organic compounds
8-Methyl-3-methylsulfanyl-8a,8b-dihydro-5H-1-oxa-2,4-diazaacenaphthylene
aDepartment of Training and Research in Electrical and Electronic Engineering, Research Team: Instrumentation, Image and Spectroscopy, Félix Houphouët-Boigny National Polytechnic Institute, BP 1093 Yamoussoukro, Côte d'Ivoire, bLaboratoire de Constitution et Réaction de la Matière, UFR SSMT, Université Félix Houphouët-Boigny, 22 BP 582 Abidjan 22, Côte d'Ivoire, cLaboratoire ILV-UVSQ-UMR 8180 CNRS, 45 Avenue des Etats Unis, 78035 Versailles Cedex, France, dLaboratoire des Procédés Industriels de Synthèse et d'Environnement, Institut National Polytechnique Félix Houphouët-Boigny, BP 991 Yamoussoukro, Côte d'Ivoire, and eLaboratoire IC2MP-UMR 7285 CNRS, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
*Correspondence e-mail: abouakoun@gmail.com
In the tricyclic title compound, C11H12N2OS, the 2,3,4,5-tetrahydropyridine ring adopts a half-chair conformation. This ring makes dihedral angles of 27.72 (7) and 45.17 (7)°, respectively, with the isoxazole and the cyclohexa-1,3-diene rings while the isoxazole ring is oriented at an acute angle of 63.46 (7)° with respect to the cyclohexa-1,3-diene ring. In the crystal, molecules associate via C—H⋯N hydrogen bonds and C—H⋯π interactions, forming a three-dimensional network.
Keywords: crystal structure; diazadihydroacenaphthylene derivative; hydrogen bonding and C—H⋯π interactions.
CCDC reference: 2089097
Structure description
Diazadihydroacenaphthylene derivatives contain an isoxazoline scaffold and constitute an important class of ; Jäger et al., 1980). This scaffold is used in the synthesis of several complex natural products (Saha & Bhattacharjya, 1997; Copp et al.,1992) and is a pharmacophore of numerous medicinal chemistry compounds (Brandi et al., 2003; King et al., 1982; Bacher et al., 1997; You et al., 1995). It has also been reported that this scaffold has a multiple range of biological activities, covering the agricultural field (Liu & Howe, 1983), medicinal properties such as anticancer, antibiotic (Habeeb et al., 2001; Mallesha et al., 2001), antiviral and anti-HIV (Ichiba et al., 1993) agents.
whose chemical properties have been investigated over the years (Jäger & Buss, 1980We report herein the synthesis and ). The 2,3,4,5-tetrahydro-pyridine ring adopts a half-chair conformation with puckering parameters (Cremer & Pople, 1975) QT = 0.4779 (15) Å, θ = 129.65 (18)°, φ = 29.0 (2)° and is oriented at dihedral angles of 27.72 (7) and 45.17 (7)°, respectively, with the isoxazole and the cyclohexa-1,3-diene rings while the isoxazole ring makes an acute angle of 63.46 (7)° with respect to the cyclohexa-1,3-diene ring. These dihedral angles show that this tricycle compound is not planar, as confirmed by the total puckering amplitude QT of 1.4727 (15) Å.
of the title compound (Fig. 1In the crystal, C1—H1⋯N12(x − , −y + , −z + 2) hydrogen bonds (Table 1) link the molecules along the [010] direction (Fig. 2) and C5—H5B⋯Cg3(−x, −y + 1, −z) interactions, where Cg3 is the centroid of the cyclohexa-1,3-diene ring (Fig. 3) are observed.
Synthesis and crystallization
1-[(4-Methylbenzyl)amino]-1-methylthio-2-nitroethylene (236 mg; 1 mmol) was dissolved in 4.4 ml (50 mmol) of triflic acid at a temperature within the range −26 to −15°C under a nitrogen atmosphere. The reaction was monitored as follows: one or two drops of the reacting medium were quenched over ice (about 1 g) and extracted with CH2Cl22 (0.5 ml). The organic extract was dried over Na2CO3 and was purified by flash on a silica column (eluent: petroleum ether/ethyl acetate: (85:15, v/v) to afford the title compound (97 mg; 0.441 mmol) as a colourless powder. The powder was dissolved in a minimum of dichloromethane by heating under agitation. To this hot mixture, petroleum ether was added until the formation of a new precipitate started, which dissolved in the resulting mixture upon heating. Upon cooling, colourless crystals suitable for single-crystal X-ray were obtained, m.p. 120.1°C.
1H NMR (CDCl3): δ (p.p.m.) = 2.01 (s, 3 H, CH3); 2.39 (s, 3H, SCH3); 4.23 (d, J = 14.94 Hz, 1 H, H-8 b); 4.47 (s, 2 H, CH2); 5.46 (d, J = 14.9 Hz, 1 H, H-8a); 5.81 (d, J = 7.1 Hz, 1 H, vinylic H); 5.84 (d, J = 7.1 Hz, 1 H, vinylic H).
13C NMR (CDCl3): δ (p.p.m.) = 12.0 (SCH3); 21.1 (CH3); 48.0 (C-8a); 58.4 (CH2); 82.0 (C-8 b); 117.8 (CH); 121.7 (CH); 124.8 (quaternary carbon); 130.4 (C-8); 152.6 (>C=N—O–); 155.4 (–S—C=N–).
MS (mass spectrometer, 70 eV); m/z (%): 220 [M+]. MS–HR(IE) m/z ([M+]) C11H12N2OS: 220.0680.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2089097
https://doi.org/10.1107/S241431462100674X/xu4044sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431462100674X/xu4044Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431462100674X/xu4044Isup3.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SIR2019 (Burla et al., 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020), WinGX (Farrugia, 2012); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015) and publCIF (Westrip, 2010).C11H12N2OS | Dx = 1.360 Mg m−3 |
Mr = 220.29 | Melting point: 393.1 K |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 8401 reflections |
a = 8.0175 (2) Å | θ = 2.2–29.8° |
b = 14.4611 (3) Å | µ = 0.27 mm−1 |
c = 18.5612 (4) Å | T = 293 K |
V = 2152.02 (8) Å3 | Parallelepiped, colorless |
Z = 8 | 0.30 × 0.10 × 0.06 mm |
F(000) = 928 |
Bruker CCD area detector diffractometer | 3155 independent reflections |
Radiation source: fine-focus sealed tube | 2560 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 512 pixels mm-1 | θmax = 30.1°, θmin = 2.8° |
phi and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −20→20 |
Tmin = 0.922, Tmax = 0.984 | l = −26→26 |
67637 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0606P)2 + 0.5724P] where P = (Fo2 + 2Fc2)/3 |
3155 reflections | (Δ/σ)max = 0.001 |
138 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
0 constraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.87930 (6) | 0.23268 (3) | 0.81332 (2) | 0.05945 (15) | |
C1 | 0.68279 (16) | 0.11024 (8) | 0.99475 (8) | 0.0430 (3) | |
H1 | 0.567035 | 0.131511 | 0.991152 | 0.052* | |
C2 | 0.79398 (16) | 0.16562 (8) | 0.94630 (7) | 0.0411 (3) | |
C3 | 0.78747 (16) | 0.14749 (9) | 0.86830 (8) | 0.0441 (3) | |
N4 | 0.72257 (16) | 0.07471 (9) | 0.84198 (7) | 0.0527 (3) | |
C5 | 0.6511 (2) | 0.00367 (11) | 0.89045 (9) | 0.0581 (4) | |
H5A | 0.685682 | −0.056803 | 0.873466 | 0.070* | |
H5B | 0.530492 | 0.006443 | 0.887046 | 0.070* | |
C6 | 0.69925 (16) | 0.01268 (9) | 0.96758 (8) | 0.0458 (3) | |
C7 | 0.77226 (18) | −0.05134 (9) | 1.00803 (9) | 0.0512 (3) | |
H7 | 0.786148 | −0.110657 | 0.989631 | 0.061* | |
C8 | 0.8308 (2) | −0.03094 (10) | 1.08014 (9) | 0.0543 (4) | |
H8 | 0.871921 | −0.079538 | 1.107742 | 0.065* | |
C9 | 0.8293 (2) | 0.05336 (11) | 1.10934 (9) | 0.0544 (3) | |
C10 | 0.7554 (2) | 0.13333 (9) | 1.06827 (8) | 0.0492 (3) | |
H10 | 0.668392 | 0.162125 | 1.097811 | 0.059* | |
O11 | 0.88721 (16) | 0.20355 (7) | 1.05266 (6) | 0.0584 (3) | |
N12 | 0.90369 (16) | 0.21466 (8) | 0.97783 (7) | 0.0486 (3) | |
C13 | 0.8627 (3) | 0.17816 (14) | 0.72661 (9) | 0.0685 (5) | |
H13A | 0.748115 | 0.177828 | 0.711577 | 0.103* | |
H13B | 0.902781 | 0.115738 | 0.729744 | 0.103* | |
H13C | 0.928286 | 0.211794 | 0.692175 | 0.103* | |
C14 | 0.8944 (4) | 0.07297 (16) | 1.18338 (10) | 0.0846 (7) | |
H14A | 0.928090 | 0.016115 | 1.205768 | 0.127* | |
H14B | 0.808424 | 0.101512 | 1.211680 | 0.127* | |
H14C | 0.988454 | 0.113844 | 1.180153 | 0.127* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0740 (3) | 0.0518 (2) | 0.0525 (2) | −0.00919 (18) | 0.00304 (17) | 0.00618 (15) |
C1 | 0.0366 (6) | 0.0335 (5) | 0.0588 (7) | 0.0038 (4) | 0.0087 (5) | 0.0000 (5) |
C2 | 0.0417 (6) | 0.0302 (5) | 0.0513 (7) | 0.0016 (4) | 0.0033 (5) | −0.0005 (5) |
C3 | 0.0415 (6) | 0.0407 (6) | 0.0502 (7) | 0.0004 (5) | −0.0010 (5) | 0.0000 (5) |
N4 | 0.0512 (6) | 0.0494 (6) | 0.0576 (7) | −0.0054 (5) | −0.0049 (5) | −0.0056 (5) |
C5 | 0.0584 (8) | 0.0449 (7) | 0.0710 (10) | −0.0145 (7) | −0.0018 (7) | −0.0085 (7) |
C6 | 0.0394 (6) | 0.0339 (6) | 0.0641 (8) | −0.0058 (5) | 0.0093 (6) | −0.0037 (5) |
C7 | 0.0477 (7) | 0.0319 (5) | 0.0739 (9) | −0.0012 (5) | 0.0151 (7) | −0.0008 (6) |
C8 | 0.0523 (8) | 0.0436 (7) | 0.0669 (9) | 0.0072 (6) | 0.0129 (7) | 0.0123 (6) |
C9 | 0.0590 (8) | 0.0511 (8) | 0.0530 (8) | 0.0045 (7) | 0.0112 (6) | 0.0062 (6) |
C10 | 0.0542 (7) | 0.0393 (6) | 0.0540 (7) | 0.0051 (6) | 0.0137 (6) | −0.0016 (5) |
O11 | 0.0802 (8) | 0.0458 (5) | 0.0493 (6) | −0.0139 (5) | −0.0003 (5) | −0.0045 (4) |
N12 | 0.0596 (7) | 0.0358 (5) | 0.0504 (6) | −0.0081 (5) | 0.0009 (5) | −0.0014 (4) |
C13 | 0.0823 (12) | 0.0727 (11) | 0.0507 (8) | 0.0071 (9) | 0.0068 (8) | −0.0005 (8) |
C14 | 0.123 (2) | 0.0730 (12) | 0.0575 (10) | 0.0118 (12) | −0.0060 (11) | 0.0052 (9) |
S1—C3 | 1.7610 (14) | C7—H7 | 0.9300 |
S1—C13 | 1.7972 (18) | C8—C9 | 1.334 (2) |
C1—C2 | 1.4984 (18) | C8—H8 | 0.9300 |
C1—C6 | 1.5039 (17) | C9—C14 | 1.497 (3) |
C1—C10 | 1.521 (2) | C9—C10 | 1.506 (2) |
C1—H1 | 0.9800 | C10—O11 | 1.4942 (18) |
C2—N12 | 1.2724 (17) | C10—H10 | 0.9800 |
C2—C3 | 1.4723 (19) | O11—N12 | 1.4045 (16) |
C3—N4 | 1.2717 (17) | C13—H13A | 0.9600 |
N4—C5 | 1.481 (2) | C13—H13B | 0.9600 |
C5—C6 | 1.489 (2) | C13—H13C | 0.9600 |
C5—H5A | 0.9700 | C14—H14A | 0.9600 |
C5—H5B | 0.9700 | C14—H14B | 0.9600 |
C6—C7 | 1.328 (2) | C14—H14C | 0.9600 |
C7—C8 | 1.449 (2) | ||
C3—S1—C13 | 100.43 (8) | C9—C8—C7 | 123.94 (14) |
C2—C1—C6 | 104.35 (10) | C9—C8—H8 | 118.0 |
C2—C1—C10 | 101.16 (11) | C7—C8—H8 | 118.0 |
C6—C1—C10 | 118.25 (12) | C8—C9—C14 | 122.87 (16) |
C2—C1—H1 | 110.8 | C8—C9—C10 | 119.97 (15) |
C6—C1—H1 | 110.8 | C14—C9—C10 | 117.15 (15) |
C10—C1—H1 | 110.8 | O11—C10—C9 | 109.97 (13) |
N12—C2—C3 | 125.17 (12) | O11—C10—C1 | 104.24 (10) |
N12—C2—C1 | 115.67 (12) | C9—C10—C1 | 115.85 (12) |
C3—C2—C1 | 118.29 (11) | O11—C10—H10 | 108.8 |
N4—C3—C2 | 122.66 (13) | C9—C10—H10 | 108.8 |
N4—C3—S1 | 121.83 (12) | C1—C10—H10 | 108.8 |
C2—C3—S1 | 115.49 (9) | N12—O11—C10 | 109.64 (10) |
C3—N4—C5 | 119.94 (13) | C2—N12—O11 | 109.03 (11) |
N4—C5—C6 | 115.04 (12) | S1—C13—H13A | 109.5 |
N4—C5—H5A | 108.5 | S1—C13—H13B | 109.5 |
C6—C5—H5A | 108.5 | H13A—C13—H13B | 109.5 |
N4—C5—H5B | 108.5 | S1—C13—H13C | 109.5 |
C6—C5—H5B | 108.5 | H13A—C13—H13C | 109.5 |
H5A—C5—H5B | 107.5 | H13B—C13—H13C | 109.5 |
C7—C6—C5 | 126.65 (14) | C9—C14—H14A | 109.5 |
C7—C6—C1 | 120.20 (14) | C9—C14—H14B | 109.5 |
C5—C6—C1 | 112.45 (13) | H14A—C14—H14B | 109.5 |
C6—C7—C8 | 121.55 (13) | C9—C14—H14C | 109.5 |
C6—C7—H7 | 119.2 | H14A—C14—H14C | 109.5 |
C8—C7—H7 | 119.2 | H14B—C14—H14C | 109.5 |
Cg is the centroid of the cyclohexa-1,3-diene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···N12i | 0.98 | 2.64 | 3.4173 (16) | 136 |
C5—H5B···Cg3ii | 0.97 | 2.80 | 3.6158 (17) | 142 |
Symmetry codes: (i) x−1/2, −y+1/2, −z+2; (ii) −x, −y+1, −z. |
Footnotes
‡Deceased August 2013.
Acknowledgements
We thank the laboratory ILV-UVSQ-UMR 8180 CNRS, 45 Avenue des Etats Unis, 78035 Versailles Cedex, France, for the use of the spectrometer and for the spectroscopic analysis.
References
Bacher, E., Demnitz, F. W. J. & Hurni, T. (1997). Tetrahedron, 53, 14317–14326. Google Scholar
Brandi, A., Cicchi, S., Cordero, F. M. & Goti, A. (2003). Chem. Rev. 103, 1213–1270. Web of Science CrossRef CAS Google Scholar
Bruker (2016). SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309. Web of Science CrossRef CAS IUCr Journals Google Scholar
Copp, B. R., Ireland, C. M. & Barrows, L. R. (1992). J. Nat. Prod. 55, 822–823. Google Scholar
Cremer, D. & Pople, J. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Habeeb, A. G., Praveen Rao, P. N. & Knaus, E. E. (2001). J. Med. Chem. 44, 2921–2927. Google Scholar
Ichiba, T., Scheuer, P. J. & Kelly-Borges, M. (1993). J. Org. Chem. 58, 4149–4150. Google Scholar
Jäger, V., Buss, V. & Schwab, W. (1980). Liebigs Ann. Chem. pp. 122–139. Google Scholar
Jäger, V. & Buss, V. (1980). Liebigs Ann. Chem. pp. 101–121. Google Scholar
King, S. W., Riordan, J. M., Holt, E. M. & Stammer, C. H. (1982). J. Org. Chem. 47, 3270–3273. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Liu, K. C. & Howe, R. K. (1983). J. Org. Chem. 48, 4590–4592. CrossRef CAS Web of Science Google Scholar
Mallesha, H., Ravi kumar, K. R., Mantelingu, K. & Rangappa, K. S. (2001). Synthesis, 10, 1459–1461. Google Scholar
Saha, A. & Bhattacharjya, A. (1997). Chem. Commun. pp. 495–496. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
You, Z., Khalil, M. A., Ko, D. & Lee, H. J. (1995). Tetrahedron Lett. 36, 3303–3306. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.