organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,1′-Methyl­enebis(4-tert-butyl­pyridinium) dichloride hemihydrate

crossmark logo

aRadboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
*Correspondence e-mail: p.tinnemans@science.ru.nl

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 19 July 2021; accepted 27 July 2021; online 3 August 2021)

The structure of the title hydrated salt, C19H28N22+·2Cl·0.5H2O, at 150 K has monoclinic (C2/c) symmetry. The water mol­ecule is located on a twofold rotation axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) was prepared before by mixing 4-tert-butyl­pyridine with di­chloro­methane in DMSO (Rudine et al., 2010[Rudine, A. B., Walter, M. G. & Wamser, C. C. (2010). J. Org. Chem. 75, 4292-4295.]). The crystal structure of a related compound, 1,1′-methyl­enebis(4-tert-butyl­pyridinium)chlorido­cobaltate(II)–di­chloro­methane (1:1), has been determined (Ayom et al., 2019[Ayom, G. E., Zamisa, S. J. & Van Zyl, W. E. (2019). Z. Kristallogr. New Cryst. Struct. 234, 629-631.]). The di-cation of the title compound has a V-shaped structure caused by the bridging methyl­ene group with an N—C—N angle of 109.30 (10)°. One of the chloride anions forms a hydrogen bond with the water mol­ecule (Table 1[link]). The other chloride anion is clamped between the aromatic rings (Fig. 2[link]) by electrostatic and anion–π inter­actions with distances to the centroid of the mean planes through the pyridinium rings of 3.3907 (6) and 3.4135 (6) Å, which are similar to the distances of anion–π inter­actions in the literature (Kan et al., 2018[Kan, X., Liu, H., Pan, Q., Li, Z. & Zhao, Y. (2018). Chin. Chem. Lett. 29, 261-266.]; Demeshko et al., 2004[Demeshko, S., Dechert, S. & Meyer, F. (2004). J. Am. Chem. Soc. 126, 4508-4509.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl2i 0.829 (19) 2.223 (19) 3.0513 (10) 179 (2)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with atom labels. Displacement ellipsoids are at the 50% probability level.
[Figure 2]
Figure 2
Space-filling representation of the title compound showing one chloride hydrogen bonded to the water mol­ecule and a chloride ion clamped between the aromatic rings.

Synthesis and crystallization

The title compound was obtained during an attempt to grow single crystals of 4-tert-butyl­pyridine coordinated to a cadmium derivative of a porphyrin di­phenyl­glycoluril cage reported by Gilissen et al. (2019[Gilissen, P. J., Swartjes, A., Spierenburg, B., Bruekers, J. P. J., Tinnemans, P., White, P. B., Rutjes, F. P. J. T., Nolte, R. J. M. & Elemans, J. A. A. W. (2019). Tetrahedron, 75, 4640-4647.]) by slow evaporation from a 4-tert-butyl­pyridine/di­chloro­methane/heptane (1:2:2, v/v/v) mixture. The mixture was left at 298 K. Colorless needle-shaped crystals were obtained after one week.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C19H28N22+·2Cl·0.5H2O
Mr 364.34
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 27.7659 (8), 5.9001 (2), 23.9758 (7)
β (°) 97.4152 (14)
V3) 3894.9 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.55 × 0.14 × 0.03
 
Data collection
Diffractometer Bruker D8 Quest APEX3
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.601, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 36472, 7428, 5988
Rint 0.041
(sin θ/λ)max−1) 0.770
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.106, 1.09
No. of reflections 7428
No. of parameters 222
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.34
Computer programs: APEX3 (Bruker, 2017[Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020) and shelXle (Hübschle et al., 2011).

1,1'-Methylenebis(4-tert-butylpyridinium) dichloride hemihydrate top
Crystal data top
C19H28N22+·2Cl·0.5H2OF(000) = 1560
Mr = 364.34Dx = 1.243 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.7659 (8) ÅCell parameters from 9986 reflections
b = 5.9001 (2) Åθ = 2.4–32.9°
c = 23.9758 (7) ŵ = 0.34 mm1
β = 97.4152 (14)°T = 150 K
V = 3894.9 (2) Å3Needle, colourless
Z = 80.55 × 0.14 × 0.03 mm
Data collection top
Bruker D8 Quest APEX3
diffractometer
7428 independent reflections
Radiation source: sealed tube5988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 7.41 pixels mm-1θmax = 33.2°, θmin = 2.4°
φ and ω scansh = 4042
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 97
Tmin = 0.601, Tmax = 0.747l = 3636
36472 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0345P)2 + 4.7462P]
where P = (Fo2 + 2Fc2)/3
7428 reflections(Δ/σ)max = 0.002
222 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Non-hydrogen atoms were refined freely with anisotropic displacement parameters. Hydrogen atoms were placed on calculated positions or located in difference Fourier maps. Hydrogen atoms bonded to C were refined with a riding model with U(H)= 1.2Ueq(Caromatic) or U(H)= 1.5Ueq(Cmethyl). The coordinates of the H atom bonded to O were refined with U(H)= 1.5Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.66762 (2)1.24711 (5)0.69007 (2)0.02011 (7)
Cl20.46510 (2)0.04518 (7)0.65504 (2)0.02807 (9)
O10.5000000.2834 (2)0.7500000.0226 (3)
H10.5097 (7)0.194 (3)0.7757 (8)0.034*
N10.58269 (4)0.70318 (18)0.66729 (4)0.01528 (19)
C10.58379 (5)0.8164 (2)0.72238 (5)0.0183 (2)
H1A0.5942360.9759010.7194460.022*
H1B0.5508930.8157330.7341150.022*
C20.55369 (5)0.5221 (2)0.65514 (5)0.0184 (2)
H20.5330830.4726340.6814220.022*
C30.55359 (5)0.4077 (2)0.60496 (5)0.0178 (2)
H30.5329170.2804140.5968780.021*
C40.58376 (4)0.4784 (2)0.56596 (5)0.0147 (2)
C50.61278 (5)0.6685 (2)0.58025 (5)0.0185 (2)
H50.6333460.7230360.5544880.022*
C60.61224 (5)0.7782 (2)0.63070 (5)0.0183 (2)
H60.6325420.9060110.6397990.022*
C70.58699 (5)0.3558 (2)0.51056 (5)0.0178 (2)
C80.63866 (6)0.2601 (3)0.51317 (8)0.0325 (3)
H8A0.6414690.1731040.4789160.049*
H8B0.6454130.1608290.5460310.049*
H8C0.6620810.3851290.5162400.049*
C90.57717 (6)0.5233 (3)0.46124 (6)0.0272 (3)
H9A0.5794900.4436580.4258200.041*
H9B0.6012370.6455790.4659830.041*
H9C0.5445290.5873490.4605070.041*
C100.55031 (6)0.1622 (3)0.50068 (6)0.0261 (3)
H10A0.5173230.2229120.4992410.039*
H10B0.5562440.0524610.5314790.039*
H10C0.5538600.0871180.4649780.039*
N110.61792 (4)0.69581 (19)0.76441 (4)0.01542 (19)
C120.60175 (5)0.5233 (2)0.79374 (5)0.0185 (2)
H120.5682140.4855370.7884900.022*
C130.63333 (5)0.4013 (2)0.83121 (5)0.0178 (2)
H130.6214560.2801220.8516740.021*
C140.68271 (4)0.4544 (2)0.83935 (5)0.0149 (2)
C150.69812 (4)0.6362 (2)0.80819 (5)0.0169 (2)
H150.7314370.6780770.8128380.020*
C160.66551 (5)0.7540 (2)0.77110 (5)0.0173 (2)
H160.6763310.8762090.7501200.021*
C170.71984 (5)0.3212 (2)0.87856 (5)0.0179 (2)
C180.74794 (6)0.4840 (3)0.92118 (6)0.0267 (3)
H18A0.7647620.5977710.9010420.040*
H18B0.7717640.3981240.9465500.040*
H18C0.7251710.5596560.9430850.040*
C190.75542 (5)0.2126 (2)0.84213 (6)0.0245 (3)
H19A0.7371280.1269770.8113660.037*
H19B0.7774060.1100510.8653280.037*
H19C0.7743530.3316030.8265250.037*
C200.69621 (5)0.1354 (3)0.91046 (6)0.0262 (3)
H20A0.6781340.0316850.8834930.039*
H20B0.6739270.2045510.9340730.039*
H20C0.7214570.0510230.9342110.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02257 (14)0.01460 (13)0.02306 (14)0.00075 (11)0.00262 (10)0.00094 (11)
Cl20.03340 (18)0.03155 (18)0.01914 (14)0.00159 (15)0.00295 (12)0.00336 (13)
O10.0265 (7)0.0178 (7)0.0234 (7)0.0000.0025 (5)0.000
N10.0157 (4)0.0171 (5)0.0130 (4)0.0015 (4)0.0012 (3)0.0009 (3)
C10.0191 (5)0.0215 (6)0.0139 (5)0.0059 (5)0.0006 (4)0.0027 (4)
C20.0163 (5)0.0236 (6)0.0159 (5)0.0028 (5)0.0035 (4)0.0004 (4)
C30.0168 (5)0.0202 (6)0.0161 (5)0.0044 (5)0.0012 (4)0.0002 (4)
C40.0148 (5)0.0153 (5)0.0139 (5)0.0010 (4)0.0011 (4)0.0011 (4)
C50.0212 (6)0.0192 (6)0.0160 (5)0.0053 (5)0.0055 (4)0.0002 (4)
C60.0217 (6)0.0161 (6)0.0170 (5)0.0033 (5)0.0019 (4)0.0003 (4)
C70.0203 (6)0.0171 (6)0.0165 (5)0.0002 (5)0.0044 (4)0.0023 (4)
C80.0264 (7)0.0316 (8)0.0410 (8)0.0069 (6)0.0094 (6)0.0095 (7)
C90.0396 (8)0.0274 (7)0.0148 (5)0.0023 (6)0.0043 (5)0.0002 (5)
C100.0337 (7)0.0226 (7)0.0222 (6)0.0074 (6)0.0045 (5)0.0071 (5)
N110.0156 (4)0.0179 (5)0.0128 (4)0.0015 (4)0.0017 (3)0.0020 (4)
C120.0150 (5)0.0236 (6)0.0173 (5)0.0023 (5)0.0039 (4)0.0005 (5)
C130.0184 (5)0.0196 (6)0.0159 (5)0.0031 (5)0.0047 (4)0.0016 (4)
C140.0168 (5)0.0148 (5)0.0136 (5)0.0000 (4)0.0039 (4)0.0013 (4)
C150.0151 (5)0.0174 (6)0.0183 (5)0.0019 (4)0.0026 (4)0.0004 (4)
C160.0186 (5)0.0173 (5)0.0162 (5)0.0025 (5)0.0026 (4)0.0002 (4)
C170.0188 (5)0.0171 (5)0.0178 (5)0.0019 (4)0.0024 (4)0.0018 (4)
C180.0298 (7)0.0269 (7)0.0212 (6)0.0023 (6)0.0051 (5)0.0021 (5)
C190.0223 (6)0.0213 (7)0.0313 (7)0.0042 (5)0.0087 (5)0.0002 (5)
C200.0272 (7)0.0249 (7)0.0273 (7)0.0038 (6)0.0065 (5)0.0108 (6)
Geometric parameters (Å, º) top
O1—H10.829 (19)C10—H10A0.9800
O1—H1i0.829 (19)C10—H10B0.9800
N1—C21.3468 (17)C10—H10C0.9800
N1—C61.3509 (16)N11—C121.3465 (17)
N1—C11.4768 (16)N11—C161.3547 (16)
C1—N111.4740 (16)C12—C131.3749 (18)
C1—H1A0.9900C12—H120.9500
C1—H1B0.9900C13—C141.3955 (17)
C2—C31.3792 (18)C13—H130.9500
C2—H20.9500C14—C151.4048 (17)
C3—C41.3972 (17)C14—C171.5213 (18)
C3—H30.9500C15—C161.3732 (18)
C4—C51.3976 (18)C15—H150.9500
C4—C71.5249 (17)C16—H160.9500
C5—C61.3735 (18)C17—C201.5320 (19)
C5—H50.9500C17—C181.539 (2)
C6—H60.9500C17—C191.5402 (19)
C7—C101.528 (2)C18—H18A0.9800
C7—C81.536 (2)C18—H18B0.9800
C7—C91.5379 (19)C18—H18C0.9800
C8—H8A0.9800C19—H19A0.9800
C8—H8B0.9800C19—H19B0.9800
C8—H8C0.9800C19—H19C0.9800
C9—H9A0.9800C20—H20A0.9800
C9—H9B0.9800C20—H20B0.9800
C9—H9C0.9800C20—H20C0.9800
H1—O1—H1i101 (3)C7—C10—H10C109.5
C2—N1—C6121.04 (11)H10A—C10—H10C109.5
C2—N1—C1119.67 (11)H10B—C10—H10C109.5
C6—N1—C1119.24 (11)C12—N11—C16121.02 (11)
N11—C1—N1109.30 (10)C12—N11—C1119.58 (11)
N11—C1—H1A109.8C16—N11—C1119.33 (11)
N1—C1—H1A109.8N11—C12—C13120.63 (11)
N11—C1—H1B109.8N11—C12—H12119.7
N1—C1—H1B109.8C13—C12—H12119.7
H1A—C1—H1B108.3C12—C13—C14120.39 (12)
N1—C2—C3120.71 (11)C12—C13—H13119.8
N1—C2—H2119.6C14—C13—H13119.8
C3—C2—H2119.6C13—C14—C15117.28 (11)
C2—C3—C4120.27 (12)C13—C14—C17123.06 (11)
C2—C3—H3119.9C15—C14—C17119.63 (11)
C4—C3—H3119.9C16—C15—C14120.66 (11)
C3—C4—C5116.85 (11)C16—C15—H15119.7
C3—C4—C7123.32 (11)C14—C15—H15119.7
C5—C4—C7119.82 (11)N11—C16—C15120.01 (12)
C6—C5—C4121.52 (11)N11—C16—H16120.0
C6—C5—H5119.2C15—C16—H16120.0
C4—C5—H5119.2C14—C17—C20112.25 (11)
N1—C6—C5119.61 (12)C14—C17—C18109.44 (11)
N1—C6—H6120.2C20—C17—C18109.15 (11)
C5—C6—H6120.2C14—C17—C19107.32 (10)
C4—C7—C10112.12 (10)C20—C17—C19109.42 (12)
C4—C7—C8107.37 (11)C18—C17—C19109.20 (12)
C10—C7—C8109.36 (12)C17—C18—H18A109.5
C4—C7—C9109.91 (11)C17—C18—H18B109.5
C10—C7—C9108.22 (12)H18A—C18—H18B109.5
C8—C7—C9109.86 (12)C17—C18—H18C109.5
C7—C8—H8A109.5H18A—C18—H18C109.5
C7—C8—H8B109.5H18B—C18—H18C109.5
H8A—C8—H8B109.5C17—C19—H19A109.5
C7—C8—H8C109.5C17—C19—H19B109.5
H8A—C8—H8C109.5H19A—C19—H19B109.5
H8B—C8—H8C109.5C17—C19—H19C109.5
C7—C9—H9A109.5H19A—C19—H19C109.5
C7—C9—H9B109.5H19B—C19—H19C109.5
H9A—C9—H9B109.5C17—C20—H20A109.5
C7—C9—H9C109.5C17—C20—H20B109.5
H9A—C9—H9C109.5H20A—C20—H20B109.5
H9B—C9—H9C109.5C17—C20—H20C109.5
C7—C10—H10A109.5H20A—C20—H20C109.5
C7—C10—H10B109.5H20B—C20—H20C109.5
H10A—C10—H10B109.5
C2—N1—C1—N1184.05 (14)N1—C1—N11—C1289.45 (13)
C6—N1—C1—N1193.47 (14)N1—C1—N11—C1687.62 (14)
C6—N1—C2—C30.26 (19)C16—N11—C12—C130.16 (19)
C1—N1—C2—C3177.21 (12)C1—N11—C12—C13176.86 (11)
N1—C2—C3—C40.1 (2)N11—C12—C13—C140.08 (19)
C2—C3—C4—C50.76 (19)C12—C13—C14—C150.39 (18)
C2—C3—C4—C7177.78 (12)C12—C13—C14—C17177.78 (12)
C3—C4—C5—C61.09 (19)C13—C14—C15—C160.48 (18)
C7—C4—C5—C6177.51 (12)C17—C14—C15—C16177.75 (12)
C2—N1—C6—C50.06 (19)C12—N11—C16—C150.07 (18)
C1—N1—C6—C5177.54 (12)C1—N11—C16—C15176.96 (11)
C4—C5—C6—N10.8 (2)C14—C15—C16—N110.26 (19)
C3—C4—C7—C105.16 (18)C13—C14—C17—C203.89 (17)
C5—C4—C7—C10176.34 (12)C15—C14—C17—C20177.98 (12)
C3—C4—C7—C8114.97 (14)C13—C14—C17—C18125.25 (13)
C5—C4—C7—C863.53 (16)C15—C14—C17—C1856.62 (15)
C3—C4—C7—C9125.57 (13)C13—C14—C17—C19116.37 (13)
C5—C4—C7—C955.93 (16)C15—C14—C17—C1961.76 (15)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl2i0.829 (19)2.223 (19)3.0513 (10)179 (2)
Symmetry code: (i) x+1, y, z+3/2.
 

Funding information

Funding for this research was provided by: European Research Council (grant No. 74092, ERC Advanced to R. J. M. Nolte); Dutch Ministry of Education, Culture, and Science (grant No. 024.001.035, Gravitation program).

References

First citationAyom, G. E., Zamisa, S. J. & Van Zyl, W. E. (2019). Z. Kristallogr. New Cryst. Struct. 234, 629–631.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemeshko, S., Dechert, S. & Meyer, F. (2004). J. Am. Chem. Soc. 126, 4508–4509.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGilissen, P. J., Swartjes, A., Spierenburg, B., Bruekers, J. P. J., Tinnemans, P., White, P. B., Rutjes, F. P. J. T., Nolte, R. J. M. & Elemans, J. A. A. W. (2019). Tetrahedron, 75, 4640–4647.  Web of Science CSD CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKan, X., Liu, H., Pan, Q., Li, Z. & Zhao, Y. (2018). Chin. Chem. Lett. 29, 261–266.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationRudine, A. B., Walter, M. G. & Wamser, C. C. (2010). J. Org. Chem. 75, 4292–4295.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds