organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

8-Methyl-3-methyl­sulfanyl-8a,8b-di­hydro-5H-1-oxa-2,4-di­aza­ace­naphthyl­ene

crossmark logo

aDepartment of Training and Research in Electrical and Electronic Engineering, Research Team: Instrumentation, Image and Spectroscopy, Félix Houphouët-Boigny National Polytechnic Institute, BP 1093 Yamoussoukro, Côte d'Ivoire, bLaboratoire de Constitution et Réaction de la Matière, UFR SSMT, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d'Ivoire, cLaboratoire ILV-UVSQ-UMR 8180 CNRS, 45 Avenue des Etats Unis, 78035 Versailles Cedex, France, dLaboratoire des Procédés Industriels de Synthèse et d'Environnement, Institut National Polytechnique Félix Houphouët-Boigny, BP 991 Yamoussoukro, Côte d'Ivoire, and eLaboratoire IC2MP-UMR 7285 CNRS, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
*Correspondence e-mail: abouakoun@gmail.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 21 June 2021; accepted 28 June 2021; online 30 June 2021)

In the tricyclic title compound, C11H12N2OS, the 2,3,4,5-tetra­hydro­pyridine ring adopts a half-chair conformation. This ring makes dihedral angles of 27.72 (7) and 45.17 (7)°, respectively, with the isoxazole and the cyclo­hexa-1,3-diene rings while the isoxazole ring is oriented at an acute angle of 63.46 (7)° with respect to the cyclo­hexa-1,3-diene ring. In the crystal, mol­ecules associate via C—H⋯N hydrogen bonds and C—H⋯π inter­actions, forming a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Di­aza­dihydro­ace­naphthyl­ene derivatives contain an isoxazoline scaffold and constitute an important class of heterocyclic compounds whose chemical properties have been investigated over the years (Jäger & Buss, 1980[Jäger, V. & Buss, V. (1980). Liebigs Ann. Chem. pp. 101-121.]; Jäger et al., 1980[Jäger, V., Buss, V. & Schwab, W. (1980). Liebigs Ann. Chem. pp. 122-139.]). This scaffold is used in the synthesis of several complex natural products (Saha & Bhattacharjya, 1997[Saha, A. & Bhattacharjya, A. (1997). Chem. Commun. pp. 495-496.]; Copp et al.,1992[Copp, B. R., Ireland, C. M. & Barrows, L. R. (1992). J. Nat. Prod. 55, 822-823.]) and is a pharmacophore of numerous medicinal chemistry compounds (Brandi et al., 2003[Brandi, A., Cicchi, S., Cordero, F. M. & Goti, A. (2003). Chem. Rev. 103, 1213-1270.]; King et al., 1982[King, S. W., Riordan, J. M., Holt, E. M. & Stammer, C. H. (1982). J. Org. Chem. 47, 3270-3273.]; Bacher et al., 1997[Bacher, E., Demnitz, F. W. J. & Hurni, T. (1997). Tetrahedron, 53, 14317-14326.]; You et al., 1995[You, Z., Khalil, M. A., Ko, D. & Lee, H. J. (1995). Tetrahedron Lett. 36, 3303-3306.]). It has also been reported that this scaffold has a multiple range of biological activities, covering the agricultural field (Liu & Howe, 1983[Liu, K. C. & Howe, R. K. (1983). J. Org. Chem. 48, 4590-4592.]), medicinal properties such as anti­cancer, anti­biotic (Habeeb et al., 2001[Habeeb, A. G., Praveen Rao, P. N. & Knaus, E. E. (2001). J. Med. Chem. 44, 2921-2927.]; Mallesha et al., 2001[Mallesha, H., Ravi kumar, K. R., Mantelingu, K. & Rangappa, K. S. (2001). Synthesis, 10, 1459-1461.]), anti­viral and anti-HIV (Ichiba et al., 1993[Ichiba, T., Scheuer, P. J. & Kelly-Borges, M. (1993). J. Org. Chem. 58, 4149-4150.]) agents.

We report herein the synthesis and crystal structure of the title compound (Fig. 1[link]). The 2,3,4,5-tetra­hydro-pyridine ring adopts a half-chair conformation with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) QT = 0.4779 (15) Å, θ = 129.65 (18)°, φ = 29.0 (2)° and is oriented at dihedral angles of 27.72 (7) and 45.17 (7)°, respectively, with the isoxazole and the cyclo­hexa-1,3-diene rings while the isoxazole ring makes an acute angle of 63.46 (7)° with respect to the cyclo­hexa-1,3-diene ring. These dihedral angles show that this tricycle compound is not planar, as confirmed by the total puckering amplitude QT of 1.4727 (15) Å.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound and the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

In the crystal, C1—H1⋯N12(x − [{1\over 2}], −y + [{1\over 2}], −z + 2) hydrogen bonds (Table 1[link]) link the mol­ecules along the [010] direction (Fig. 2[link]) and C5—H5BCg3(−x, −y + 1, −z) inter­actions, where Cg3 is the centroid of the cyclo­hexa-1,3-diene ring (Fig. 3[link]) are observed.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the cyclo­hexa-1,3-diene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N12i 0.98 2.64 3.4173 (16) 136
C5—H5BCg3ii 0.97 2.80 3.6158 (17) 142
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (ii) [-x, -y+1, -z].
[Figure 2]
Figure 2
Part of the crystal packing of the title compound showing the formation of inter­molecular C1—H1⋯N12 hydrogen bonds along the b axis. Dashed lines indicate hydrogen bond contacts. H atoms not involved in hydrogen bond inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
A view of the crystal packing, showing the π–ring inter­actions (dashed lines). The yellow dots are centroids of rings. H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

1-[(4-Methyl­benz­yl)amino]-1-methyl­thio-2-nitro­ethyl­ene (236 mg; 1 mmol) was dissolved in 4.4 ml (50 mmol) of triflic acid at a temperature within the range −26 to −15°C under a nitrogen atmosphere. The reaction was monitored as follows: one or two drops of the reacting medium were quenched over ice (about 1 g) and extracted with CH2Cl22 (0.5 ml). The organic extract was dried over Na2CO3 and was purified by flash chromatography on a silica column (eluent: petroleum ether/ethyl acetate: (85:15, v/v) to afford the title compound (97 mg; 0.441 mmol) as a colourless powder. The powder was dissolved in a minimum of di­chloro­methane by heating under agitation. To this hot mixture, petroleum ether was added until the formation of a new precipitate started, which dissolved in the resulting mixture upon heating. Upon cooling, colourless crystals suitable for single-crystal X-ray diffraction analysis were obtained, m.p. 120.1°C.

1H NMR (CDCl3): δ (p.p.m.) = 2.01 (s, 3 H, CH3); 2.39 (s, 3H, SCH3); 4.23 (d, J = 14.94 Hz, 1 H, H-8 b); 4.47 (s, 2 H, CH2); 5.46 (d, J = 14.9 Hz, 1 H, H-8a); 5.81 (d, J = 7.1 Hz, 1 H, vinylic H); 5.84 (d, J = 7.1 Hz, 1 H, vinylic H).

13C NMR (CDCl3): δ (p.p.m.) = 12.0 (SCH3); 21.1 (CH3); 48.0 (C-8a); 58.4 (CH2); 82.0 (C-8 b); 117.8 (CH); 121.7 (CH); 124.8 (quaternary carbon); 130.4 (C-8); 152.6 (>C=N—O–); 155.4 (–S—C=N–).

MS (mass spectrometer, 70 eV); m/z (%): 220 [M+]. MS–HR(IE) m/z ([M+]) C11H12N2OS: 220.0680.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H12N2OS
Mr 220.29
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 293
a, b, c (Å) 8.0175 (2), 14.4611 (3), 18.5612 (4)
V3) 2152.02 (8)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.30 × 0.10 × 0.06
 
Data collection
Diffractometer Bruker CCD area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.922, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 67637, 3155, 2560
Rint 0.032
(sin θ/λ)max−1) 0.705
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.129, 1.08
No. of reflections 3155
No. of parameters 138
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.19
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SIR2019 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SIR2019 (Burla et al., 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020), WinGX (Farrugia, 2012); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015) and publCIF (Westrip, 2010).

8-Methyl-3-methylsulfanyl-8a,8b-dihydro-5H-1-oxa-2,4-diazaacenaphthylene top
Crystal data top
C11H12N2OSDx = 1.360 Mg m3
Mr = 220.29Melting point: 393.1 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8401 reflections
a = 8.0175 (2) Åθ = 2.2–29.8°
b = 14.4611 (3) ŵ = 0.27 mm1
c = 18.5612 (4) ÅT = 293 K
V = 2152.02 (8) Å3Parallelepiped, colorless
Z = 80.30 × 0.10 × 0.06 mm
F(000) = 928
Data collection top
Bruker CCD area detector
diffractometer
3155 independent reflections
Radiation source: fine-focus sealed tube2560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 512 pixels mm-1θmax = 30.1°, θmin = 2.8°
phi and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2020
Tmin = 0.922, Tmax = 0.984l = 2626
67637 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.5724P]
where P = (Fo2 + 2Fc2)/3
3155 reflections(Δ/σ)max = 0.001
138 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.19 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.87930 (6)0.23268 (3)0.81332 (2)0.05945 (15)
C10.68279 (16)0.11024 (8)0.99475 (8)0.0430 (3)
H10.5670350.1315110.9911520.052*
C20.79398 (16)0.16562 (8)0.94630 (7)0.0411 (3)
C30.78747 (16)0.14749 (9)0.86830 (8)0.0441 (3)
N40.72257 (16)0.07471 (9)0.84198 (7)0.0527 (3)
C50.6511 (2)0.00367 (11)0.89045 (9)0.0581 (4)
H5A0.6856820.0568030.8734660.070*
H5B0.5304920.0064430.8870460.070*
C60.69925 (16)0.01268 (9)0.96758 (8)0.0458 (3)
C70.77226 (18)0.05134 (9)1.00803 (9)0.0512 (3)
H70.7861480.1106570.9896310.061*
C80.8308 (2)0.03094 (10)1.08014 (9)0.0543 (4)
H80.8719210.0795381.1077420.065*
C90.8293 (2)0.05336 (11)1.10934 (9)0.0544 (3)
C100.7554 (2)0.13333 (9)1.06827 (8)0.0492 (3)
H100.6683920.1621251.0978110.059*
O110.88721 (16)0.20355 (7)1.05266 (6)0.0584 (3)
N120.90369 (16)0.21466 (8)0.97783 (7)0.0486 (3)
C130.8627 (3)0.17816 (14)0.72661 (9)0.0685 (5)
H13A0.7481150.1778280.7115770.103*
H13B0.9027810.1157380.7297440.103*
H13C0.9282860.2117940.6921750.103*
C140.8944 (4)0.07297 (16)1.18338 (10)0.0846 (7)
H14A0.9280900.0161151.2057680.127*
H14B0.8084240.1015121.2116800.127*
H14C0.9884540.1138441.1801530.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0740 (3)0.0518 (2)0.0525 (2)0.00919 (18)0.00304 (17)0.00618 (15)
C10.0366 (6)0.0335 (5)0.0588 (7)0.0038 (4)0.0087 (5)0.0000 (5)
C20.0417 (6)0.0302 (5)0.0513 (7)0.0016 (4)0.0033 (5)0.0005 (5)
C30.0415 (6)0.0407 (6)0.0502 (7)0.0004 (5)0.0010 (5)0.0000 (5)
N40.0512 (6)0.0494 (6)0.0576 (7)0.0054 (5)0.0049 (5)0.0056 (5)
C50.0584 (8)0.0449 (7)0.0710 (10)0.0145 (7)0.0018 (7)0.0085 (7)
C60.0394 (6)0.0339 (6)0.0641 (8)0.0058 (5)0.0093 (6)0.0037 (5)
C70.0477 (7)0.0319 (5)0.0739 (9)0.0012 (5)0.0151 (7)0.0008 (6)
C80.0523 (8)0.0436 (7)0.0669 (9)0.0072 (6)0.0129 (7)0.0123 (6)
C90.0590 (8)0.0511 (8)0.0530 (8)0.0045 (7)0.0112 (6)0.0062 (6)
C100.0542 (7)0.0393 (6)0.0540 (7)0.0051 (6)0.0137 (6)0.0016 (5)
O110.0802 (8)0.0458 (5)0.0493 (6)0.0139 (5)0.0003 (5)0.0045 (4)
N120.0596 (7)0.0358 (5)0.0504 (6)0.0081 (5)0.0009 (5)0.0014 (4)
C130.0823 (12)0.0727 (11)0.0507 (8)0.0071 (9)0.0068 (8)0.0005 (8)
C140.123 (2)0.0730 (12)0.0575 (10)0.0118 (12)0.0060 (11)0.0052 (9)
Geometric parameters (Å, º) top
S1—C31.7610 (14)C7—H70.9300
S1—C131.7972 (18)C8—C91.334 (2)
C1—C21.4984 (18)C8—H80.9300
C1—C61.5039 (17)C9—C141.497 (3)
C1—C101.521 (2)C9—C101.506 (2)
C1—H10.9800C10—O111.4942 (18)
C2—N121.2724 (17)C10—H100.9800
C2—C31.4723 (19)O11—N121.4045 (16)
C3—N41.2717 (17)C13—H13A0.9600
N4—C51.481 (2)C13—H13B0.9600
C5—C61.489 (2)C13—H13C0.9600
C5—H5A0.9700C14—H14A0.9600
C5—H5B0.9700C14—H14B0.9600
C6—C71.328 (2)C14—H14C0.9600
C7—C81.449 (2)
C3—S1—C13100.43 (8)C9—C8—C7123.94 (14)
C2—C1—C6104.35 (10)C9—C8—H8118.0
C2—C1—C10101.16 (11)C7—C8—H8118.0
C6—C1—C10118.25 (12)C8—C9—C14122.87 (16)
C2—C1—H1110.8C8—C9—C10119.97 (15)
C6—C1—H1110.8C14—C9—C10117.15 (15)
C10—C1—H1110.8O11—C10—C9109.97 (13)
N12—C2—C3125.17 (12)O11—C10—C1104.24 (10)
N12—C2—C1115.67 (12)C9—C10—C1115.85 (12)
C3—C2—C1118.29 (11)O11—C10—H10108.8
N4—C3—C2122.66 (13)C9—C10—H10108.8
N4—C3—S1121.83 (12)C1—C10—H10108.8
C2—C3—S1115.49 (9)N12—O11—C10109.64 (10)
C3—N4—C5119.94 (13)C2—N12—O11109.03 (11)
N4—C5—C6115.04 (12)S1—C13—H13A109.5
N4—C5—H5A108.5S1—C13—H13B109.5
C6—C5—H5A108.5H13A—C13—H13B109.5
N4—C5—H5B108.5S1—C13—H13C109.5
C6—C5—H5B108.5H13A—C13—H13C109.5
H5A—C5—H5B107.5H13B—C13—H13C109.5
C7—C6—C5126.65 (14)C9—C14—H14A109.5
C7—C6—C1120.20 (14)C9—C14—H14B109.5
C5—C6—C1112.45 (13)H14A—C14—H14B109.5
C6—C7—C8121.55 (13)C9—C14—H14C109.5
C6—C7—H7119.2H14A—C14—H14C109.5
C8—C7—H7119.2H14B—C14—H14C109.5
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the cyclohexa-1,3-diene ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···N12i0.982.643.4173 (16)136
C5—H5B···Cg3ii0.972.803.6158 (17)142
Symmetry codes: (i) x1/2, y+1/2, z+2; (ii) x, y+1, z.
 

Footnotes

Deceased August 2013.

Acknowledgements

We thank the laboratory ILV-UVSQ-UMR 8180 CNRS, 45 Avenue des Etats Unis, 78035 Versailles Cedex, France, for the use of the spectrometer and for the spectroscopic analysis.

References

First citationBacher, E., Demnitz, F. W. J. & Hurni, T. (1997). Tetrahedron, 53, 14317–14326.  Google Scholar
First citationBrandi, A., Cicchi, S., Cordero, F. M. & Goti, A. (2003). Chem. Rev. 103, 1213–1270.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2016). SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCopp, B. R., Ireland, C. M. & Barrows, L. R. (1992). J. Nat. Prod. 55, 822–823.  Google Scholar
First citationCremer, D. & Pople, J. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHabeeb, A. G., Praveen Rao, P. N. & Knaus, E. E. (2001). J. Med. Chem. 44, 2921–2927.  Google Scholar
First citationIchiba, T., Scheuer, P. J. & Kelly-Borges, M. (1993). J. Org. Chem. 58, 4149–4150.  Google Scholar
First citationJäger, V., Buss, V. & Schwab, W. (1980). Liebigs Ann. Chem. pp. 122–139.  Google Scholar
First citationJäger, V. & Buss, V. (1980). Liebigs Ann. Chem. pp. 101–121.  Google Scholar
First citationKing, S. W., Riordan, J. M., Holt, E. M. & Stammer, C. H. (1982). J. Org. Chem. 47, 3270–3273.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiu, K. C. & Howe, R. K. (1983). J. Org. Chem. 48, 4590–4592.  CrossRef CAS Web of Science Google Scholar
First citationMallesha, H., Ravi kumar, K. R., Mantelingu, K. & Rangappa, K. S. (2001). Synthesis, 10, 1459–1461.  Google Scholar
First citationSaha, A. & Bhattacharjya, A. (1997). Chem. Commun. pp. 495–496.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, Z., Khalil, M. A., Ko, D. & Lee, H. J. (1995). Tetrahedron Lett. 36, 3303–3306.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds