metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

cyclo-Tetra­kis­(μ-2,4,6-tri­methyl­phenyl-κC1:κC1)bis­­(tri­methyl­phosphane)-1κP,3κP-tetra­copper(I)

crossmark logo

aMartin-Luther-Universität Halle, Naturwissenschaftliche Fakultät II, Institut für Chemie, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 May 2021; accepted 8 June 2021; online 15 June 2021)

The title compound, [Cu4(C9H11)4(C3H9P)2] or [Cu4(Mes)4(PMe3)2] (Mes = 2,4,6-tri­methyl­phenyl), was synthesized from copper(I) mesityl and tri­methyl­phosphane in THF as solvent. The mol­ecular structure of the complex has C2 symmetry and consists of four copper(I) atoms bridged by four μ-mesityl groups, giving an eight-membered puckered {Cu4C4} ring. Additionally, two copper(I) atoms at opposite corners of the Cu4 rhomb are each linked to a terminal PMe3 ligand. The PMe3-bearing copper(I) atoms exhibit a distorted trigonal–planar coordination mode whereas the remaining Cu atoms linked to two mesityl groups are nearly linearly coordinated.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Among CuI organyls, mesitylcopper is one of the most extensively studied compounds. Since its first synthesis in 1981 (Tsuda et al., 1981[Tsuda, T., Yazawa, T., Watanabe, K., Fujii, T. & Saegusa, T. (1981). J. Org. Chem. 46, 192-194.]), mesitylcopper has found widespread application in preparative organometallic chemistry (Stollenz & Meyer, 2012[Stollenz, M. & Meyer, F. (2012). Organometallics, 31, 7708-7727.]). In the solid state, mesitylcopper can exist as a penta­mer (CuMes)5 (Gambarotta et al., 1983[Gambarotta, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. J. (1983). J. Chem. Soc. Chem. Commun. pp. 1156-1158.]; Meyer et al., 1989[Meyer, E. M., Gambarotta, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1989). Organometallics, 8, 1067-1079.]) or as a tetra­mer (CuMes)4 (Eriksson & Håkansson, 1997[Eriksson, H. & Håkansson, M. (1997). Organometallics, 16, 4243-4244.]). On treatment with donor ligands L, mesitylcopper displays different reaction patterns depending on the nature of L. In the case of tetra­hydro­thio­phene (THT), the reaction proceeds under retention of the tetra­nuclear cluster structure to form [Cu4(Mes)4(THT)2] (Gambarotta et al., 1983[Gambarotta, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. J. (1983). J. Chem. Soc. Chem. Commun. pp. 1156-1158.]; Meyer et al., 1989[Meyer, E. M., Gambarotta, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1989). Organometallics, 8, 1067-1079.]). Treatment of mesitylcopper with PPh3 in toluene led to a compound [CuMes(PPh3)2]·C7H8 with a yet unknown crystal structure (Meyer et al., 1989[Meyer, E. M., Gambarotta, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1989). Organometallics, 8, 1067-1079.]). The reaction with dppe (1,2-bis­(di­phenyl­posphino)ethane) causes a degradation of the Cu4Mes4 cluster to give a cuprocuprate [(dppe)2Cu][CuMes2] (Leoni et al., 1983[Leoni, P., Pesquali, M. & Ghilardi, C. A. J. (1983). J. Chem. Soc. Chem. Commun. pp. 240-241.]).

In order to get some insight into the reactivity of mesitylcopper towards sterically less demanding phosphanes, tri­methyl­phosphane was chosen as a ligand. Treatment of a solution of mesitylcopper in THF with PMe3 at room temperature led to the formation of the tetra­nuclear complex [Cu4(Mes)4(PMe3)2] (1).

The mol­ecular structure of (1) comprises four copper(I) atoms that are linked by four μ-mesityl groups to give an eight-membered {Cu4C4} ring (Fig. 1[link]). Additionally, two copper atoms at diametrically opposite positions of the ring are each linked to a terminal PMe3 group. The tetra­nuclear copper complex exhibits crystallographic C2 symmetry with the diad axis passing through the center of the C10—C15 bond. The rhombic arrangement of the copper atoms is nearly planar, with marginal deviations of 0.0087 Å from the mean plane through the four copper atoms. The relatively small Cu⋯Cu distances at the edges of the rhomb [2.4603 (5)–2.4625 (5) Å] suggest cuprophilic inter­actions. The Cu⋯Cu separations between the copper atoms at opposite corners of the rhomb are 4.2013 (5) Å for Cu2⋯Cu2i [symmetry code: (i) –x + 1, y, –z + [{1\over 2}]] and 2.5657 (7) Å for Cu1⋯Cu1i. Similar shaped arrangements of four Cu atoms were observed in the derivatives [Cu4(Mes)4(THT)2], [Cu4(o-Tol)4(SMe2)2] (Lend­ers et al., 1991[Lenders, B., Grove, D. M., Van Koten, G., Smeets, W. J. J., Van der Sluis, P. & Spek, A. L. (1991). Organometallics, 10, 786-791.]) and [Cu4Ph4(SMe2)2] (Olmstead & Power, 1990[Olmstead, M. M. & Power, P. P. (1990). J. Am. Chem. Soc. 112, 8008-8014.]). Complex (1) exhibits two types of differently coordin­ated Cu atoms (Table 1[link]). Cu1 is surrounded by two mesityl groups with Cu—C distances of 2.005 (3) and 2.006 (3) Å. In comparison with Cu4Mes4, the Cu—C distances are slightly enlarged by around 0.014 Å. However, the bending of the C1—Cu1—C10i unit [138.3 (1)°] is clearly more pronounced than in [Cu4Mes4] (164.05–165.70°). Apart from two mesityl groups, Cu2 bears a PMe3 unit as a third ligand. The increased coordination number leads to a further enlargement of the Cu—C distances with values of 2.093 (3) and 2.095 (3) Å. The coordination around Cu2 is planar with a C—Cu—C angle of 163.0 (1)° and C—Cu—P angles of 97.9 (1)° and 99.0 (1)° (sum of the angles around Cu2: 359.9°). Comparison of the bond lengths of compound (1) and related [Cu4Mes4L2] complexes reveals that the ligand PMe3 leads to a larger increase of the Cu—C distances for the tricoordinate copper atoms than other ligands investigated so far. In [Cu4Mes4L2] complexes with L = piperidine, allyl methyl sulfide, 2,5-di­thia­hexane, tetra­hydro­thio­phene and bis­{2-[1-(di­methyl­amino)­eth­yl]phenyl­thiol­ato}magnesium, the mean Cu—C distances for the tricoordinated copper atoms are in the range 2.054–2.064 Å. In the case of the dicoordinated Cu there is no particular effect. Furthermore, there is a slight influence on the C—Cu—C angles for the dicoordinated [138.3 (1)°] and the tricoordinate copper atoms [163.0 (1)°], which are smaller than in the [Cu4Mes4L2] complexes mentioned above (140.3–142.8° and 165.0–170.2°, respectively).

Table 1
Selected geometric parameters (Å, °)

C1—Cu1 2.006 (3) P—Cu2 2.2967 (9)
C1—Cu2 2.095 (3) Cu1—Cu1i 2.5657 (7)
C10—Cu1i 2.005 (3) Cu1—Cu2 2.4603 (5)
C10—Cu2 2.093 (3) Cu1—Cu2i 2.4625 (5)
       
C10i—Cu1—C1 138.26 (11) C10—Cu2—C1 163.04 (11)
C1—Cu2—P 97.94 (8) C10—Cu2—P 99.02 (8)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of [Cu4Mes4(PMe3)4] showing the labeling scheme. Displacement ellipsoids were drawn at the 50% probability level, H atoms are omitted for clarity. [Symmetry code: (i) −x + 1, y, −z + [{1\over 2}]].

The mol­ecular packing reveals no special supra­molecular features (Fig. 2[link]). Most of the contacts are of the van der Waals type with some minor participation of C—H⋯π inter­actions: C17—H17ACg2i with d(H⋯Cg2) = 2.87 Å, C17—H17ACg2 = 167° [Cg2 is the centroid of the C10–C15 ring; symmetry code: (i) −x, y, [{1\over 2}] − z].

[Figure 2]
Figure 2
Partial packing diagram for 1 in a view down the crystallographic b axis. The inter­molecular C—H⋯π inter­actions are shown as gray dashed lines.

Generally, X-ray crystallographic studies on CuI aryl compounds with auxiliary phosphane ligands are relatively rare. According to the CSD database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), there are two compounds of the type [RCu(PR3)] [R = (2,2′′,4,4′′,6,6′′-hexa­methyl-1,1′:3′,1′′-terphenyl-2′-yl), R′ = Ph (Niemeyer, 2003[Niemeyer, M. (2003). Z. Anorg. Allg. Chem. 629, 1535-1540.]), R′= Et (Rungthanaphatsophon et al., 2016[Rungthanaphatsophon, P., Barnes, C. L. & Walensky, J. R. (2016). Dalton Trans. 45, 14265-14276.]], containing nearly linear C—Cu—P units. Typically, this structural motif occurs if further mol­ecular aggregation is prevented by sterically demanding aryl groups. The Cu—C bond lengths in [RCu(PR3)]-type compounds are 1.922 Å for the PPh3 derivative (Niemeyer, 2003[Niemeyer, M. (2003). Z. Anorg. Allg. Chem. 629, 1535-1540.]) and 1.930 Å in the case of the PEt3 co-ligand. The shortening of the Cu—C distances in comparison with [Cu4(Mes)4(PMe3)2] may be attributed to the lower coordination number of the copper atoms. The same effect is also visible for the Cu—P distances of 2.189 Å (Niemeyer, 2003[Niemeyer, M. (2003). Z. Anorg. Allg. Chem. 629, 1535-1540.]) and 2.200 Å (Rungthanaphatsophon et al., 2016[Rungthanaphatsophon, P., Barnes, C. L. & Walensky, J. R. (2016). Dalton Trans. 45, 14265-14276.]), respectively. Furthermore, there is a terphenyl copper complex of the type [RCu(PR3)2] (R′= Et) with two phosphane units attached to copper. In this case, the copper atom exhibits a distorted trigonal–planar coordination with markedly enlarged Cu—C (1.979 Å) and Cu—P (2.250 and 2.256 Å) distances (Rungthanaphatsophon et al., 2016[Rungthanaphatsophon, P., Barnes, C. L. & Walensky, J. R. (2016). Dalton Trans. 45, 14265-14276.]).

The CSD database contains five entries for [Cu4Mes4L2] complexes, with L = THT (Gambarotta et al., 1983[Gambarotta, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. J. (1983). J. Chem. Soc. Chem. Commun. pp. 1156-1158.]; Meyer, et al., 1989[Meyer, E. M., Gambarotta, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1989). Organometallics, 8, 1067-1079.]), piperidine (Sung et al., 2015[Sung, S., Braddock, D. C., Armstrong, A., Brennan, C., Sale, D., White, A. J. P. & Davies, R. P. (2015). Chem. Eur. J. 21, 7179-7192.]), allyl methyl sulfide or 2,5–di­thia­hexane (Kokoli et al., 2013[Kokoli, T., Olsson, S., Björemark, P. M., Persson, S. & Håkansson, M. (2013). J. Organomet. Chem. 724, 17-22.]). There are also some heterometallic Cu4Mes4 complexes with bis­(thio­pheno­lato)magnesium units as ligands (Knotter et al., 1990[Knotter, D. M., Smeets, W. J. J., Spek, A. L. & Van Koten, G. (1990). J. Am. Chem. Soc. 112, 5895-5896.]).

Synthesis and crystallization

A solution of 0.46 g (2.5 mmol) mesitylcopper (Meyer et al., 1989[Meyer, E. M., Gambarotta, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1989). Organometallics, 8, 1067-1079.]) in 10 ml of THF was treated with 0.13 ml (1.25 mmol) of trimethyl phosphane. The reaction mixture was stirred for one h at 293 K. The reaction product [Cu4(Mes)4(PMe3)2] (1) was precipitated by the addition of 30 ml of n-hexane. After filtration, the colorless product was washed with diethyl ether (2 × 5 ml) and dried under vacuum. Single crystals suitable for X-ray analysis were obtained by slow diffusion of n-hexane into a THF solution of the product. Yield: 0.33 g (60%). C42H62Cu4P2 (883.01 g mol−1). Analysis: Cu 29.0% (calc. 28.8%) IR (cm−1) 2997(w), 2963(m), 2901(m), 2855(w), 2842(w), 2802(w), 2705(w), 1589(w), 1637(w), 1376(w), 1448(w), 1418(m), 1362(w), 1302(w), 1286(m), 1257(w), 1215(w), 1164(w), 1024(w), 939(s), 873(w), 844(s), 730(s), 710(w), 670(m), 576(w), 538(m), 484(w), 357(m), 328(m), 301(m), 275(w). 1H NMR (C6D6): δ 0.60 (s br, 18H; PCH3), 2.08 (s, 12H; p-CH3), 2.73 (s, 24H; o-CH3), 6.68 (s, 8H; CH). 13C{1H} NMR (C6D6): δ 15.4 (s br; PCH3), 21.4 (s; p-CH3), 28.7 (s; o-CH3), 125.6 (s; CH), 127.4 (s; CCu2), 134.4 (s; p-CCH3), 150.0 (s; o-CCH3). 31P{1H} NMR (C6D6): δ −44.6 (s br).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cu4(C9H11)4(C3H9P)2]
Mr 883.01
Crystal system, space group Monoclinic, C2/c
Temperature (K) 213
a, b, c (Å) 12.0750 (8), 27.5202 (18), 14.3164 (9)
β (°) 113.668 (5)
V3) 4357.3 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.03
Crystal size (mm) 0.51 × 0.32 × 0.19
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-AREA; Stoe & Cie, 2016[Stoe & Cie (2016). X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.508, 0.758
No. of measured, independent and observed [I > 2σ(I)] reflections 10982, 3839, 3043
Rint 0.050
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.100, 1.04
No. of reflections 3839
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.48, −0.44
Computer programs: (X-AREA; Stoe & Cie, 2016[Stoe & Cie (2016). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: (X-AREA; Stoe & Cie, 2016); cell refinement: (X-AREA; Stoe & Cie, 2016); data reduction: (X-AREA; Stoe & Cie, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

cyclo-Tetrakis(µ-2,4,6-trimethylphenyl-κC1:κC1)bis(trimethylphosphane)-1κP,3κP-tetracopper(I) top
Crystal data top
[Cu4(C9H11)4(C3H9P)2]F(000) = 1840
Mr = 883.01Dx = 1.346 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.0750 (8) ÅCell parameters from 10871 reflections
b = 27.5202 (18) Åθ = 1.5–25.6°
c = 14.3164 (9) ŵ = 2.03 mm1
β = 113.668 (5)°T = 213 K
V = 4357.3 (5) Å3Block, pale yellow
Z = 40.51 × 0.32 × 0.19 mm
Data collection top
Stoe IPDS 2
diffractometer
3043 reflections with I > 2σ(I)
rotation method scansRint = 0.050
Absorption correction: integration
(X-AREA; Stoe & Cie, 2016)
θmax = 25.1°, θmin = 1.5°
Tmin = 0.508, Tmax = 0.758h = 1413
10982 measured reflectionsk = 3231
3839 independent reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0519P)2 + 5.6305P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3839 reflectionsΔρmax = 0.48 e Å3
217 parametersΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5285 (3)0.14472 (10)0.0734 (2)0.0352 (6)
C20.5698 (3)0.11189 (11)0.0184 (2)0.0406 (7)
C30.6133 (3)0.12859 (13)0.0520 (3)0.0535 (9)
H30.6379720.1061310.0882300.064*
C40.6210 (3)0.17740 (14)0.0697 (3)0.0567 (9)
C50.5825 (3)0.21013 (13)0.0155 (3)0.0542 (9)
H50.5872810.2432440.0263990.065*
C60.5369 (3)0.19478 (11)0.0549 (2)0.0422 (7)
C70.5670 (3)0.05827 (11)0.0365 (3)0.0530 (8)
H7A0.5347170.0526140.0868690.064*
H7B0.5168430.0424750.0260480.064*
H7C0.6475340.0454160.0602290.064*
C80.6704 (5)0.1944 (2)0.1462 (4)0.0953 (16)
H8A0.6692550.2292660.1488530.114*
H8B0.7519500.1830730.1258600.114*
H8C0.6212370.1816470.2123910.114*
C90.4929 (4)0.23236 (11)0.1078 (3)0.0564 (9)
H9A0.4642290.2166500.1537140.068*
H9B0.5580680.2539240.1454630.068*
H9C0.4282040.2505770.0580720.068*
C100.2575 (3)0.10497 (11)0.1661 (2)0.0362 (6)
C110.1633 (3)0.13739 (12)0.1595 (2)0.0428 (7)
C120.0481 (3)0.12024 (13)0.1414 (3)0.0525 (8)
H120.0114750.1423600.1382760.063*
C130.0193 (3)0.07129 (14)0.1277 (2)0.0531 (9)
C140.1118 (3)0.03930 (12)0.1352 (2)0.0490 (8)
H140.0949310.0062270.1265720.059*
C150.2281 (3)0.05497 (11)0.1551 (2)0.0390 (6)
C160.1869 (3)0.19137 (12)0.1699 (3)0.0605 (9)
H16A0.2698290.1975120.1821500.073*
H16B0.1351410.2073480.1081260.073*
H16C0.1706400.2036030.2259130.073*
C170.1068 (3)0.05407 (19)0.1057 (3)0.0798 (13)
H17A0.1102770.0193510.0985860.096*
H17B0.1285220.0631890.1608980.096*
H17C0.1622400.0686600.0436440.096*
C180.3221 (3)0.01757 (11)0.1617 (3)0.0517 (8)
H18A0.3979280.0334490.1757200.062*
H18B0.3312560.0050100.2153740.062*
H18C0.2970230.0004600.0980440.062*
C190.0817 (4)0.1129 (2)0.0945 (3)0.0864 (15)
H19A0.0736050.0836450.0611810.104*
H19B0.0529080.1399980.0685660.104*
H19C0.0351690.1099880.1666320.104*
C200.2658 (4)0.07802 (15)0.1540 (3)0.0816 (13)
H20A0.2703850.0460470.1258550.098*
H20B0.2003050.0793210.2200720.098*
H20C0.3403150.0853740.1601200.098*
C210.2352 (4)0.17798 (14)0.1387 (3)0.0667 (10)
H21A0.2217830.2048700.1017930.080*
H21B0.3106110.1823630.1452710.080*
H21C0.1706010.1763100.2052230.080*
P0.24013 (8)0.12219 (3)0.07038 (6)0.0456 (2)
Cu10.58712 (3)0.12496 (2)0.22033 (2)0.03340 (13)
Cu20.37473 (3)0.12434 (2)0.09729 (2)0.03274 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0323 (15)0.0399 (15)0.0349 (14)0.0001 (12)0.0150 (12)0.0030 (12)
C20.0351 (17)0.0472 (16)0.0426 (16)0.0017 (13)0.0190 (14)0.0047 (13)
C30.050 (2)0.073 (2)0.0488 (19)0.0064 (17)0.0318 (17)0.0115 (17)
C40.054 (2)0.077 (2)0.0462 (19)0.0117 (18)0.0282 (17)0.0040 (17)
C50.057 (2)0.0540 (19)0.053 (2)0.0120 (16)0.0234 (17)0.0129 (16)
C60.0404 (17)0.0453 (16)0.0400 (16)0.0012 (13)0.0152 (14)0.0047 (13)
C70.049 (2)0.0495 (18)0.072 (2)0.0015 (15)0.0367 (18)0.0122 (16)
C80.106 (4)0.126 (4)0.078 (3)0.030 (3)0.063 (3)0.006 (3)
C90.073 (2)0.0370 (16)0.067 (2)0.0041 (16)0.0358 (19)0.0051 (16)
C100.0283 (15)0.0459 (16)0.0339 (14)0.0003 (12)0.0119 (12)0.0013 (12)
C110.0336 (16)0.0562 (17)0.0378 (16)0.0050 (14)0.0137 (13)0.0015 (14)
C120.0307 (17)0.081 (2)0.0451 (18)0.0086 (16)0.0150 (14)0.0009 (16)
C130.0315 (17)0.086 (3)0.0418 (18)0.0104 (16)0.0144 (14)0.0045 (17)
C140.0411 (18)0.063 (2)0.0443 (17)0.0192 (16)0.0184 (14)0.0052 (15)
C150.0355 (16)0.0478 (16)0.0348 (15)0.0065 (13)0.0151 (13)0.0042 (13)
C160.046 (2)0.057 (2)0.078 (3)0.0148 (17)0.0246 (18)0.0009 (18)
C170.041 (2)0.129 (4)0.070 (3)0.025 (2)0.023 (2)0.012 (2)
C180.052 (2)0.0406 (16)0.065 (2)0.0060 (14)0.0261 (17)0.0058 (15)
C190.044 (2)0.164 (5)0.041 (2)0.016 (3)0.0063 (17)0.015 (2)
C200.076 (3)0.081 (3)0.066 (3)0.007 (2)0.005 (2)0.025 (2)
C210.072 (3)0.073 (2)0.054 (2)0.013 (2)0.024 (2)0.0139 (18)
P0.0392 (5)0.0616 (5)0.0320 (4)0.0034 (4)0.0103 (3)0.0025 (3)
Cu10.0285 (2)0.0388 (2)0.0322 (2)0.00097 (13)0.01154 (16)0.00234 (13)
Cu20.0284 (2)0.0384 (2)0.0314 (2)0.00060 (13)0.01196 (15)0.00072 (13)
Geometric parameters (Å, º) top
C1—C21.415 (4)C13—C141.392 (5)
C1—C61.414 (4)C13—C171.502 (5)
C1—Cu12.006 (3)C14—H140.9300
C1—Cu22.095 (3)C14—C151.385 (4)
C2—C31.388 (4)C15—C181.507 (4)
C2—C71.501 (4)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C3—C41.377 (5)C16—H16C0.9600
C4—C51.385 (5)C17—H17A0.9600
C4—C81.516 (5)C17—H17B0.9600
C5—H50.9300C17—H17C0.9600
C5—C61.395 (4)C18—H18A0.9600
C6—C91.500 (4)C18—H18B0.9600
C7—H7A0.9600C18—H18C0.9600
C7—H7B0.9600C19—H19A0.9600
C7—H7C0.9600C19—H19B0.9600
C8—H8A0.9600C19—H19C0.9600
C8—H8B0.9600C19—P1.820 (4)
C8—H8C0.9600C20—H20A0.9600
C9—H9A0.9600C20—H20B0.9600
C9—H9B0.9600C20—H20C0.9600
C9—H9C0.9600C20—P1.818 (4)
C10—C111.419 (4)C21—H21A0.9600
C10—C151.414 (4)C21—H21B0.9600
C10—Cu1i2.005 (3)C21—H21C0.9600
C10—Cu22.093 (3)C21—P1.808 (4)
C11—C121.390 (5)P—Cu22.2967 (9)
C11—C161.509 (5)Cu1—Cu1i2.5657 (7)
C12—H120.9300Cu1—Cu22.4603 (5)
C12—C131.386 (5)Cu1—Cu2i2.4625 (5)
C2—C1—Cu1110.9 (2)C11—C16—H16B109.5
C2—C1—Cu2117.0 (2)C11—C16—H16C109.5
C6—C1—C2116.7 (3)H16A—C16—H16B109.5
C6—C1—Cu1116.0 (2)H16A—C16—H16C109.5
C6—C1—Cu2115.2 (2)H16B—C16—H16C109.5
Cu1—C1—Cu273.70 (9)C13—C17—H17A109.5
C1—C2—C7119.6 (3)C13—C17—H17B109.5
C3—C2—C1120.9 (3)C13—C17—H17C109.5
C3—C2—C7119.5 (3)H17A—C17—H17B109.5
C2—C3—H3119.0H17A—C17—H17C109.5
C4—C3—C2122.0 (3)H17B—C17—H17C109.5
C4—C3—H3119.0C15—C18—H18A109.5
C3—C4—C5117.9 (3)C15—C18—H18B109.5
C3—C4—C8120.7 (4)C15—C18—H18C109.5
C5—C4—C8121.4 (4)H18A—C18—H18B109.5
C4—C5—H5119.1H18A—C18—H18C109.5
C4—C5—C6121.8 (3)H18B—C18—H18C109.5
C6—C5—H5119.1H19A—C19—H19B109.5
C1—C6—C9120.7 (3)H19A—C19—H19C109.5
C5—C6—C1120.7 (3)H19B—C19—H19C109.5
C5—C6—C9118.6 (3)P—C19—H19A109.5
C2—C7—H7A109.5P—C19—H19B109.5
C2—C7—H7B109.5P—C19—H19C109.5
C2—C7—H7C109.5H20A—C20—H20B109.5
H7A—C7—H7B109.5H20A—C20—H20C109.5
H7A—C7—H7C109.5H20B—C20—H20C109.5
H7B—C7—H7C109.5P—C20—H20A109.5
C4—C8—H8A109.5P—C20—H20B109.5
C4—C8—H8B109.5P—C20—H20C109.5
C4—C8—H8C109.5H21A—C21—H21B109.5
H8A—C8—H8B109.5H21A—C21—H21C109.5
H8A—C8—H8C109.5H21B—C21—H21C109.5
H8B—C8—H8C109.5P—C21—H21A109.5
C6—C9—H9A109.5P—C21—H21B109.5
C6—C9—H9B109.5P—C21—H21C109.5
C6—C9—H9C109.5C19—P—Cu2116.81 (13)
H9A—C9—H9B109.5C20—P—C19103.0 (2)
H9A—C9—H9C109.5C20—P—Cu2117.98 (14)
H9B—C9—H9C109.5C21—P—C19102.3 (2)
C11—C10—Cu1i110.2 (2)C21—P—C20100.9 (2)
C11—C10—Cu2119.0 (2)C21—P—Cu2113.53 (14)
C15—C10—C11116.5 (3)C1—Cu1—Cu1i110.85 (8)
C15—C10—Cu1i117.9 (2)C1—Cu1—Cu254.80 (8)
C15—C10—Cu2112.5 (2)C1—Cu1—Cu2i161.89 (8)
Cu1i—C10—Cu273.85 (9)C10i—Cu1—C1138.26 (11)
C10—C11—C16119.9 (3)C10i—Cu1—Cu1i110.89 (8)
C12—C11—C10120.9 (3)C10i—Cu1—Cu2i54.72 (8)
C12—C11—C16119.2 (3)C10i—Cu1—Cu2161.12 (8)
C11—C12—H12118.9Cu2i—Cu1—Cu1i58.546 (15)
C13—C12—C11122.2 (3)Cu2—Cu1—Cu1i58.630 (15)
C13—C12—H12118.9Cu2—Cu1—Cu2i117.169 (16)
C12—C13—C14117.1 (3)C1—Cu2—P97.94 (8)
C12—C13—C17120.8 (4)C1—Cu2—Cu151.50 (8)
C14—C13—C17122.1 (4)C1—Cu2—Cu1i111.73 (8)
C13—C14—H14118.8C10—Cu2—C1163.04 (11)
C15—C14—C13122.3 (3)C10—Cu2—P99.02 (8)
C15—C14—H14118.8C10—Cu2—Cu1111.87 (8)
C10—C15—C18120.6 (3)C10—Cu2—Cu1i51.43 (8)
C14—C15—C10121.0 (3)P—Cu2—Cu1i149.44 (3)
C14—C15—C18118.4 (3)P—Cu2—Cu1147.71 (3)
C11—C16—H16A109.5Cu1—Cu2—Cu1i62.824 (16)
C1—C2—C3—C41.5 (5)C15—C10—C11—C121.1 (4)
C2—C1—C6—C50.8 (4)C15—C10—C11—C16179.7 (3)
C2—C1—C6—C9178.6 (3)C16—C11—C12—C13177.8 (3)
C2—C3—C4—C50.7 (6)C17—C13—C14—C15179.8 (3)
C2—C3—C4—C8179.3 (4)Cu1—C1—C2—C3137.4 (3)
C3—C4—C5—C60.2 (5)Cu1—C1—C2—C742.3 (3)
C4—C5—C6—C10.1 (5)Cu1—C1—C6—C5134.4 (3)
C4—C5—C6—C9177.8 (3)Cu1—C1—C6—C947.8 (4)
C6—C1—C2—C31.6 (4)Cu1i—C10—C11—C12139.0 (3)
C6—C1—C2—C7178.2 (3)Cu1i—C10—C11—C1642.5 (3)
C7—C2—C3—C4178.2 (3)Cu1i—C10—C15—C14136.9 (3)
C8—C4—C5—C6179.9 (4)Cu1i—C10—C15—C1845.0 (4)
C10—C11—C12—C130.7 (5)Cu2—C1—C2—C3140.8 (3)
C11—C10—C15—C142.3 (4)Cu2—C1—C2—C739.4 (4)
C11—C10—C15—C18179.6 (3)Cu2—C1—C6—C5142.2 (3)
C11—C12—C13—C141.4 (5)Cu2—C1—C6—C935.6 (4)
C11—C12—C13—C17178.5 (3)Cu2—C10—C11—C12138.7 (3)
C12—C13—C14—C150.2 (5)Cu2—C10—C11—C1639.8 (4)
C13—C14—C15—C101.8 (5)Cu2—C10—C15—C14140.1 (2)
C13—C14—C15—C18179.9 (3)Cu2—C10—C15—C1838.0 (3)
Symmetry code: (i) x+1, y, z+1/2.
 

Funding information

We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEriksson, H. & Håkansson, M. (1997). Organometallics, 16, 4243–4244.  CSD CrossRef CAS Web of Science Google Scholar
First citationGambarotta, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. J. (1983). J. Chem. Soc. Chem. Commun. pp. 1156–1158.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKnotter, D. M., Smeets, W. J. J., Spek, A. L. & Van Koten, G. (1990). J. Am. Chem. Soc. 112, 5895–5896.  CrossRef CAS Google Scholar
First citationKokoli, T., Olsson, S., Björemark, P. M., Persson, S. & Håkansson, M. (2013). J. Organomet. Chem. 724, 17–22.  Web of Science CSD CrossRef CAS Google Scholar
First citationLenders, B., Grove, D. M., Van Koten, G., Smeets, W. J. J., Van der Sluis, P. & Spek, A. L. (1991). Organometallics, 10, 786–791.  CrossRef CAS Google Scholar
First citationLeoni, P., Pesquali, M. & Ghilardi, C. A. J. (1983). J. Chem. Soc. Chem. Commun. pp. 240–241.  CrossRef Google Scholar
First citationMeyer, E. M., Gambarotta, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1989). Organometallics, 8, 1067–1079.  CSD CrossRef CAS Web of Science Google Scholar
First citationNiemeyer, M. (2003). Z. Anorg. Allg. Chem. 629, 1535–1540.  CrossRef CAS Google Scholar
First citationOlmstead, M. M. & Power, P. P. (1990). J. Am. Chem. Soc. 112, 8008–8014.  CrossRef CAS Google Scholar
First citationRungthanaphatsophon, P., Barnes, C. L. & Walensky, J. R. (2016). Dalton Trans. 45, 14265–14276.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2016). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStollenz, M. & Meyer, F. (2012). Organometallics, 31, 7708–7727.  CrossRef CAS Google Scholar
First citationSung, S., Braddock, D. C., Armstrong, A., Brennan, C., Sale, D., White, A. J. P. & Davies, R. P. (2015). Chem. Eur. J. 21, 7179–7192.  CrossRef CAS PubMed Google Scholar
First citationTsuda, T., Yazawa, T., Watanabe, K., Fujii, T. & Saegusa, T. (1981). J. Org. Chem. 46, 192–194.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds