metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](1-ethyl-3-iso­propyl-1,3-imidazol-2-yl­­idene)(tri­phenyl­phosphane)rhodium(I) tetra­fluorido­borate

crossmark logo

aDepartment of Chemistry and Biochemistry, School of Science, Elizabethtown College, One Alpha Drive, Elizabethtown, PA 17022, USA, bDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA, and cDepartment of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85716, USA
*Correspondence e-mail: Edward.Rajaseelan@millersville.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 27 May 2021; accepted 8 June 2021; online 11 June 2021)

A new N-heterocyclic cationic rhodium(I) complex with a tetra­fluorido­borate counter-anion, [Rh(C8H14N2)(C8H12)(C18H15P)]BF4, has been prepared and structurally characterized. The cationic complex exhibits a distorted square-planar environment around the rhodium(I) ion. Two connections are made from rhodium(I) to the carbon atom of an N-heterocylic carbene ligand and to the phospho­rus atom of a tri­phenyl­phosphane ligand. The remaining two coordination sites are made via a bidentate inter­action from the two olefinic bonds of cyclo­octa­diene to the rhodium(I) ion. The compound includes an out-sphere tetra­fluorido­borate counter-anion. Within the crystal of the compound exist several weak inter­molecular C—H⋯F inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N-heterocyclic carbenes (NHCs) have emerged as excellent spectator ligands in homogeneous catalysis, especially in transfer hydrogenation reactions. Transfer hydrogenation of unsaturated bonds is a reaction of great inter­est and it exemplifies some of the key aspects of green chemistry (Ruff et al., 2016[Ruff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327-335.]; Zuo et al., 2014[Zuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791-5801.]). The N-heterocyclic carbene (NHC) ligands can be tuned sterically and electronically by having different alkyl groups on the nitro­gen atoms (Gusev, 2009[Gusev, D. G. (2009). Organometallics, 28, 6458-6461.]). Many imidazole- and triazole-based NHC-rhodium and -iridium complexes have been synthesized and structurally characterized (Herrmann et al., 2006[Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437-2448.]; Wang & Lin 1998[Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972-975.]; Chianese et al., 2004[Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461-2468.]; Nichol et al., 2009[Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. 2009, 4320-4328.], 2010[Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.], 2011[Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860-m1861.], 2012[Nichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158-m159.]; Idrees et al., 2017a[Idrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.],b[Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.]; Huttenstine et al., 2011[Huttenstine, A. L., Rajaseelan, E., Oliver, A. G. & Rood, J. A. (2011). Acta Cryst. E67, m1274-m1275.]). Their catalytic activities in the transfer hydrogenation of ketones and imines has also been studied and reported (Hillier et al., 2001[Hillier, A. C., Lee, H. M., Stevens, E. D. & Nolan, S. P. (2001). Organometallics, 20, 4246-4252.]; Gnanamgari et al., 2007[Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226-1230.]; Albrecht et al., 2002[Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596-3604.]).

The mol­ecular structure of the title salt, [RhC34H41N2P]+ (BF4), (4), is illustrated in Fig. 1[link]. No solvent mol­ecules were found in the structure of (4). The coordination environment around the rhodium(I) ion, formed by the coordination to the metal of the two olefinic bonds of the cyclo­octa­diene (COD) ligand, the carbene carbon atom of the NHC ligand, and the phospho­rus atom from triphenylphosphane, is slightly distorted square-planar. The Rh—C(NHC) bond length is found to be 2.035 (3) Å in (4). The C(NHC)—metal—P(PPh3) bond angle is 88.37 (8)°. The N—C(carbene)—N bond angle in the imidazole-based carbene is 104.7 (2)°.

[Figure 1]
Figure 1
A view of the mol­ecular entities in compound (4), showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

Several non-covalent inter­actions exist between atoms that are closer than the sum of the van der Waals radii and are reported in Table 1[link]. Fig. 2[link] shows the crystal packing diagram for compound (4) with these inter­actions shown as dashed orange lines. The majority of these inter­actions exist as weak, unconventional C—H⋯F hydrogen bonds between the ligands and the fluorine atoms of the tetra­fluorido­borate anion. From the NHC ligand, the hydrogen atom on the five-membered ring, H21, inter­acts with F4. H24 from the isopropyl wingtip group and H22A from the ethyl wingtip group inter­act with F2 and F3, respectively. H28B and H32B from the double bonds of the COD ligand inter­act with F4 and F2, respectively. H12, a hydrogen atom in the ortho position of a phenyl ring on the tri­phenyl­phosphane ligand inter­acts with F1.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯F1i 0.95 2.57 3.245 (3) 129
C21—H21⋯F4ii 0.95 2.52 3.082 (3) 118
C22—H22A⋯F3i 0.99 2.39 3.120 (3) 130
C24—H24⋯F2 1.00 2.37 3.139 (3) 133
C32—H32B⋯F2 0.93 (3) 2.57 (3) 3.094 (3) 116 (2)
C28—H28B⋯F4i 0.98 (4) 2.53 (4) 3.318 (4) 138 (3)
Symmetry codes: (i) [x, y-1, z]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 2]
Figure 2
Crystal packing diagram of compound (4) with non-covalent inter­actions shown with dotted orange lines.

Synthesis and crystallization

1-Ethyl imidazole (compound 1) was purchased from Strem and used without further purification, and ligand syntheses were performed in air using reagent-grade solvents, which were used without further purification. NMR spectra were recorded at room temperature in CDCl3 on a 400 MHz (operating at 162 MHz for 31P) Varian spectrometer and referenced to the residual solvent peak (δ in ppm and J in Hz). A synthetic scheme is presented in Fig. 3[link]. The imidazolium salt (2) was prepared by treating (1) with isopropyl bromide in toluene at reflux for 16 h followed by isolation with diethyl ether. The metal complex (3) was prepared by in situ transmetallation from silver carbene complexes of (2) (Chianese et al., 2003[Chianese, A. R., Li, X. W., Janzen, M. C., Faller, J. W. & Crabtree, R. H. (2003). Organometallics, 22, 1663-1667.]). The title complex, (4), was prepared by treating (3) with 1 equivalent of tri­phenyl­phosphane and AgBF4 in CH2Cl2 at room temperature in the dark. The yellow–orange complex (4) was obtained in greater than 90% yield. 13C NMR: δ174.1(d, Rh—C, J(Rh—C) = 49.6). 31P NMR: δ25.48 (d, J(Rh—P) = 139.16). X-ray quality crystals of (4) were grown from CH2Cl2/pentane by slow diffusion.

[Figure 3]
Figure 3
Reaction scheme summarizing the synthesis of the N-heterocylic carbene ligand through the formation of the title salt (4).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Rh(C8H14N2)(C8H12)(C18H15P)]BF4
Mr 698.38
Crystal system, space group Monoclinic, Cc
Temperature (K) 100
a, b, c (Å) 17.4184 (15), 10.2177 (8), 18.5136 (16)
β (°) 109.164 (3)
V3) 3112.4 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.65
Crystal size (mm) 0.40 × 0.26 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.672, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 18836, 6836, 6747
Rint 0.014
(sin θ/λ)max−1) 0.643
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.041, 1.05
No. of reflections 6836
No. of parameters 407
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.54, −0.29
Absolute structure Flack x determined using 3291 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter −0.024 (5)
Computer programs: APEX2 (Bruker, 2013[Bruker (2013). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

[(1,2,5,6-η)-Cycloocta-1,5-diene](1-ethyl-3-isopropyl-1,3-imidazol-2-ylidene)(triphenylphosphane)rhodium(I) tetrafluoridoborate top
Crystal data top
[Rh(C8H14N2)(C8H12)(C18H15P)]BF4F(000) = 1440
Mr = 698.38Dx = 1.490 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 17.4184 (15) ÅCell parameters from 9851 reflections
b = 10.2177 (8) Åθ = 2.4–27.2°
c = 18.5136 (16) ŵ = 0.65 mm1
β = 109.164 (3)°T = 100 K
V = 3112.4 (5) Å3Plate, yellow–orange
Z = 40.40 × 0.26 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
6836 independent reflections
Radiation source: sealed tube6747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 8 pixels mm-1θmax = 27.2°, θmin = 2.3°
φ and ω scansh = 2222
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1313
Tmin = 0.672, Tmax = 0.746l = 2323
18836 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.0222P)2 + 1.084P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.041(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.54 e Å3
6836 reflectionsΔρmin = 0.29 e Å3
407 parametersAbsolute structure: Flack x determined using 3291 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
3 restraintsAbsolute structure parameter: 0.024 (5)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.42545 (2)0.32086 (2)0.63412 (2)0.01052 (5)
P10.36044 (4)0.27657 (7)0.50515 (3)0.01170 (12)
C130.26691 (15)0.1786 (2)0.47885 (13)0.0134 (4)
C70.42233 (14)0.2032 (2)0.45283 (13)0.0143 (4)
C10.32858 (13)0.4316 (2)0.45497 (12)0.0139 (4)
C50.24118 (15)0.5609 (2)0.35082 (14)0.0201 (5)
H50.19470.56760.30630.024*
C30.35696 (16)0.6616 (2)0.44367 (15)0.0203 (5)
H30.38990.73650.46210.024*
C20.37622 (14)0.5425 (2)0.48234 (13)0.0164 (4)
H20.42200.53670.52760.020*
C40.28943 (17)0.6700 (2)0.37831 (15)0.0216 (5)
H40.27600.75110.35210.026*
C60.26108 (14)0.4415 (2)0.38862 (13)0.0166 (4)
H60.22860.36650.36920.020*
C120.45805 (14)0.0810 (2)0.47564 (13)0.0171 (4)
H120.44700.03440.51550.021*
C80.43965 (15)0.2706 (2)0.39424 (13)0.0177 (5)
H80.41590.35400.37860.021*
C110.50971 (15)0.0276 (2)0.44006 (14)0.0201 (5)
H110.53340.05600.45530.024*
C100.52700 (15)0.0957 (3)0.38225 (14)0.0226 (5)
H100.56330.05970.35880.027*
C90.49115 (15)0.2166 (3)0.35885 (14)0.0220 (5)
H90.50190.26240.31850.026*
C160.12602 (15)0.0287 (2)0.45403 (14)0.0207 (5)
H160.07840.02240.44630.025*
C170.12845 (15)0.1572 (2)0.47878 (14)0.0192 (5)
H170.08240.19430.48770.023*
C140.26341 (14)0.0492 (2)0.45292 (13)0.0182 (5)
H140.30920.01190.44360.022*
C150.19314 (15)0.0249 (2)0.44067 (14)0.0219 (5)
H150.19130.11260.42310.026*
C180.19802 (15)0.2314 (2)0.49049 (13)0.0162 (5)
H180.19880.31980.50670.019*
C190.31402 (18)0.3416 (3)0.64607 (16)0.0123 (5)
N20.26421 (12)0.4462 (2)0.63903 (12)0.0146 (4)
N10.27282 (11)0.24015 (19)0.66333 (11)0.0139 (4)
C200.19801 (14)0.2803 (2)0.66586 (13)0.0174 (4)
H200.15820.22700.67630.021*
C210.19237 (13)0.4093 (2)0.65064 (13)0.0161 (4)
H210.14780.46460.64830.019*
C310.48989 (13)0.4414 (2)0.73577 (12)0.0154 (4)
H310.45580.51260.74650.018*
C300.47546 (17)0.3193 (2)0.76080 (15)0.0142 (5)
H300.43290.31910.78620.017*
C270.54248 (14)0.2242 (2)0.64930 (13)0.0162 (4)
H270.53860.14820.61430.019*
C340.54342 (18)0.3440 (3)0.61543 (18)0.0166 (6)
H340.54020.33860.56060.020*
C280.58720 (15)0.1936 (3)0.73303 (14)0.0196 (5)
C290.53265 (16)0.2061 (3)0.78260 (14)0.0189 (5)
H29A0.50080.12450.77840.023*
H29B0.56720.21600.83670.023*
C320.57237 (15)0.4875 (3)0.73428 (14)0.0198 (5)
C330.58371 (16)0.4668 (3)0.65570 (16)0.0213 (6)
H33A0.56100.54320.62270.026*
H33B0.64260.46260.66300.026*
C220.30159 (15)0.1041 (2)0.67200 (13)0.0169 (5)
H22A0.35300.09910.66030.020*
H22B0.26100.04870.63450.020*
C240.28426 (14)0.5819 (2)0.62459 (13)0.0156 (4)
H240.33750.58090.61500.019*
C230.31568 (15)0.0504 (2)0.75187 (14)0.0207 (5)
H23A0.33540.03990.75470.031*
H23B0.26450.05220.76320.031*
H23C0.35620.10430.78930.031*
C260.22038 (16)0.6381 (3)0.55409 (15)0.0232 (5)
H26A0.21520.58150.51000.035*
H26B0.23680.72600.54390.035*
H26C0.16800.64290.56300.035*
C250.29387 (17)0.6662 (2)0.69523 (16)0.0241 (5)
H25A0.24140.67330.70380.036*
H25B0.31270.75370.68730.036*
H25C0.33370.62580.73990.036*
B10.47942 (19)0.8319 (3)0.63945 (18)0.0216 (6)
F10.50775 (10)0.81699 (16)0.57787 (10)0.0298 (4)
F20.45538 (12)0.71358 (17)0.65886 (12)0.0393 (4)
F30.41466 (19)0.9168 (2)0.61969 (17)0.0748 (10)
F40.54203 (14)0.8787 (3)0.70204 (13)0.0667 (8)
H28A0.6405 (16)0.253 (3)0.7537 (14)0.004 (6)*
H32A0.618 (2)0.446 (3)0.7789 (19)0.027 (8)*
H32B0.5747 (19)0.577 (3)0.7442 (17)0.024 (8)*
H28B0.605 (2)0.102 (4)0.736 (2)0.039 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.00993 (7)0.01155 (8)0.00951 (7)0.00034 (8)0.00241 (5)0.00038 (7)
P10.0128 (3)0.0112 (3)0.0105 (3)0.0005 (2)0.0031 (2)0.0004 (2)
C130.0128 (11)0.0147 (11)0.0111 (10)0.0018 (8)0.0017 (8)0.0006 (8)
C70.0111 (10)0.0183 (11)0.0129 (10)0.0018 (8)0.0030 (8)0.0042 (8)
C10.0148 (10)0.0152 (11)0.0119 (10)0.0024 (8)0.0044 (8)0.0019 (8)
C50.0215 (12)0.0231 (12)0.0136 (10)0.0027 (10)0.0031 (9)0.0035 (9)
C30.0227 (12)0.0174 (12)0.0216 (12)0.0043 (9)0.0082 (10)0.0001 (9)
C20.0174 (11)0.0170 (11)0.0143 (10)0.0005 (9)0.0044 (8)0.0008 (9)
C40.0279 (13)0.0174 (12)0.0209 (12)0.0036 (9)0.0099 (11)0.0062 (9)
C60.0175 (11)0.0175 (11)0.0134 (10)0.0010 (9)0.0033 (9)0.0007 (8)
C120.0179 (11)0.0172 (11)0.0149 (10)0.0002 (9)0.0035 (9)0.0030 (8)
C80.0193 (11)0.0177 (12)0.0147 (11)0.0021 (9)0.0037 (9)0.0013 (9)
C110.0179 (11)0.0196 (12)0.0214 (11)0.0015 (9)0.0046 (9)0.0051 (9)
C100.0200 (12)0.0263 (13)0.0233 (12)0.0025 (10)0.0097 (10)0.0106 (10)
C90.0240 (13)0.0255 (13)0.0189 (12)0.0060 (10)0.0104 (10)0.0033 (10)
C160.0186 (11)0.0222 (12)0.0190 (11)0.0084 (10)0.0029 (9)0.0015 (9)
C170.0156 (11)0.0249 (12)0.0161 (11)0.0014 (9)0.0038 (9)0.0009 (9)
C140.0199 (11)0.0154 (11)0.0189 (11)0.0006 (9)0.0058 (9)0.0019 (9)
C150.0246 (12)0.0162 (12)0.0221 (12)0.0045 (10)0.0039 (10)0.0024 (9)
C180.0189 (12)0.0158 (11)0.0125 (11)0.0011 (9)0.0033 (9)0.0021 (9)
C190.0122 (12)0.0131 (12)0.0095 (11)0.0012 (10)0.0008 (10)0.0020 (9)
N20.0127 (9)0.0148 (10)0.0159 (10)0.0011 (7)0.0041 (8)0.0029 (8)
N10.0137 (9)0.0123 (9)0.0163 (9)0.0011 (7)0.0060 (7)0.0017 (7)
C200.0143 (11)0.0218 (12)0.0179 (11)0.0030 (9)0.0078 (9)0.0033 (9)
C210.0115 (10)0.0205 (11)0.0171 (11)0.0011 (8)0.0056 (8)0.0045 (9)
C310.0146 (10)0.0175 (11)0.0117 (10)0.0016 (8)0.0014 (8)0.0035 (8)
C300.0154 (12)0.0203 (14)0.0058 (10)0.0019 (8)0.0019 (9)0.0013 (8)
C270.0120 (10)0.0198 (12)0.0163 (11)0.0038 (9)0.0040 (9)0.0026 (9)
C340.0097 (13)0.0261 (14)0.0147 (13)0.0019 (11)0.0051 (10)0.0033 (11)
C280.0155 (12)0.0234 (13)0.0167 (12)0.0063 (9)0.0011 (9)0.0004 (9)
C290.0196 (12)0.0213 (12)0.0122 (10)0.0036 (9)0.0003 (9)0.0039 (9)
C320.0173 (11)0.0218 (13)0.0184 (11)0.0061 (9)0.0034 (9)0.0034 (9)
C330.0145 (11)0.0256 (14)0.0228 (13)0.0082 (10)0.0048 (10)0.0012 (10)
C220.0228 (12)0.0100 (10)0.0205 (11)0.0001 (9)0.0107 (9)0.0006 (8)
C240.0166 (11)0.0126 (10)0.0176 (11)0.0005 (8)0.0057 (9)0.0005 (8)
C230.0237 (12)0.0165 (11)0.0219 (12)0.0013 (9)0.0076 (10)0.0004 (9)
C260.0229 (12)0.0224 (12)0.0240 (12)0.0059 (10)0.0071 (10)0.0052 (10)
C250.0265 (13)0.0206 (13)0.0271 (13)0.0041 (10)0.0114 (11)0.0088 (10)
B10.0235 (14)0.0155 (13)0.0303 (15)0.0024 (10)0.0149 (12)0.0009 (10)
F10.0230 (8)0.0435 (10)0.0252 (8)0.0038 (6)0.0111 (7)0.0005 (6)
F20.0433 (10)0.0233 (8)0.0547 (12)0.0095 (7)0.0207 (9)0.0074 (8)
F30.0900 (19)0.0630 (13)0.102 (2)0.0594 (15)0.0729 (19)0.0508 (15)
F40.0626 (14)0.1002 (19)0.0541 (13)0.0596 (14)0.0418 (12)0.0510 (13)
Geometric parameters (Å, º) top
Rh1—P12.3265 (6)N2—C241.476 (3)
Rh1—C192.035 (3)N1—C201.382 (3)
Rh1—C312.221 (2)N1—C221.468 (3)
Rh1—C302.218 (3)C20—H200.9500
Rh1—C272.198 (2)C20—C211.345 (4)
Rh1—C342.206 (3)C21—H210.9500
P1—C131.837 (3)C31—H311.0000
P1—C71.830 (2)C31—C301.383 (3)
P1—C11.828 (2)C31—C321.521 (3)
C13—C141.401 (3)C30—H301.0000
C13—C181.396 (3)C30—C291.493 (3)
C7—C121.398 (3)C27—H271.0000
C7—C81.398 (3)C27—C341.377 (4)
C1—C21.397 (3)C27—C281.521 (3)
C1—C61.398 (3)C34—H341.0000
C5—H50.9500C34—C331.510 (4)
C5—C41.389 (4)C28—C291.528 (3)
C5—C61.392 (3)C28—H28A1.07 (3)
C3—H30.9500C28—H28B0.98 (4)
C3—C21.396 (3)C29—H29A0.9900
C3—C41.386 (4)C29—H29B0.9900
C2—H20.9500C32—C331.546 (4)
C4—H40.9500C32—H32A1.03 (3)
C6—H60.9500C32—H32B0.93 (3)
C12—H120.9500C33—H33A0.9900
C12—C111.390 (3)C33—H33B0.9900
C8—H80.9500C22—H22A0.9900
C8—C91.387 (3)C22—H22B0.9900
C11—H110.9500C22—C231.520 (3)
C11—C101.390 (4)C24—H241.0000
C10—H100.9500C24—C261.522 (3)
C10—C91.388 (4)C24—C251.528 (3)
C9—H90.9500C23—H23A0.9800
C16—H160.9500C23—H23B0.9800
C16—C171.386 (4)C23—H23C0.9800
C16—C151.385 (4)C26—H26A0.9800
C17—H170.9500C26—H26B0.9800
C17—C181.385 (3)C26—H26C0.9800
C14—H140.9500C25—H25A0.9800
C14—C151.394 (3)C25—H25B0.9800
C15—H150.9500C25—H25C0.9800
C18—H180.9500B1—F11.391 (3)
C19—N21.355 (4)B1—F21.365 (3)
C19—N11.357 (3)B1—F31.374 (4)
N2—C211.389 (3)B1—F41.390 (4)
C19—Rh1—P188.37 (8)N2—C21—H21126.5
C19—Rh1—C3194.87 (10)C20—C21—N2106.9 (2)
C19—Rh1—C3086.75 (11)C20—C21—H21126.5
C19—Rh1—C27155.53 (10)Rh1—C31—H31113.9
C19—Rh1—C34167.59 (8)C30—C31—Rh171.74 (14)
C31—Rh1—P1156.62 (6)C30—C31—H31113.9
C30—Rh1—P1166.84 (6)C30—C31—C32124.2 (2)
C30—Rh1—C3136.30 (9)C32—C31—Rh1111.97 (15)
C27—Rh1—P199.34 (6)C32—C31—H31113.9
C27—Rh1—C3187.21 (9)Rh1—C30—H30113.8
C27—Rh1—C3080.55 (9)C31—C30—Rh171.96 (14)
C27—Rh1—C3436.45 (10)C31—C30—H30113.8
C34—Rh1—P191.40 (8)C31—C30—C29127.7 (2)
C34—Rh1—C3180.55 (10)C29—C30—Rh1106.70 (16)
C34—Rh1—C3095.97 (11)C29—C30—H30113.8
C13—P1—Rh1117.95 (8)Rh1—C27—H27113.8
C7—P1—Rh1116.76 (8)C34—C27—Rh172.06 (16)
C7—P1—C13105.19 (11)C34—C27—H27113.8
C1—P1—Rh1108.50 (8)C34—C27—C28124.6 (2)
C1—P1—C13104.04 (11)C28—C27—Rh1111.44 (15)
C1—P1—C7102.66 (11)C28—C27—H27113.8
C14—C13—P1122.70 (19)Rh1—C34—H34114.1
C18—C13—P1118.76 (17)C27—C34—Rh171.49 (15)
C18—C13—C14118.4 (2)C27—C34—H34114.1
C12—C7—P1119.16 (17)C27—C34—C33125.9 (3)
C12—C7—C8119.1 (2)C33—C34—Rh1108.50 (19)
C8—C7—P1121.59 (18)C33—C34—H34114.1
C2—C1—P1118.23 (17)C27—C28—C29112.6 (2)
C2—C1—C6119.2 (2)C27—C28—H28A110.0 (14)
C6—C1—P1122.49 (18)C27—C28—H28B108 (2)
C4—C5—H5120.1C29—C28—H28A112.1 (14)
C4—C5—C6119.9 (2)C29—C28—H28B107 (2)
C6—C5—H5120.1H28A—C28—H28B107 (3)
C2—C3—H3120.2C30—C29—C28113.2 (2)
C4—C3—H3120.2C30—C29—H29A108.9
C4—C3—C2119.6 (2)C30—C29—H29B108.9
C1—C2—H2119.8C28—C29—H29A108.9
C3—C2—C1120.4 (2)C28—C29—H29B108.9
C3—C2—H2119.8H29A—C29—H29B107.8
C5—C4—H4119.7C31—C32—C33112.8 (2)
C3—C4—C5120.6 (2)C31—C32—H32A109.8 (17)
C3—C4—H4119.7C31—C32—H32B106.3 (19)
C1—C6—H6119.9C33—C32—H32A113.6 (17)
C5—C6—C1120.3 (2)C33—C32—H32B108.0 (19)
C5—C6—H6119.9H32A—C32—H32B106 (3)
C7—C12—H12120.0C34—C33—C32113.4 (2)
C11—C12—C7120.1 (2)C34—C33—H33A108.9
C11—C12—H12120.0C34—C33—H33B108.9
C7—C8—H8119.7C32—C33—H33A108.9
C9—C8—C7120.6 (2)C32—C33—H33B108.9
C9—C8—H8119.7H33A—C33—H33B107.7
C12—C11—H11119.8N1—C22—H22A109.0
C12—C11—C10120.4 (2)N1—C22—H22B109.0
C10—C11—H11119.8N1—C22—C23112.86 (19)
C11—C10—H10120.1H22A—C22—H22B107.8
C9—C10—C11119.8 (2)C23—C22—H22A109.0
C9—C10—H10120.1C23—C22—H22B109.0
C8—C9—C10120.1 (2)N2—C24—H24108.1
C8—C9—H9120.0N2—C24—C26111.1 (2)
C10—C9—H9120.0N2—C24—C25109.91 (19)
C17—C16—H16120.1C26—C24—H24108.1
C15—C16—H16120.1C26—C24—C25111.4 (2)
C15—C16—C17119.9 (2)C25—C24—H24108.1
C16—C17—H17120.0C22—C23—H23A109.5
C18—C17—C16120.0 (2)C22—C23—H23B109.5
C18—C17—H17120.0C22—C23—H23C109.5
C13—C14—H14119.8H23A—C23—H23B109.5
C15—C14—C13120.4 (2)H23A—C23—H23C109.5
C15—C14—H14119.8H23B—C23—H23C109.5
C16—C15—C14120.2 (2)C24—C26—H26A109.5
C16—C15—H15119.9C24—C26—H26B109.5
C14—C15—H15119.9C24—C26—H26C109.5
C13—C18—H18119.5H26A—C26—H26B109.5
C17—C18—C13121.1 (2)H26A—C26—H26C109.5
C17—C18—H18119.5H26B—C26—H26C109.5
N2—C19—Rh1132.4 (2)C24—C25—H25A109.5
N2—C19—N1104.7 (2)C24—C25—H25B109.5
N1—C19—Rh1122.86 (19)C24—C25—H25C109.5
C19—N2—C21110.6 (2)H25A—C25—H25B109.5
C19—N2—C24125.2 (2)H25A—C25—H25C109.5
C21—N2—C24124.2 (2)H25B—C25—H25C109.5
C19—N1—C20111.0 (2)F2—B1—F1109.9 (2)
C19—N1—C22124.1 (2)F2—B1—F3109.5 (2)
C20—N1—C22124.7 (2)F2—B1—F4108.1 (3)
N1—C20—H20126.6F3—B1—F1109.4 (2)
C21—C20—N1106.8 (2)F3—B1—F4110.8 (3)
C21—C20—H20126.6F4—B1—F1109.2 (2)
Rh1—P1—C13—C14108.34 (19)C4—C5—C6—C11.2 (4)
Rh1—P1—C13—C1866.7 (2)C4—C3—C2—C10.9 (4)
Rh1—P1—C7—C1261.3 (2)C6—C1—C2—C30.4 (3)
Rh1—P1—C7—C8113.91 (18)C6—C5—C4—C30.7 (4)
Rh1—P1—C1—C231.68 (19)C12—C7—C8—C90.4 (3)
Rh1—P1—C1—C6151.50 (17)C12—C11—C10—C91.3 (4)
Rh1—C19—N2—C21178.1 (2)C8—C7—C12—C110.3 (3)
Rh1—C19—N2—C244.5 (4)C11—C10—C9—C81.5 (4)
Rh1—C19—N1—C20178.26 (17)C16—C17—C18—C130.9 (4)
Rh1—C19—N1—C222.8 (3)C17—C16—C15—C140.8 (4)
Rh1—C31—C30—C2997.5 (3)C14—C13—C18—C171.7 (3)
Rh1—C31—C32—C3312.8 (3)C15—C16—C17—C180.3 (4)
Rh1—C30—C29—C2843.2 (2)C18—C13—C14—C151.3 (3)
Rh1—C27—C34—C3399.8 (3)C19—N2—C21—C200.6 (3)
Rh1—C27—C28—C2913.9 (3)C19—N2—C24—C26124.9 (2)
Rh1—C34—C33—C3239.5 (3)C19—N2—C24—C25111.3 (3)
P1—C13—C14—C15173.84 (18)C19—N1—C20—C210.6 (3)
P1—C13—C18—C17173.57 (18)C19—N1—C22—C23118.0 (3)
P1—C7—C12—C11175.64 (18)N2—C19—N1—C200.9 (3)
P1—C7—C8—C9175.65 (19)N2—C19—N1—C22176.4 (2)
P1—C1—C2—C3176.55 (18)N1—C19—N2—C210.9 (3)
P1—C1—C6—C5177.46 (18)N1—C19—N2—C24176.4 (2)
C13—P1—C7—C1271.6 (2)N1—C20—C21—N20.0 (3)
C13—P1—C7—C8113.2 (2)C20—N1—C22—C2367.2 (3)
C13—P1—C1—C2158.06 (18)C21—N2—C24—C2658.0 (3)
C13—P1—C1—C625.1 (2)C21—N2—C24—C2565.8 (3)
C13—C14—C15—C160.0 (4)C31—C30—C29—C2836.6 (4)
C7—P1—C13—C1423.9 (2)C31—C32—C33—C3435.3 (3)
C7—P1—C13—C18161.03 (19)C30—C31—C32—C3395.1 (3)
C7—P1—C1—C292.49 (19)C27—C34—C33—C3240.7 (4)
C7—P1—C1—C684.3 (2)C27—C28—C29—C3039.1 (3)
C7—C12—C11—C100.7 (4)C34—C27—C28—C2996.4 (3)
C7—C8—C9—C101.0 (4)C28—C27—C34—Rh1104.1 (2)
C1—P1—C13—C14131.5 (2)C28—C27—C34—C334.3 (4)
C1—P1—C13—C1853.5 (2)C32—C31—C30—Rh1104.6 (2)
C1—P1—C7—C12179.85 (18)C32—C31—C30—C297.1 (4)
C1—P1—C7—C84.6 (2)C22—N1—C20—C21176.0 (2)
C2—C1—C6—C50.7 (3)C24—N2—C21—C20176.8 (2)
C2—C3—C4—C50.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F1i0.952.573.245 (3)129
C21—H21···F4ii0.952.523.082 (3)118
C22—H22A···F3i0.992.393.120 (3)130
C24—H24···F21.002.373.139 (3)133
C32—H32B···F20.93 (3)2.57 (3)3.094 (3)116 (2)
C28—H28B···F4i0.98 (4)2.53 (4)3.318 (4)138 (3)
Symmetry codes: (i) x, y1, z; (ii) x1/2, y1/2, z.
 

References

First citationAlbrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596–3604.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2013). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461–2468.  Web of Science CSD CrossRef CAS Google Scholar
First citationChianese, A. R., Li, X. W., Janzen, M. C., Faller, J. W. & Crabtree, R. H. (2003). Organometallics, 22, 1663–1667.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.  Web of Science CrossRef CAS Google Scholar
First citationGusev, D. G. (2009). Organometallics, 28, 6458–6461.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.  Web of Science CSD CrossRef CAS Google Scholar
First citationHillier, A. C., Lee, H. M., Stevens, E. D. & Nolan, S. P. (2001). Organometallics, 20, 4246–4252.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuttenstine, A. L., Rajaseelan, E., Oliver, A. G. & Rood, J. A. (2011). Acta Cryst. E67, m1274–m1275.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIdrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.  Google Scholar
First citationIdrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. 2009, 4320–4328.  CSD CrossRef Google Scholar
First citationNichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158–m159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRuff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327–335.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975.  Web of Science CSD CrossRef CAS Google Scholar
First citationZuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791–5801.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds