metal-organic compounds
cyclo-Tetrakis(μ-2,4,6-trimethylphenyl-κC1:κC1)bis(trimethylphosphane)-1κP,3κP-tetracopper(I)
aMartin-Luther-Universität Halle, Naturwissenschaftliche Fakultät II, Institut für Chemie, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de
The title compound, [Cu4(C9H11)4(C3H9P)2] or [Cu4(Mes)4(PMe3)2] (Mes = 2,4,6-trimethylphenyl), was synthesized from copper(I) mesityl and trimethylphosphane in THF as solvent. The molecular structure of the complex has C2 symmetry and consists of four copper(I) atoms bridged by four μ-mesityl groups, giving an eight-membered puckered {Cu4C4} ring. Additionally, two copper(I) atoms at opposite corners of the Cu4 rhomb are each linked to a terminal PMe3 ligand. The PMe3-bearing copper(I) atoms exhibit a distorted trigonal–planar coordination mode whereas the remaining Cu atoms linked to two mesityl groups are nearly linearly coordinated.
Keywords: crystal structure; copper; phosphine; complex.
CCDC reference: 2088681
Structure description
Among CuI organyls, mesitylcopper is one of the most extensively studied compounds. Since its first synthesis in 1981 (Tsuda et al., 1981), mesitylcopper has found widespread application in preparative organometallic chemistry (Stollenz & Meyer, 2012). In the solid state, mesitylcopper can exist as a pentamer (CuMes)5 (Gambarotta et al., 1983; Meyer et al., 1989) or as a tetramer (CuMes)4 (Eriksson & Håkansson, 1997). On treatment with donor ligands L, mesitylcopper displays different reaction patterns depending on the nature of L. In the case of tetrahydrothiophene (THT), the reaction proceeds under retention of the tetranuclear cluster structure to form [Cu4(Mes)4(THT)2] (Gambarotta et al., 1983; Meyer et al., 1989). Treatment of mesitylcopper with PPh3 in toluene led to a compound [CuMes(PPh3)2]·C7H8 with a yet unknown (Meyer et al., 1989). The reaction with dppe (1,2-bis(diphenylposphino)ethane) causes a degradation of the Cu4Mes4 cluster to give a cuprocuprate [(dppe)2Cu][CuMes2] (Leoni et al., 1983).
In order to get some insight into the reactivity of mesitylcopper towards sterically less demanding 3 at room temperature led to the formation of the tetranuclear complex [Cu4(Mes)4(PMe3)2] (1).
trimethylphosphane was chosen as a ligand. Treatment of a solution of mesitylcopper in THF with PMeThe molecular structure of (1) comprises four copper(I) atoms that are linked by four μ-mesityl groups to give an eight-membered {Cu4C4} ring (Fig. 1). Additionally, two copper atoms at diametrically opposite positions of the ring are each linked to a terminal PMe3 group. The tetranuclear copper complex exhibits crystallographic C2 symmetry with the diad axis passing through the center of the C10—C15 bond. The rhombic arrangement of the copper atoms is nearly planar, with marginal deviations of 0.0087 Å from the mean plane through the four copper atoms. The relatively small Cu⋯Cu distances at the edges of the rhomb [2.4603 (5)–2.4625 (5) Å] suggest cuprophilic interactions. The Cu⋯Cu separations between the copper atoms at opposite corners of the rhomb are 4.2013 (5) Å for Cu2⋯Cu2i [symmetry code: (i) –x + 1, y, –z + ] and 2.5657 (7) Å for Cu1⋯Cu1i. Similar shaped arrangements of four Cu atoms were observed in the derivatives [Cu4(Mes)4(THT)2], [Cu4(o-Tol)4(SMe2)2] (Lenders et al., 1991) and [Cu4Ph4(SMe2)2] (Olmstead & Power, 1990). Complex (1) exhibits two types of differently coordinated Cu atoms (Table 1). Cu1 is surrounded by two mesityl groups with Cu—C distances of 2.005 (3) and 2.006 (3) Å. In comparison with Cu4Mes4, the Cu—C distances are slightly enlarged by around 0.014 Å. However, the bending of the C1—Cu1—C10i unit [138.3 (1)°] is clearly more pronounced than in [Cu4Mes4] (164.05–165.70°). Apart from two mesityl groups, Cu2 bears a PMe3 unit as a third ligand. The increased leads to a further enlargement of the Cu—C distances with values of 2.093 (3) and 2.095 (3) Å. The coordination around Cu2 is planar with a C—Cu—C angle of 163.0 (1)° and C—Cu—P angles of 97.9 (1)° and 99.0 (1)° (sum of the angles around Cu2: 359.9°). Comparison of the bond lengths of compound (1) and related [Cu4Mes4L2] complexes reveals that the ligand PMe3 leads to a larger increase of the Cu—C distances for the tricoordinate copper atoms than other ligands investigated so far. In [Cu4Mes4L2] complexes with L = piperidine, allyl methyl sulfide, 2,5-dithiahexane, tetrahydrothiophene and bis{2-[1-(dimethylamino)ethyl]phenylthiolato}magnesium, the mean Cu—C distances for the tricoordinated copper atoms are in the range 2.054–2.064 Å. In the case of the dicoordinated Cu there is no particular effect. Furthermore, there is a slight influence on the C—Cu—C angles for the dicoordinated [138.3 (1)°] and the tricoordinate copper atoms [163.0 (1)°], which are smaller than in the [Cu4Mes4L2] complexes mentioned above (140.3–142.8° and 165.0–170.2°, respectively).
The molecular packing reveals no special supramolecular features (Fig. 2). Most of the contacts are of the van der Waals type with some minor participation of C—H⋯π interactions: C17—H17A⋯Cg2i with d(H⋯Cg2) = 2.87 Å, C17—H17A⋯Cg2 = 167° [Cg2 is the centroid of the C10–C15 ring; symmetry code: (i) −x, y, − z].
Generally, X-ray crystallographic studies on CuI aryl compounds with auxiliary phosphane ligands are relatively rare. According to the CSD database (Groom et al., 2016), there are two compounds of the type [RCu(PR′3)] [R = (2,2′′,4,4′′,6,6′′-hexamethyl-1,1′:3′,1′′-terphenyl-2′-yl), R′ = Ph (Niemeyer, 2003), R′= Et (Rungthanaphatsophon et al., 2016], containing nearly linear C—Cu—P units. Typically, this structural motif occurs if further molecular aggregation is prevented by sterically demanding The Cu—C bond lengths in [RCu(PR′3)]-type compounds are 1.922 Å for the PPh3 derivative (Niemeyer, 2003) and 1.930 Å in the case of the PEt3 co-ligand. The shortening of the Cu—C distances in comparison with [Cu4(Mes)4(PMe3)2] may be attributed to the lower of the copper atoms. The same effect is also visible for the Cu—P distances of 2.189 Å (Niemeyer, 2003) and 2.200 Å (Rungthanaphatsophon et al., 2016), respectively. Furthermore, there is a terphenyl copper complex of the type [RCu(PR′3)2] (R′= Et) with two phosphane units attached to copper. In this case, the copper atom exhibits a distorted trigonal–planar coordination with markedly enlarged Cu—C (1.979 Å) and Cu—P (2.250 and 2.256 Å) distances (Rungthanaphatsophon et al., 2016).
The CSD database contains five entries for [Cu4Mes4L2] complexes, with L = THT (Gambarotta et al., 1983; Meyer, et al., 1989), piperidine (Sung et al., 2015), allyl methyl sulfide or 2,5–dithiahexane (Kokoli et al., 2013). There are also some heterometallic Cu4Mes4 complexes with bis(thiophenolato)magnesium units as ligands (Knotter et al., 1990).
Synthesis and crystallization
A solution of 0.46 g (2.5 mmol) mesitylcopper (Meyer et al., 1989) in 10 ml of THF was treated with 0.13 ml (1.25 mmol) of trimethyl phosphane. The reaction mixture was stirred for one h at 293 K. The reaction product [Cu4(Mes)4(PMe3)2] (1) was precipitated by the addition of 30 ml of n-hexane. After filtration, the colorless product was washed with diethyl ether (2 × 5 ml) and dried under vacuum. Single crystals suitable for X-ray analysis were obtained by slow diffusion of n-hexane into a THF solution of the product. Yield: 0.33 g (60%). C42H62Cu4P2 (883.01 g mol−1). Analysis: Cu 29.0% (calc. 28.8%) IR (cm−1) 2997(w), 2963(m), 2901(m), 2855(w), 2842(w), 2802(w), 2705(w), 1589(w), 1637(w), 1376(w), 1448(w), 1418(m), 1362(w), 1302(w), 1286(m), 1257(w), 1215(w), 1164(w), 1024(w), 939(s), 873(w), 844(s), 730(s), 710(w), 670(m), 576(w), 538(m), 484(w), 357(m), 328(m), 301(m), 275(w). 1H NMR (C6D6): δ 0.60 (s br, 18H; PCH3), 2.08 (s, 12H; p-CH3), 2.73 (s, 24H; o-CH3), 6.68 (s, 8H; CH). 13C{1H} NMR (C6D6): δ 15.4 (s br; PCH3), 21.4 (s; p-CH3), 28.7 (s; o-CH3), 125.6 (s; CH), 127.4 (s; CCu2), 134.4 (s; p-CCH3), 150.0 (s; o-CCH3). 31P{1H} NMR (C6D6): δ −44.6 (s br).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 2088681
https://doi.org/10.1107/S2414314621005940/wm4146sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314621005940/wm4146Isup2.hkl
Data collection: (X-AREA; Stoe & Cie, 2016); cell
(X-AREA; Stoe & Cie, 2016); data reduction: (X-AREA; Stoe & Cie, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Cu4(C9H11)4(C3H9P)2] | F(000) = 1840 |
Mr = 883.01 | Dx = 1.346 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 12.0750 (8) Å | Cell parameters from 10871 reflections |
b = 27.5202 (18) Å | θ = 1.5–25.6° |
c = 14.3164 (9) Å | µ = 2.03 mm−1 |
β = 113.668 (5)° | T = 213 K |
V = 4357.3 (5) Å3 | Block, pale yellow |
Z = 4 | 0.51 × 0.32 × 0.19 mm |
Stoe IPDS 2 diffractometer | 3043 reflections with I > 2σ(I) |
rotation method scans | Rint = 0.050 |
Absorption correction: integration (X-AREA; Stoe & Cie, 2016) | θmax = 25.1°, θmin = 1.5° |
Tmin = 0.508, Tmax = 0.758 | h = −14→13 |
10982 measured reflections | k = −32→31 |
3839 independent reflections | l = −17→17 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.100 | w = 1/[σ2(Fo2) + (0.0519P)2 + 5.6305P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3839 reflections | Δρmax = 0.48 e Å−3 |
217 parameters | Δρmin = −0.44 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5285 (3) | 0.14472 (10) | 0.0734 (2) | 0.0352 (6) | |
C2 | 0.5698 (3) | 0.11189 (11) | 0.0184 (2) | 0.0406 (7) | |
C3 | 0.6133 (3) | 0.12859 (13) | −0.0520 (3) | 0.0535 (9) | |
H3 | 0.637972 | 0.106131 | −0.088230 | 0.064* | |
C4 | 0.6210 (3) | 0.17740 (14) | −0.0697 (3) | 0.0567 (9) | |
C5 | 0.5825 (3) | 0.21013 (13) | −0.0155 (3) | 0.0542 (9) | |
H5 | 0.587281 | 0.243244 | −0.026399 | 0.065* | |
C6 | 0.5369 (3) | 0.19478 (11) | 0.0549 (2) | 0.0422 (7) | |
C7 | 0.5670 (3) | 0.05827 (11) | 0.0365 (3) | 0.0530 (8) | |
H7A | 0.534717 | 0.052614 | 0.086869 | 0.064* | |
H7B | 0.516843 | 0.042475 | −0.026048 | 0.064* | |
H7C | 0.647534 | 0.045416 | 0.060229 | 0.064* | |
C8 | 0.6704 (5) | 0.1944 (2) | −0.1462 (4) | 0.0953 (16) | |
H8A | 0.669255 | 0.229266 | −0.148853 | 0.114* | |
H8B | 0.751950 | 0.183073 | −0.125860 | 0.114* | |
H8C | 0.621237 | 0.181647 | −0.212391 | 0.114* | |
C9 | 0.4929 (4) | 0.23236 (11) | 0.1078 (3) | 0.0564 (9) | |
H9A | 0.464229 | 0.216650 | 0.153714 | 0.068* | |
H9B | 0.558068 | 0.253924 | 0.145463 | 0.068* | |
H9C | 0.428204 | 0.250577 | 0.058072 | 0.068* | |
C10 | 0.2575 (3) | 0.10497 (11) | 0.1661 (2) | 0.0362 (6) | |
C11 | 0.1633 (3) | 0.13739 (12) | 0.1595 (2) | 0.0428 (7) | |
C12 | 0.0481 (3) | 0.12024 (13) | 0.1414 (3) | 0.0525 (8) | |
H12 | −0.011475 | 0.142360 | 0.138276 | 0.063* | |
C13 | 0.0193 (3) | 0.07129 (14) | 0.1277 (2) | 0.0531 (9) | |
C14 | 0.1118 (3) | 0.03930 (12) | 0.1352 (2) | 0.0490 (8) | |
H14 | 0.094931 | 0.006227 | 0.126572 | 0.059* | |
C15 | 0.2281 (3) | 0.05497 (11) | 0.1551 (2) | 0.0390 (6) | |
C16 | 0.1869 (3) | 0.19137 (12) | 0.1699 (3) | 0.0605 (9) | |
H16A | 0.269829 | 0.197512 | 0.182150 | 0.073* | |
H16B | 0.135141 | 0.207348 | 0.108126 | 0.073* | |
H16C | 0.170640 | 0.203603 | 0.225913 | 0.073* | |
C17 | −0.1068 (3) | 0.05407 (19) | 0.1057 (3) | 0.0798 (13) | |
H17A | −0.110277 | 0.019351 | 0.098586 | 0.096* | |
H17B | −0.128522 | 0.063189 | 0.160898 | 0.096* | |
H17C | −0.162240 | 0.068660 | 0.043644 | 0.096* | |
C18 | 0.3221 (3) | 0.01757 (11) | 0.1617 (3) | 0.0517 (8) | |
H18A | 0.397928 | 0.033449 | 0.175720 | 0.062* | |
H18B | 0.331256 | −0.005010 | 0.215374 | 0.062* | |
H18C | 0.297023 | 0.000460 | 0.098044 | 0.062* | |
C19 | 0.0817 (4) | 0.1129 (2) | −0.0945 (3) | 0.0864 (15) | |
H19A | 0.073605 | 0.083645 | −0.061181 | 0.104* | |
H19B | 0.052908 | 0.139998 | −0.068566 | 0.104* | |
H19C | 0.035169 | 0.109988 | −0.166632 | 0.104* | |
C20 | 0.2658 (4) | 0.07802 (15) | −0.1540 (3) | 0.0816 (13) | |
H20A | 0.270385 | 0.046047 | −0.125855 | 0.098* | |
H20B | 0.200305 | 0.079321 | −0.220072 | 0.098* | |
H20C | 0.340315 | 0.085374 | −0.160120 | 0.098* | |
C21 | 0.2352 (4) | 0.17798 (14) | −0.1387 (3) | 0.0667 (10) | |
H21A | 0.221783 | 0.204870 | −0.101793 | 0.080* | |
H21B | 0.310611 | 0.182363 | −0.145271 | 0.080* | |
H21C | 0.170601 | 0.176310 | −0.205223 | 0.080* | |
P | 0.24013 (8) | 0.12219 (3) | −0.07038 (6) | 0.0456 (2) | |
Cu1 | 0.58712 (3) | 0.12496 (2) | 0.22033 (2) | 0.03340 (13) | |
Cu2 | 0.37473 (3) | 0.12434 (2) | 0.09729 (2) | 0.03274 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0323 (15) | 0.0399 (15) | 0.0349 (14) | −0.0001 (12) | 0.0150 (12) | 0.0030 (12) |
C2 | 0.0351 (17) | 0.0472 (16) | 0.0426 (16) | −0.0017 (13) | 0.0190 (14) | −0.0047 (13) |
C3 | 0.050 (2) | 0.073 (2) | 0.0488 (19) | −0.0064 (17) | 0.0318 (17) | −0.0115 (17) |
C4 | 0.054 (2) | 0.077 (2) | 0.0462 (19) | −0.0117 (18) | 0.0282 (17) | 0.0040 (17) |
C5 | 0.057 (2) | 0.0540 (19) | 0.053 (2) | −0.0120 (16) | 0.0234 (17) | 0.0129 (16) |
C6 | 0.0404 (17) | 0.0453 (16) | 0.0400 (16) | −0.0012 (13) | 0.0152 (14) | 0.0047 (13) |
C7 | 0.049 (2) | 0.0495 (18) | 0.072 (2) | −0.0015 (15) | 0.0367 (18) | −0.0122 (16) |
C8 | 0.106 (4) | 0.126 (4) | 0.078 (3) | −0.030 (3) | 0.063 (3) | 0.006 (3) |
C9 | 0.073 (2) | 0.0370 (16) | 0.067 (2) | 0.0041 (16) | 0.0358 (19) | 0.0051 (16) |
C10 | 0.0283 (15) | 0.0459 (16) | 0.0339 (14) | −0.0003 (12) | 0.0119 (12) | −0.0013 (12) |
C11 | 0.0336 (16) | 0.0562 (17) | 0.0378 (16) | 0.0050 (14) | 0.0137 (13) | −0.0015 (14) |
C12 | 0.0307 (17) | 0.081 (2) | 0.0451 (18) | 0.0086 (16) | 0.0150 (14) | −0.0009 (16) |
C13 | 0.0315 (17) | 0.086 (3) | 0.0418 (18) | −0.0104 (16) | 0.0144 (14) | −0.0045 (17) |
C14 | 0.0411 (18) | 0.063 (2) | 0.0443 (17) | −0.0192 (16) | 0.0184 (14) | −0.0052 (15) |
C15 | 0.0355 (16) | 0.0478 (16) | 0.0348 (15) | −0.0065 (13) | 0.0151 (13) | −0.0042 (13) |
C16 | 0.046 (2) | 0.057 (2) | 0.078 (3) | 0.0148 (17) | 0.0246 (18) | −0.0009 (18) |
C17 | 0.041 (2) | 0.129 (4) | 0.070 (3) | −0.025 (2) | 0.023 (2) | −0.012 (2) |
C18 | 0.052 (2) | 0.0406 (16) | 0.065 (2) | −0.0060 (14) | 0.0261 (17) | −0.0058 (15) |
C19 | 0.044 (2) | 0.164 (5) | 0.041 (2) | −0.016 (3) | 0.0063 (17) | 0.015 (2) |
C20 | 0.076 (3) | 0.081 (3) | 0.066 (3) | 0.007 (2) | 0.005 (2) | −0.025 (2) |
C21 | 0.072 (3) | 0.073 (2) | 0.054 (2) | 0.013 (2) | 0.024 (2) | 0.0139 (18) |
P | 0.0392 (5) | 0.0616 (5) | 0.0320 (4) | −0.0034 (4) | 0.0103 (3) | 0.0025 (3) |
Cu1 | 0.0285 (2) | 0.0388 (2) | 0.0322 (2) | 0.00097 (13) | 0.01154 (16) | 0.00234 (13) |
Cu2 | 0.0284 (2) | 0.0384 (2) | 0.0314 (2) | −0.00060 (13) | 0.01196 (15) | 0.00072 (13) |
C1—C2 | 1.415 (4) | C13—C14 | 1.392 (5) |
C1—C6 | 1.414 (4) | C13—C17 | 1.502 (5) |
C1—Cu1 | 2.006 (3) | C14—H14 | 0.9300 |
C1—Cu2 | 2.095 (3) | C14—C15 | 1.385 (4) |
C2—C3 | 1.388 (4) | C15—C18 | 1.507 (4) |
C2—C7 | 1.501 (4) | C16—H16A | 0.9600 |
C3—H3 | 0.9300 | C16—H16B | 0.9600 |
C3—C4 | 1.377 (5) | C16—H16C | 0.9600 |
C4—C5 | 1.385 (5) | C17—H17A | 0.9600 |
C4—C8 | 1.516 (5) | C17—H17B | 0.9600 |
C5—H5 | 0.9300 | C17—H17C | 0.9600 |
C5—C6 | 1.395 (4) | C18—H18A | 0.9600 |
C6—C9 | 1.500 (4) | C18—H18B | 0.9600 |
C7—H7A | 0.9600 | C18—H18C | 0.9600 |
C7—H7B | 0.9600 | C19—H19A | 0.9600 |
C7—H7C | 0.9600 | C19—H19B | 0.9600 |
C8—H8A | 0.9600 | C19—H19C | 0.9600 |
C8—H8B | 0.9600 | C19—P | 1.820 (4) |
C8—H8C | 0.9600 | C20—H20A | 0.9600 |
C9—H9A | 0.9600 | C20—H20B | 0.9600 |
C9—H9B | 0.9600 | C20—H20C | 0.9600 |
C9—H9C | 0.9600 | C20—P | 1.818 (4) |
C10—C11 | 1.419 (4) | C21—H21A | 0.9600 |
C10—C15 | 1.414 (4) | C21—H21B | 0.9600 |
C10—Cu1i | 2.005 (3) | C21—H21C | 0.9600 |
C10—Cu2 | 2.093 (3) | C21—P | 1.808 (4) |
C11—C12 | 1.390 (5) | P—Cu2 | 2.2967 (9) |
C11—C16 | 1.509 (5) | Cu1—Cu1i | 2.5657 (7) |
C12—H12 | 0.9300 | Cu1—Cu2 | 2.4603 (5) |
C12—C13 | 1.386 (5) | Cu1—Cu2i | 2.4625 (5) |
C2—C1—Cu1 | 110.9 (2) | C11—C16—H16B | 109.5 |
C2—C1—Cu2 | 117.0 (2) | C11—C16—H16C | 109.5 |
C6—C1—C2 | 116.7 (3) | H16A—C16—H16B | 109.5 |
C6—C1—Cu1 | 116.0 (2) | H16A—C16—H16C | 109.5 |
C6—C1—Cu2 | 115.2 (2) | H16B—C16—H16C | 109.5 |
Cu1—C1—Cu2 | 73.70 (9) | C13—C17—H17A | 109.5 |
C1—C2—C7 | 119.6 (3) | C13—C17—H17B | 109.5 |
C3—C2—C1 | 120.9 (3) | C13—C17—H17C | 109.5 |
C3—C2—C7 | 119.5 (3) | H17A—C17—H17B | 109.5 |
C2—C3—H3 | 119.0 | H17A—C17—H17C | 109.5 |
C4—C3—C2 | 122.0 (3) | H17B—C17—H17C | 109.5 |
C4—C3—H3 | 119.0 | C15—C18—H18A | 109.5 |
C3—C4—C5 | 117.9 (3) | C15—C18—H18B | 109.5 |
C3—C4—C8 | 120.7 (4) | C15—C18—H18C | 109.5 |
C5—C4—C8 | 121.4 (4) | H18A—C18—H18B | 109.5 |
C4—C5—H5 | 119.1 | H18A—C18—H18C | 109.5 |
C4—C5—C6 | 121.8 (3) | H18B—C18—H18C | 109.5 |
C6—C5—H5 | 119.1 | H19A—C19—H19B | 109.5 |
C1—C6—C9 | 120.7 (3) | H19A—C19—H19C | 109.5 |
C5—C6—C1 | 120.7 (3) | H19B—C19—H19C | 109.5 |
C5—C6—C9 | 118.6 (3) | P—C19—H19A | 109.5 |
C2—C7—H7A | 109.5 | P—C19—H19B | 109.5 |
C2—C7—H7B | 109.5 | P—C19—H19C | 109.5 |
C2—C7—H7C | 109.5 | H20A—C20—H20B | 109.5 |
H7A—C7—H7B | 109.5 | H20A—C20—H20C | 109.5 |
H7A—C7—H7C | 109.5 | H20B—C20—H20C | 109.5 |
H7B—C7—H7C | 109.5 | P—C20—H20A | 109.5 |
C4—C8—H8A | 109.5 | P—C20—H20B | 109.5 |
C4—C8—H8B | 109.5 | P—C20—H20C | 109.5 |
C4—C8—H8C | 109.5 | H21A—C21—H21B | 109.5 |
H8A—C8—H8B | 109.5 | H21A—C21—H21C | 109.5 |
H8A—C8—H8C | 109.5 | H21B—C21—H21C | 109.5 |
H8B—C8—H8C | 109.5 | P—C21—H21A | 109.5 |
C6—C9—H9A | 109.5 | P—C21—H21B | 109.5 |
C6—C9—H9B | 109.5 | P—C21—H21C | 109.5 |
C6—C9—H9C | 109.5 | C19—P—Cu2 | 116.81 (13) |
H9A—C9—H9B | 109.5 | C20—P—C19 | 103.0 (2) |
H9A—C9—H9C | 109.5 | C20—P—Cu2 | 117.98 (14) |
H9B—C9—H9C | 109.5 | C21—P—C19 | 102.3 (2) |
C11—C10—Cu1i | 110.2 (2) | C21—P—C20 | 100.9 (2) |
C11—C10—Cu2 | 119.0 (2) | C21—P—Cu2 | 113.53 (14) |
C15—C10—C11 | 116.5 (3) | C1—Cu1—Cu1i | 110.85 (8) |
C15—C10—Cu1i | 117.9 (2) | C1—Cu1—Cu2 | 54.80 (8) |
C15—C10—Cu2 | 112.5 (2) | C1—Cu1—Cu2i | 161.89 (8) |
Cu1i—C10—Cu2 | 73.85 (9) | C10i—Cu1—C1 | 138.26 (11) |
C10—C11—C16 | 119.9 (3) | C10i—Cu1—Cu1i | 110.89 (8) |
C12—C11—C10 | 120.9 (3) | C10i—Cu1—Cu2i | 54.72 (8) |
C12—C11—C16 | 119.2 (3) | C10i—Cu1—Cu2 | 161.12 (8) |
C11—C12—H12 | 118.9 | Cu2i—Cu1—Cu1i | 58.546 (15) |
C13—C12—C11 | 122.2 (3) | Cu2—Cu1—Cu1i | 58.630 (15) |
C13—C12—H12 | 118.9 | Cu2—Cu1—Cu2i | 117.169 (16) |
C12—C13—C14 | 117.1 (3) | C1—Cu2—P | 97.94 (8) |
C12—C13—C17 | 120.8 (4) | C1—Cu2—Cu1 | 51.50 (8) |
C14—C13—C17 | 122.1 (4) | C1—Cu2—Cu1i | 111.73 (8) |
C13—C14—H14 | 118.8 | C10—Cu2—C1 | 163.04 (11) |
C15—C14—C13 | 122.3 (3) | C10—Cu2—P | 99.02 (8) |
C15—C14—H14 | 118.8 | C10—Cu2—Cu1 | 111.87 (8) |
C10—C15—C18 | 120.6 (3) | C10—Cu2—Cu1i | 51.43 (8) |
C14—C15—C10 | 121.0 (3) | P—Cu2—Cu1i | 149.44 (3) |
C14—C15—C18 | 118.4 (3) | P—Cu2—Cu1 | 147.71 (3) |
C11—C16—H16A | 109.5 | Cu1—Cu2—Cu1i | 62.824 (16) |
C1—C2—C3—C4 | 1.5 (5) | C15—C10—C11—C12 | −1.1 (4) |
C2—C1—C6—C5 | 0.8 (4) | C15—C10—C11—C16 | −179.7 (3) |
C2—C1—C6—C9 | 178.6 (3) | C16—C11—C12—C13 | 177.8 (3) |
C2—C3—C4—C5 | −0.7 (6) | C17—C13—C14—C15 | 179.8 (3) |
C2—C3—C4—C8 | 179.3 (4) | Cu1—C1—C2—C3 | −137.4 (3) |
C3—C4—C5—C6 | −0.2 (5) | Cu1—C1—C2—C7 | 42.3 (3) |
C4—C5—C6—C1 | 0.1 (5) | Cu1—C1—C6—C5 | 134.4 (3) |
C4—C5—C6—C9 | −177.8 (3) | Cu1—C1—C6—C9 | −47.8 (4) |
C6—C1—C2—C3 | −1.6 (4) | Cu1i—C10—C11—C12 | −139.0 (3) |
C6—C1—C2—C7 | 178.2 (3) | Cu1i—C10—C11—C16 | 42.5 (3) |
C7—C2—C3—C4 | −178.2 (3) | Cu1i—C10—C15—C14 | 136.9 (3) |
C8—C4—C5—C6 | 179.9 (4) | Cu1i—C10—C15—C18 | −45.0 (4) |
C10—C11—C12—C13 | −0.7 (5) | Cu2—C1—C2—C3 | 140.8 (3) |
C11—C10—C15—C14 | 2.3 (4) | Cu2—C1—C2—C7 | −39.4 (4) |
C11—C10—C15—C18 | −179.6 (3) | Cu2—C1—C6—C5 | −142.2 (3) |
C11—C12—C13—C14 | 1.4 (5) | Cu2—C1—C6—C9 | 35.6 (4) |
C11—C12—C13—C17 | −178.5 (3) | Cu2—C10—C11—C12 | 138.7 (3) |
C12—C13—C14—C15 | −0.2 (5) | Cu2—C10—C11—C16 | −39.8 (4) |
C13—C14—C15—C10 | −1.8 (5) | Cu2—C10—C15—C14 | −140.1 (2) |
C13—C14—C15—C18 | −179.9 (3) | Cu2—C10—C15—C18 | 38.0 (3) |
Symmetry code: (i) −x+1, y, −z+1/2. |
Funding information
We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).
References
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Eriksson, H. & Håkansson, M. (1997). Organometallics, 16, 4243–4244. CSD CrossRef CAS Web of Science Google Scholar
Gambarotta, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. J. (1983). J. Chem. Soc. Chem. Commun. pp. 1156–1158. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Knotter, D. M., Smeets, W. J. J., Spek, A. L. & Van Koten, G. (1990). J. Am. Chem. Soc. 112, 5895–5896. CrossRef CAS Google Scholar
Kokoli, T., Olsson, S., Björemark, P. M., Persson, S. & Håkansson, M. (2013). J. Organomet. Chem. 724, 17–22. Web of Science CSD CrossRef CAS Google Scholar
Lenders, B., Grove, D. M., Van Koten, G., Smeets, W. J. J., Van der Sluis, P. & Spek, A. L. (1991). Organometallics, 10, 786–791. CrossRef CAS Google Scholar
Leoni, P., Pesquali, M. & Ghilardi, C. A. J. (1983). J. Chem. Soc. Chem. Commun. pp. 240–241. CrossRef Google Scholar
Meyer, E. M., Gambarotta, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1989). Organometallics, 8, 1067–1079. CSD CrossRef CAS Web of Science Google Scholar
Niemeyer, M. (2003). Z. Anorg. Allg. Chem. 629, 1535–1540. CrossRef CAS Google Scholar
Olmstead, M. M. & Power, P. P. (1990). J. Am. Chem. Soc. 112, 8008–8014. CrossRef CAS Google Scholar
Rungthanaphatsophon, P., Barnes, C. L. & Walensky, J. R. (2016). Dalton Trans. 45, 14265–14276. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2016). X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Stollenz, M. & Meyer, F. (2012). Organometallics, 31, 7708–7727. CrossRef CAS Google Scholar
Sung, S., Braddock, D. C., Armstrong, A., Brennan, C., Sale, D., White, A. J. P. & Davies, R. P. (2015). Chem. Eur. J. 21, 7179–7192. CrossRef CAS PubMed Google Scholar
Tsuda, T., Yazawa, T., Watanabe, K., Fujii, T. & Saegusa, T. (1981). J. Org. Chem. 46, 192–194. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.