 (10)C15—C161.445 (13)
Mn1—O92.180 (4)C17—C181.454 (14)
Mn1—O102.205 (4)C18—C191.405 (15)
Na1—O112.283 (6)C19—C201.402 (14)
Na1—O32.285 (5)C21—C221.416 (12)
Na1—O4i2.303 (4)C22—C231.479 (13)
Na1—O122.321 (6)C23—C241.512 (12)
Na1—O72.355 (5)C25—C261.477 (13)
Na2—O152.305 (6)C26—C271.512 (13)
Na2—O132.341 (5)C27—C281.446 (12)
Na2—O142.362 (5)C29—C301.418 (12)
Na2—O52.401 (5)C30—C311.468 (13)
Na2—O12.452 (5)C31—C321.474 (11)
Na2—O6ii2.462 (4)C33—C341.25 (8)
O1—C11.173 (6)C33—C33A1.41 (5)
O2—C21.145 (7)C33—C34A1.42 (3)
O3—C31.168 (7)C33—C362.01 (6)
O4—C41.176 (6)C34—C34A0.71 (9)
O5—C51.172 (7)C34—C351.36 (8)
O6—C61.173 (6)C34—C35A1.62 (6)
O7—C71.173 (7)C34—C361.80 (8)
O8—C81.147 (7)C34—C33A1.85 (6)
O9—C121.421 (8)C34—C36A2.03 (5)
O9—C91.438 (7)C33A—C35A1.54 (4)
O10—C131.400 (9)C33A—C36A1.58 (5)
O10—C161.412 (9)C33A—C34A1.62 (6)
O11—C171.405 (9)C35—C35A1.14 (3)
O11—C201.411 (10)C35—C36A1.37 (4)
O12—C241.383 (10)C35—C361.46 (4)
O12—C211.400 (10)C35—C34A1.59 (4)
O13—C281.398 (9)C34A—C35A1.34 (5)
O13—C251.415 (8)C36—C36A1.15 (6)
O14—C291.386 (9)C35A—C36A1.38 (4)
O14—C321.407 (9)
C6—Fe1—C5122.8 (3)O13—C25—C26105.7 (7)
C6—Fe1—C898.7 (3)C25—C26—C27103.9 (7)
C5—Fe1—C898.5 (3)C28—C27—C26105.3 (7)
C6—Fe1—C7113.2 (3)O13—C28—C27109.0 (8)
C5—Fe1—C7114.0 (3)O14—C29—C30109.8 (8)
C8—Fe1—C7104.9 (3)C29—C30—C31108.0 (8)
C6—Fe1—Mn178.41 (16)C30—C31—C32104.0 (7)
C5—Fe1—Mn172.21 (18)O14—C32—C31109.0 (7)
C8—Fe1—Mn1165.8 (3)C34—C33—C33A88 (3)
C7—Fe1—Mn188.9 (2)C34—C33—O1599 (3)
C3—Fe2—C4116.5 (3)C33A—C33—O1557.5 (18)
C3—Fe2—C1114.4 (3)C34—C33—C34A30 (4)
C4—Fe2—C1118.3 (2)C33A—C33—C34A70 (3)
C3—Fe2—C2102.2 (3)O15—C33—C34A106 (2)
C4—Fe2—C299.4 (3)C34—C33—C3662 (4)
C1—Fe2—C2101.7 (3)C33A—C33—C3675 (2)
C3—Fe2—Mn177.0 (2)O15—C33—C3640.4 (15)
C4—Fe2—Mn179.23 (16)C34A—C33—C3681.2 (19)
C1—Fe2—Mn180.45 (17)C34A—C34—C3388 (9)
C2—Fe2—Mn1177.86 (19)C34A—C34—C3595 (8)
O9—Mn1—O1092.17 (16)C33—C34—C35124 (3)
O9—Mn1—Fe2103.15 (11)C34A—C34—C35A54 (6)
O10—Mn1—Fe2106.01 (12)C33—C34—C35A102 (3)
O9—Mn1—Fe1104.77 (11)C35—C34—C35A44 (2)
O10—Mn1—Fe1105.15 (12)C34A—C34—C36125 (6)
Fe2—Mn1—Fe1136.81 (3)C33—C34—C3680 (4)
O11—Na1—O3101.2 (2)C35—C34—C3653 (3)
O11—Na1—O4i102.2 (2)C35A—C34—C3675 (3)
O3—Na1—O4i156.5 (2)C34A—C34—C33A60 (5)
O11—Na1—O1297.5 (3)C33—C34—C33A50 (2)
O3—Na1—O1287.6 (2)C35—C34—C33A84 (3)
O4i—Na1—O1291.3 (2)C35A—C34—C33A52 (2)
O11—Na1—O796.9 (2)C36—C34—C33A72 (2)
O3—Na1—O780.4 (2)C34A—C34—C36A91 (6)
O4i—Na1—O794.89 (19)C33—C34—C36A82 (2)
O12—Na1—O7162.8 (3)C35—C34—C36A42.3 (17)
O15—Na2—O13170.2 (3)C35A—C34—C36A42.7 (17)
O15—Na2—O1490.4 (3)C36—C34—C36A34 (2)
O13—Na2—O1494.0 (2)C33A—C34—C36A47.7 (19)
O15—Na2—O592.4 (3)O15—C33A—C3361.4 (19)
O13—Na2—O596.5 (2)O15—C33A—C35A103 (2)
O14—Na2—O586.82 (18)C33—C33A—C35A99 (2)
O15—Na2—O186.8 (2)O15—C33A—C36A56.7 (15)
O13—Na2—O191.5 (2)C33—C33A—C36A96 (2)
O14—Na2—O1162.5 (2)C35A—C33A—C36A52.6 (19)
O5—Na2—O176.04 (17)O15—C33A—C34A99 (3)
O15—Na2—O6ii85.7 (2)C33—C33A—C34A55 (3)
O13—Na2—O6ii85.38 (19)C35A—C33A—C34A50.1 (17)
O14—Na2—O6ii91.60 (17)C36A—C33A—C34A85 (2)
O5—Na2—O6ii177.6 (2)O15—C33A—C3477 (3)
O1—Na2—O6ii105.41 (17)C33—C33A—C3443 (3)
C1—O1—Na2140.3 (4)C35A—C33A—C3456 (3)
C3—O3—Na1158.0 (5)C36A—C33A—C3472 (3)
C4—O4—Na1iii155.7 (4)C34A—C33A—C3422 (3)
C5—O5—Na2146.8 (5)C35A—C35—C3480 (4)
C6—O6—Na2iv151.9 (4)C35A—C35—C36A66 (3)
C7—O7—Na1143.9 (5)C34—C35—C36A96 (3)
C12—O9—C9109.7 (5)C35A—C35—C36107 (2)
C12—O9—Mn1118.7 (4)C34—C35—C3679 (4)
C9—O9—Mn1131.6 (4)C36A—C35—C3648 (2)
C13—O10—C16106.6 (6)C35A—C35—C34A56 (3)
C13—O10—Mn1126.2 (4)C34—C35—C34A26 (4)
C16—O10—Mn1126.2 (5)C36A—C35—C34A93 (3)
C17—O11—C20107.7 (7)C36—C35—C34A97 (3)
C17—O11—Na1130.8 (6)C34—C34A—C35A100 (7)
C20—O11—Na1121.4 (5)C34—C34A—C3362 (7)
C24—O12—C21109.6 (7)C35A—C34A—C33109 (3)
C24—O12—Na1127.9 (5)C34—C34A—C3559 (8)
C21—O12—Na1122.3 (5)C35A—C34A—C3545.0 (17)
C28—O13—C25109.1 (6)C33—C34A—C35100 (2)
C28—O13—Na2122.1 (5)C34—C34A—C33A98 (6)
C25—O13—Na2127.1 (4)C35A—C34A—C33A62 (3)
C29—O14—C32108.7 (6)C33—C34A—C33A55 (2)
C29—O14—Na2125.1 (5)C35—C34A—C33A86 (3)
C32—O14—Na2123.0 (5)C36A—C36—O1570 (2)
C36—O15—C33A106.7 (18)C36A—C36—C3562 (3)
C36—O15—C36A50 (3)O15—C36—C35109 (2)
C33A—O15—C36A69 (2)C36A—C36—C3484 (3)
C36—O15—C3395 (3)O15—C36—C3480 (4)
C33A—O15—C3361 (2)C35—C36—C3448 (3)
C36A—O15—C33103.9 (14)C36A—C36—C3385 (3)
C36—O15—Na2118.1 (13)O15—C36—C3344.7 (19)
C33A—O15—Na2133.7 (12)C35—C36—C3382 (2)
C36A—O15—Na2133.8 (12)C34—C36—C3338 (3)
C33—O15—Na2122.2 (10)C35—C35A—C34A79 (3)
O1—C1—Fe2175.2 (5)C35—C35A—C36A65 (3)
O2—C2—Fe2178.9 (6)C34A—C35A—C36A104.7 (19)
O3—C3—Fe2175.4 (6)C35—C35A—C33A108 (2)
O4—C4—Fe2175.3 (5)C34A—C35A—C33A68 (3)
O5—C5—Fe1175.1 (5)C36A—C35A—C33A65 (2)
O6—C6—Fe1175.2 (5)C35—C35A—C3456 (3)
O7—C7—Fe1176.7 (6)C34A—C35A—C3425 (4)
O8—C8—Fe1178.7 (9)C36A—C35A—C3484 (3)
O9—C9—C10104.7 (6)C33A—C35A—C3472 (3)
C9—C10—C11104.1 (6)C36—C36A—C3570 (3)
C12—C11—C10105.0 (7)C36—C36A—C35A112 (4)
O9—C12—C11107.2 (7)C35—C36A—C35A49.1 (16)
O10—C13—C14109.5 (7)C36—C36A—O1560.5 (19)
C15—C14—C13106.0 (8)C35—C36A—O15109 (2)
C14—C15—C16106.5 (8)C35A—C36A—O15109 (3)
O10—C16—C15108.8 (7)C36—C36A—C33A102 (4)
O11—C17—C18108.0 (8)C35—C36A—C33A96 (2)
C19—C18—C17105.9 (9)C35A—C36A—C33A62 (2)
C20—C19—C18109.5 (10)O15—C36A—C33A53.9 (17)
C19—C20—O11108.3 (9)C36—C36A—C3462 (3)
O12—C21—C22109.8 (8)C35—C36A—C3442 (3)
C21—C22—C23106.8 (8)C35A—C36A—C3453 (3)
C22—C23—C24104.5 (7)O15—C36A—C3470 (3)
O12—C24—C23107.7 (7)C33A—C36A—C3460 (3)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x, y1, z.
 

References

First citationAgron, P. A., Ellison, R. D. & Levy, H. A. (1967). Acta Cryst. 23, 1079–1086.  CrossRef IUCr Journals Google Scholar
First citationBruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHansen, P. J. & Jacobson, R. A. (1966). J. Organomet. Chem. 6, 389–398.  CrossRef CAS Google Scholar
First citationHarakas, G. N. & Whittlesey, B. R. (1996). J. Am. Chem. Soc. 118, 4210–4211.  CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWhittlesey, B. R. (2000). Coord. Chem. Rev. 206–207, 395–418.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds