metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­ammonium bis­­(metforminium) di-μ6-oxido-tetra-μ3-oxido-tetra­deca-μ2-oxido-octa­oxidodeca­vanadium(V) hexa­hydrate

crossmark logo

aInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, and bFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 10 June 2021; accepted 18 June 2021; online 25 June 2021)

The title compound, (NH4)4(C4H12N5)2[V10O28]·6H2O, crystallizes with the deca­vanadate anion placed on an inversion centre in space group P[\overline{1}]. This anion is surrounded by a first shell of ammonium cations and water mol­ecules, forming efficient N—H⋯O and O—H⋯O hydrogen bonds. A second shell includes metforminium monocations with a twisted geometry, also forming numerous inter­molecular hydrogen bonds. The complex three-dimensional network of non-covalent inter­actions affords a crystal structure in which the cations and anions are densely packed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Metformin hydro­chloride (Metf·HCl: 1,1-di­methyl­biguanide hydro­chloride; Niranjana Devi et al., 2017[Niranjana Devi, R., Jelsch, C., Israel, S., Aubert, E., Anzline, C. & Hosamani, A. A. (2017). Acta Cryst. B73, 10-22.]) is the first-line therapy for type 2 diabetes. On the other hand, some anionic or cationic vanadium species, such as vanadate and vanadyl, have also been shown to be useful in the treatment of human diabetes (Domingo & Gómez, 2016[Domingo, J. L. & Gómez, M. (2016). Food Chem. Toxicol. 95, 137-141.]). Based on this background, several groups belonging to the Autonomous University of Puebla are involved in the synthesis of compounds including both metformin and oxidovanadate derivatives, with the hope of achieving synergistic effects (Sánchez-Lombardo et al., 2014[Sánchez-Lombardo, I., Sánchez-Lara, E., Pérez-Benítez, A., Mendoza, Á., Bernès, S. & González-Vergara, E. (2014). Eur. J. Inorg. Chem. pp. 4581-4588.]). The associated chemical crystallography is rather complex, because due to its basic character metformin can be found in various states of protonation (neutral, cationic or dicationic forms), while the degree of condensation for the vanadate moiety strongly depends on the pH of the reaction medium. Finally, most of these compounds are crystallized with a number of water mol­ecules, which is unpredictable. The compound reported here includes one (V10O28)6− anion, four ammonium cations, two metforminium(1+) cations HMetf+, and six water mol­ecules (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular entities in the structure of the title compound, with displacement ellipsoids for non-H atoms at the 50% probability level. Cations and water mol­ecules in the asymmetric unit are labelled.

The (V10O28)6− anion is situated on an inversion centre in space group P[\overline{1}], and approaches the expected D2h symmetry, which has been extensively reported (Bošnjaković-Pavlović et al., 2011[Bošnjaković-Pavlović, N., Prévost, J. & Spasojević-de Biré, A. (2011). Cryst. Growth Des. 11, 3778-3789.]). The negative charges are balanced by four NH4+ and two HMetf+ cations. The high resolution of the measured diffraction data (dmin = 0.56 Å) unequivocally establishes that there is no protonation of the deca­vanadate. The HMetf+ monocation has its charge located mainly on N2. Furthermore, this cation is characterized by a dihedral angle of 54.85 (5)° between planes C2–C4/N3–N5 and C1/N1–N3. This twisted geometry is observed in several other compounds of metforminium(1+). Indeed, metformin and its cations HMetf+ and H2Metf2+ are highly flexible entities: the twist angle for 93 structures recovered from the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) varies from 1 to 85°.

In the crystal structure, anions and cations are well distributed, in such a way that the repulsive Coulombic forces between the highly charged anions are minimized. The deca­vanadate anion, the cations, and the crystal water mol­ecules engage in an extensive network of hydrogen bonds (Table 1[link]). All N—H and O—H groups present in the asymmetric unit serve as donor groups. The two strongest hydrogen bonds are formed between the anion and one ammonium [N6—H6A⋯O8v; symmetry code: (v) −x + 1, −y + 2, −z + 1], as well as between the anion and a water mol­ecule (O17—H17A⋯O13; Fig. 2[link]). As a consequence of the large number of hydrogen bonds, ions and mol­ecules are packed in an efficient way (Fig. 3[link]), as reflected in the quite high Kitaigorodskii packing index of 0.743 (Kitaigorodskii, 1965[Kitaigorodskii, A. I. (1965). Acta Cryst. 18, 585-590.]; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). The mean atomic volume for non-H atoms is 16.5 Å3 for the title compound, similar to those calculated for previously reported structures in this series (Sánchez-Lombardo et al., 2014[Sánchez-Lombardo, I., Sánchez-Lara, E., Pérez-Benítez, A., Mendoza, Á., Bernès, S. & González-Vergara, E. (2014). Eur. J. Inorg. Chem. pp. 4581-4588.]). This indicates that in this family of ionic compounds, the lattice energy can be optimized through the inclusion of a suitable number of water mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O10i 0.818 (19) 2.080 (19) 2.8981 (12) 178 (2)
N1—H1B⋯O6 0.76 (2) 2.71 (2) 3.4507 (15) 163.9 (19)
N2—H2A⋯O12ii 0.854 (18) 2.112 (18) 2.9457 (12) 165.4 (17)
N2—H2B⋯O15iii 0.849 (19) 2.072 (19) 2.9164 (16) 172.9 (17)
N4—H4D⋯O9iii 0.912 (19) 2.423 (19) 3.2993 (14) 161.1 (16)
N4—H4E⋯O16iv 0.736 (19) 2.269 (19) 2.9686 (16) 159.2 (19)
N6—H6A⋯O8v 0.882 (19) 1.865 (19) 2.7463 (13) 176.7 (17)
N6—H6B⋯O17i 0.874 (18) 1.921 (19) 2.7871 (13) 170.7 (17)
N6—H6C⋯O7 0.808 (19) 1.990 (19) 2.7922 (11) 172.2 (18)
N6—H6D⋯O2i 0.873 (19) 2.074 (19) 2.8541 (13) 148.3 (16)
N7—H7A⋯O16 0.835 (18) 2.083 (18) 2.8810 (14) 159.8 (17)
N7—H7B⋯O4vi 0.880 (18) 2.056 (18) 2.8627 (12) 152.1 (16)
N7—H7C⋯O1vii 0.843 (19) 2.072 (19) 2.9050 (12) 169.7 (17)
N7—H7D⋯O11viii 0.873 (18) 1.928 (18) 2.7957 (12) 172.1 (16)
O15—H15A⋯O12 0.81 (2) 2.38 (2) 3.1833 (16) 171 (2)
O15—H15B⋯O17ix 0.78 (2) 2.03 (2) 2.8046 (18) 177 (3)
O16—H16A⋯O15vi 0.80 (2) 2.05 (2) 2.8477 (18) 176 (2)
O16—H16B⋯O5x 0.83 (2) 2.23 (2) 2.8937 (13) 137 (2)
O17—H17A⋯O13 0.85 (1) 1.87 (2) 2.7130 (12) 172 (2)
O17—H17B⋯N3 0.82 (2) 2.07 (2) 2.8830 (15) 170 (2)
Symmetry codes: (i) [-x, -y+2, -z+1]; (ii) [x-1, y+1, z]; (iii) [-x+1, -y+2, -z]; (iv) x, y+1, z; (v) [-x+1, -y+2, -z+1]; (vi) [x-1, y, z]; (vii) [x, y-1, z]; (viii) [-x+1, -y+1, -z+1]; (ix) x+1, y, z; (x) [-x+1, -y+1, -z].
[Figure 2]
Figure 2
Main inter­actions between the (V10O28)6− anion (polyhedral representation) and the cations and water mol­ecules. The strongest hydrogen bonds are represented as magenta dashed bonds (entries 7 and 19 in Table 1[link]), while secondary hydrogen bonds are represented with thin black dashed lines.
[Figure 3]
Figure 3
Part of the crystal structure of the title salt, viewed along [010]. Colour code: pale-blue polyhedra: (V10O28)6− anions; orange: ammonium; blue: metforminium(1+); red: water.

Synthesis and crystallization

Good-quality single crystals of the title compound were obtained during the reaction between ammonium metavanadate (NH4VO3, 1.117 g, 9.5 mmol; Pérez-Benítez & Bernès, 2018[Pérez-Benítez, A. & Bernès, S. (2018). IUCrData, 3, x181080.]) and metformin hydro­chloride (Metf·HCl, 0.497 g, 3 mmol; Niranjana Devi et al., 2017[Niranjana Devi, R., Jelsch, C., Israel, S., Aubert, E., Anzline, C. & Hosamani, A. A. (2017). Acta Cryst. B73, 10-22.]) in 100 ml of distilled water and 6 ml of acetic acid 5% v/v. In a typical procedure, the ammonium metavanadate was dissolved by heating in a water bath and then metformin hydro­chloride was added and stirred until its dissolution. The water bath was removed and once the mixture cooled down to room temperature, the acetic acid was added. The homogeneous solution was slowly evaporated during several days at ambient conditions, which allowed the separation of reaction by-products by fractional crystallization, being the main products [H2Metf]3(V10O28)·8H2O and [H2Metf]2[NH4]2(V10O28)·10H2O (CCDC-993916 and 993917, with yields of ca 53 and 24%, respectively; Sánchez-Lombardo et al., 2014[Sánchez-Lombardo, I., Sánchez-Lara, E., Pérez-Benítez, A., Mendoza, Á., Bernès, S. & González-Vergara, E. (2014). Eur. J. Inorg. Chem. pp. 4581-4588.]) and the title compound, [HMetf]2[NH4]4(V10O28)·6H2O (ca. 5% yield). These yields are poorly reproducible, and no powder diffraction was performed on the solid phases obtained by fractional crystallization to check their purity. Therefore, we cannot rule out the presence of other crystallized compounds in this reaction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula (NH4)4(C4H12N5)2[V10O28]·6H2O
Mr 1398.03
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 9.7965 (2), 10.1010 (2), 13.0974 (3)
α, β, γ (°) 81.081 (2), 70.906 (2), 63.321 (2)
V3) 1094.30 (5)
Z 1
Radiation type Ag Kα, λ = 0.56083 Å
μ (mm−1) 1.10
Crystal size (mm) 0.26 × 0.26 × 0.19
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2020[Stoe & Cie (2020). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.426, 0.907
No. of measured, independent and observed [I > 2σ(I)] reflections 94693, 11269, 9224
Rint 0.030
(sin θ/λ)max−1) 0.851
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.078, 1.06
No. of reflections 11269
No. of parameters 361
No. of restraints 9
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.95
Computer programs: X-AREA (Stoe & Cie, 2020[Stoe & Cie (2020). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2020); cell refinement: X-AREA (Stoe & Cie, 2020); data reduction: X-AREA (Stoe & Cie, 2020); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetraammonium bis(metforminium) di-µ6-oxido-tetra-µ3-oxido-tetradeca-µ2-oxido-octaoxidodecavanadium(V) hexahydrate top
Crystal data top
(NH4)4(C4H12N5)2[V10O28]·6H2OZ = 1
Mr = 1398.03F(000) = 700
Triclinic, P1Dx = 2.121 Mg m3
a = 9.7965 (2) ÅAg Kα radiation, λ = 0.56083 Å
b = 10.1010 (2) ÅCell parameters from 131899 reflections
c = 13.0974 (3) Åθ = 2.2–33.7°
α = 81.081 (2)°µ = 1.10 mm1
β = 70.906 (2)°T = 295 K
γ = 63.321 (2)°Tetrahedron, gold
V = 1094.30 (5) Å30.26 × 0.26 × 0.19 mm
Data collection top
Stoe Stadivari
diffractometer
11269 independent reflections
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source9224 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.030
Detector resolution: 5.81 pixels mm-1θmax = 28.5°, θmin = 2.2°
ω scansh = 1616
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2020)
k = 1717
Tmin = 0.426, Tmax = 0.907l = 2221
94693 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.0305P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
11269 reflectionsΔρmax = 0.47 e Å3
361 parametersΔρmin = 0.95 e Å3
9 restraintsExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0048 (9)
Primary atom site location: dual
Special details top

Refinement. All H atoms, with exception of the methyl groups in the HMetf+ cation, were refined with free coordinates and isotropic displacement parameters calculated as Uiso(H) = 1.2 or 1.5×Ueq(carrier atom). The geometry for the three water molecules was restrained, with target bond lengths O—H = 0.85 (2) Å and H···H separations of 1.34 (2) Å. Methyl H atoms were included using a riding model with Uiso(H) = 1.5×Ueq(carrier atom).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.39655 (2)0.84689 (2)0.38300 (2)0.02229 (4)
V20.22257 (2)0.64431 (2)0.44890 (2)0.02011 (3)
V30.44412 (2)0.63696 (2)0.58069 (2)0.01697 (3)
V40.72567 (2)0.57810 (2)0.36227 (2)0.01973 (3)
V50.50248 (2)0.59053 (2)0.23433 (2)0.02221 (4)
O10.33595 (10)1.02437 (8)0.37493 (7)0.03200 (16)
O20.04039 (9)0.66456 (10)0.48094 (7)0.02993 (15)
O30.43043 (9)0.62643 (8)0.71288 (5)0.02402 (13)
O40.90793 (9)0.55609 (9)0.33301 (7)0.02955 (15)
O50.52329 (11)0.57067 (11)0.11007 (6)0.03517 (18)
O60.20204 (8)0.83200 (8)0.43086 (6)0.02483 (13)
O70.38555 (9)0.81825 (7)0.54386 (6)0.02400 (13)
O80.61636 (8)0.77845 (7)0.36354 (6)0.02343 (12)
O90.43593 (9)0.79045 (8)0.24684 (6)0.02459 (13)
O100.24430 (7)0.63107 (7)0.59608 (5)0.01873 (11)
O110.66939 (8)0.57599 (7)0.52504 (5)0.01927 (11)
O120.71111 (8)0.55367 (8)0.23235 (5)0.02325 (12)
O130.29624 (8)0.60661 (8)0.30286 (5)0.02357 (12)
O140.52088 (7)0.40515 (7)0.58287 (5)0.01779 (10)
C10.06586 (13)1.15154 (12)0.16742 (9)0.03002 (19)
C20.26523 (13)1.04792 (11)0.00500 (8)0.02878 (18)
C30.2491 (2)0.8359 (2)0.04832 (12)0.0567 (5)
H3A0.3019980.7593080.0028110.085*
H3B0.2689090.7940330.1155180.085*
H3C0.1363120.8805140.0129780.085*
C40.42436 (17)0.94509 (16)0.17351 (10)0.0408 (3)
H4A0.3772481.0321080.2142390.061*
H4B0.4536530.8584450.2121800.061*
H4C0.5178010.9431430.1631040.061*
N10.02667 (15)1.12792 (15)0.27388 (9)0.0428 (3)
H1A0.050 (2)1.197 (2)0.3093 (15)0.051*
H1B0.078 (2)1.055 (2)0.2967 (16)0.051*
N20.00914 (13)1.28620 (12)0.13003 (9)0.0373 (2)
H2A0.089 (2)1.355 (2)0.1705 (14)0.045*
H2B0.000 (2)1.299 (2)0.0630 (15)0.045*
N30.17233 (12)1.03435 (10)0.10395 (7)0.03244 (19)
N40.32345 (14)1.14908 (13)0.02036 (10)0.0388 (2)
H4D0.381 (2)1.154 (2)0.0901 (15)0.047*
H4E0.301 (2)1.201 (2)0.0224 (15)0.047*
N50.30971 (13)0.94745 (11)0.06891 (7)0.03350 (19)
N60.18645 (12)1.10848 (11)0.61533 (8)0.02925 (17)
H6A0.252 (2)1.143 (2)0.6196 (14)0.044*
H6B0.110 (2)1.130 (2)0.6764 (15)0.044*
H6C0.238 (2)1.022 (2)0.5989 (14)0.044*
H6D0.143 (2)1.156 (2)0.5644 (15)0.044*
N70.22214 (11)0.34134 (10)0.33362 (8)0.02681 (15)
H7A0.258 (2)0.3611 (19)0.2689 (15)0.040*
H7B0.117 (2)0.3902 (19)0.3535 (13)0.040*
H7C0.247 (2)0.250 (2)0.3412 (14)0.040*
H7D0.265 (2)0.3602 (19)0.3754 (14)0.040*
O150.99461 (17)0.64089 (15)0.09649 (9)0.0543 (3)
H15A0.924 (2)0.621 (3)0.1371 (18)0.081*
H15B1.021 (3)0.683 (3)0.1260 (19)0.081*
O160.28519 (14)0.39198 (12)0.10371 (8)0.0451 (2)
H16A0.204 (2)0.464 (2)0.1036 (18)0.068*
H16B0.365 (2)0.405 (2)0.0658 (17)0.068*
O170.07918 (11)0.80032 (11)0.20277 (7)0.03818 (19)
H17A0.152 (2)0.7348 (19)0.2284 (15)0.057*
H17B0.114 (2)0.8621 (19)0.1780 (16)0.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.02379 (7)0.01451 (6)0.02375 (7)0.00547 (5)0.00600 (5)0.00227 (4)
V20.01597 (6)0.02161 (7)0.02045 (6)0.00631 (5)0.00604 (5)0.00221 (5)
V30.01774 (6)0.01375 (6)0.01733 (6)0.00493 (4)0.00428 (4)0.00203 (4)
V40.01655 (6)0.01890 (6)0.02113 (6)0.00737 (5)0.00352 (5)0.00193 (4)
V50.02394 (7)0.02343 (7)0.01623 (6)0.00812 (5)0.00540 (5)0.00068 (5)
O10.0359 (4)0.0162 (3)0.0350 (4)0.0073 (3)0.0061 (3)0.0027 (2)
O20.0196 (3)0.0363 (4)0.0325 (4)0.0114 (3)0.0096 (3)0.0059 (3)
O30.0284 (3)0.0222 (3)0.0195 (3)0.0088 (2)0.0060 (2)0.0034 (2)
O40.0198 (3)0.0333 (4)0.0332 (4)0.0122 (3)0.0063 (3)0.0058 (3)
O50.0416 (4)0.0430 (5)0.0189 (3)0.0167 (4)0.0084 (3)0.0002 (3)
O60.0202 (3)0.0191 (3)0.0278 (3)0.0038 (2)0.0057 (2)0.0022 (2)
O70.0275 (3)0.0148 (3)0.0256 (3)0.0063 (2)0.0059 (2)0.0018 (2)
O80.0232 (3)0.0187 (3)0.0275 (3)0.0099 (2)0.0063 (2)0.0027 (2)
O90.0254 (3)0.0218 (3)0.0227 (3)0.0078 (2)0.0077 (2)0.0043 (2)
O100.0164 (2)0.0165 (2)0.0186 (2)0.00421 (19)0.00313 (19)0.00076 (18)
O110.0192 (3)0.0188 (3)0.0201 (3)0.0082 (2)0.0060 (2)0.00041 (19)
O120.0210 (3)0.0247 (3)0.0184 (3)0.0073 (2)0.0024 (2)0.0001 (2)
O130.0234 (3)0.0266 (3)0.0214 (3)0.0103 (2)0.0088 (2)0.0018 (2)
O140.0169 (2)0.0156 (2)0.0186 (2)0.0056 (2)0.00443 (19)0.00012 (18)
C10.0266 (4)0.0305 (5)0.0278 (4)0.0078 (4)0.0042 (3)0.0085 (3)
C20.0271 (4)0.0238 (4)0.0266 (4)0.0051 (3)0.0037 (3)0.0035 (3)
C30.0736 (11)0.0555 (9)0.0407 (7)0.0432 (8)0.0149 (7)0.0195 (6)
C40.0440 (6)0.0412 (6)0.0261 (5)0.0177 (5)0.0048 (4)0.0050 (4)
N10.0390 (5)0.0437 (6)0.0251 (4)0.0017 (5)0.0030 (4)0.0092 (4)
N20.0353 (5)0.0281 (4)0.0343 (5)0.0034 (4)0.0039 (4)0.0079 (3)
N30.0342 (4)0.0260 (4)0.0234 (4)0.0058 (3)0.0004 (3)0.0048 (3)
N40.0403 (5)0.0346 (5)0.0367 (5)0.0174 (4)0.0002 (4)0.0080 (4)
N50.0390 (5)0.0300 (4)0.0237 (4)0.0148 (4)0.0032 (3)0.0059 (3)
N60.0284 (4)0.0227 (4)0.0323 (4)0.0077 (3)0.0070 (3)0.0029 (3)
N70.0254 (4)0.0237 (4)0.0315 (4)0.0102 (3)0.0087 (3)0.0008 (3)
O150.0633 (7)0.0591 (7)0.0337 (5)0.0251 (6)0.0099 (5)0.0053 (4)
O160.0503 (6)0.0430 (5)0.0348 (4)0.0206 (4)0.0042 (4)0.0031 (4)
O170.0328 (4)0.0406 (5)0.0318 (4)0.0107 (4)0.0091 (3)0.0082 (3)
Geometric parameters (Å, º) top
V1—O11.6137 (7)V5—O14i2.3350 (6)
V1—O91.8226 (7)C1—N21.3271 (16)
V1—O61.8689 (8)C1—N11.3332 (15)
V1—O81.8811 (7)C1—N31.3451 (13)
V1—O72.0554 (7)C2—N41.3318 (16)
V1—O14i2.3173 (6)C2—N51.3374 (13)
V1—V53.0663 (2)C2—N31.3460 (14)
V1—V23.0755 (2)C3—N51.4474 (18)
V1—V33.1011 (2)C3—H3A0.9600
V1—V43.1042 (2)C3—H3B0.9600
V2—O21.6161 (8)C3—H3C0.9600
V2—O61.8001 (7)C4—N51.4554 (14)
V2—O131.8440 (7)C4—H4A0.9600
V2—O101.9854 (7)C4—H4B0.9600
V2—O11i2.0185 (7)C4—H4C0.9600
V2—O14i2.2343 (6)N1—H1A0.818 (19)
V2—V4i3.0815 (2)N1—H1B0.76 (2)
V3—O31.6825 (7)N2—H2A0.854 (18)
V3—O71.6968 (7)N2—H2B0.849 (19)
V3—O111.9098 (7)N4—H4D0.912 (19)
V3—O101.9284 (7)N4—H4E0.736 (19)
V3—O142.1121 (6)N6—H6A0.882 (19)
V3—O14i2.1349 (6)N6—H6B0.874 (18)
V3—V5i3.0737 (2)N6—H6C0.808 (19)
V4—O41.6145 (7)N6—H6D0.873 (19)
V4—O81.8153 (7)N7—H7A0.835 (18)
V4—O121.8158 (7)N7—H7B0.880 (18)
V4—O10i2.0094 (7)N7—H7C0.843 (19)
V4—O112.0192 (6)N7—H7D0.873 (18)
V4—O14i2.2168 (6)O15—H15A0.812 (16)
V4—V53.1128 (2)O15—H15B0.778 (16)
V5—O51.6055 (8)O16—H16A0.804 (15)
V5—O91.8385 (7)O16—H16B0.830 (15)
V5—O131.8649 (7)O17—H17A0.850 (14)
V5—O121.8978 (7)O17—H17B0.820 (15)
V5—O3i2.0607 (7)
O1—V1—O9104.84 (4)O12—V4—V184.23 (2)
O1—V1—O6101.04 (4)O10i—V4—V1124.447 (19)
O9—V1—O692.16 (3)O11—V4—V187.655 (19)
O1—V1—O8102.51 (4)O14i—V4—V148.162 (16)
O9—V1—O891.10 (3)V2i—V4—V1120.184 (6)
O6—V1—O8154.52 (3)O4—V4—V5136.16 (3)
O1—V1—O798.71 (4)O8—V4—V584.21 (2)
O9—V1—O7156.44 (3)O12—V4—V533.88 (2)
O6—V1—O783.85 (3)O10i—V4—V587.47 (2)
O8—V1—O783.12 (3)O11—V4—V5124.45 (2)
O1—V1—O14i172.87 (4)O14i—V4—V548.462 (16)
O9—V1—O14i82.28 (3)V2i—V4—V5119.451 (6)
O6—V1—O14i78.35 (3)V1—V4—V559.105 (6)
O8—V1—O14i77.07 (3)O5—V5—O9104.08 (4)
O7—V1—O14i74.17 (2)O5—V5—O13102.38 (4)
O1—V1—V5138.11 (3)O9—V5—O1391.70 (3)
O9—V1—V533.28 (2)O5—V5—O12102.89 (4)
O6—V1—V584.42 (2)O9—V5—O1290.47 (3)
O8—V1—V584.55 (2)O13—V5—O12153.29 (3)
O7—V1—V5123.18 (2)O5—V5—O3i100.16 (4)
O14i—V1—V549.017 (16)O9—V5—O3i155.75 (3)
O1—V1—V2133.39 (3)O13—V5—O3i83.71 (3)
O9—V1—V283.40 (3)O12—V5—O3i83.45 (3)
O6—V1—V232.35 (2)O5—V5—O14i174.46 (4)
O8—V1—V2123.42 (2)O9—V5—O14i81.46 (3)
O7—V1—V280.88 (2)O13—V5—O14i77.01 (3)
O14i—V1—V246.362 (16)O12—V5—O14i77.00 (3)
V5—V1—V261.310 (6)O3i—V5—O14i74.30 (2)
O1—V1—V3129.40 (3)O5—V5—V1137.01 (4)
O9—V1—V3125.76 (2)O9—V5—V132.96 (2)
O6—V1—V379.55 (2)O13—V5—V183.39 (2)
O8—V1—V378.07 (2)O12—V5—V184.06 (2)
O7—V1—V330.690 (19)O3i—V5—V1122.825 (19)
O14i—V1—V343.479 (15)O14i—V5—V148.521 (15)
V5—V1—V392.496 (6)O5—V5—V3i131.12 (4)
V2—V1—V361.458 (5)O9—V5—V3i124.81 (2)
O1—V1—V4134.70 (3)O13—V5—V3i78.32 (2)
O9—V1—V481.46 (2)O12—V5—V3i78.62 (2)
O6—V1—V4123.80 (2)O3i—V5—V3i30.960 (18)
O8—V1—V432.23 (2)O14i—V5—V3i43.346 (15)
O7—V1—V481.57 (2)V1—V5—V3i91.865 (6)
O14i—V1—V445.455 (15)O5—V5—V4135.05 (4)
V5—V1—V460.588 (6)O9—V5—V480.99 (2)
V2—V1—V491.644 (6)O13—V5—V4122.29 (2)
V3—V1—V461.402 (5)O12—V5—V432.23 (2)
O2—V2—O6103.19 (4)O3i—V5—V481.44 (2)
O2—V2—O13102.93 (4)O14i—V5—V445.285 (16)
O6—V2—O1394.22 (3)V1—V5—V460.308 (5)
O2—V2—O1099.24 (4)V3i—V5—V461.383 (5)
O6—V2—O1092.09 (3)V3—O3—V5i109.98 (3)
O13—V2—O10154.87 (3)V2—O6—V1113.89 (4)
O2—V2—O11i98.97 (4)V3—O7—V1111.12 (3)
O6—V2—O11i156.53 (3)V4—O8—V1114.22 (4)
O13—V2—O11i88.24 (3)V1—O9—V5113.76 (4)
O10—V2—O11i76.68 (3)V3—O10—V2107.49 (3)
O2—V2—O14i173.66 (3)V3—O10—V4i106.61 (3)
O6—V2—O14i82.01 (3)V2—O10—V4i100.95 (3)
O13—V2—O14i80.07 (3)V3—O11—V2i107.71 (3)
O10—V2—O14i76.76 (3)V3—O11—V4107.45 (3)
O11i—V2—O14i75.42 (3)V2i—O11—V499.49 (3)
O2—V2—V1136.83 (3)V4—O12—V5113.89 (3)
O6—V2—V133.75 (2)V2—O13—V5115.19 (4)
O13—V2—V183.44 (2)V3—O14—V3i102.04 (3)
O10—V2—V188.47 (2)V3—O14—V4i93.65 (2)
O11i—V2—V1124.06 (2)V3i—O14—V4i93.42 (2)
O14i—V2—V148.643 (16)V3—O14—V2i93.73 (2)
O2—V2—V4i89.10 (3)V3i—O14—V2i92.47 (2)
O6—V2—V4i131.89 (3)V4i—O14—V2i169.39 (3)
O13—V2—V4i128.50 (2)V3—O14—V1i169.74 (3)
O10—V2—V4i39.806 (19)V3i—O14—V1i88.20 (2)
O11i—V2—V4i40.263 (18)V4i—O14—V1i86.38 (2)
O14i—V2—V4i84.694 (17)V2i—O14—V1i84.99 (2)
V1—V2—V4i120.428 (6)V3—O14—V5i87.30 (2)
O3—V3—O7107.11 (4)V3i—O14—V5i170.66 (3)
O3—V3—O1197.73 (3)V4i—O14—V5i86.25 (2)
O7—V3—O1197.83 (3)V2i—O14—V5i86.50 (2)
O3—V3—O1097.47 (3)V1i—O14—V5i82.46 (2)
O7—V3—O1096.04 (3)N2—C1—N1118.43 (10)
O11—V3—O10155.39 (3)N2—C1—N3123.86 (10)
O3—V3—O1488.41 (3)N1—C1—N3117.57 (11)
O7—V3—O14164.44 (3)N4—C2—N5118.72 (10)
O11—V3—O1480.64 (3)N4—C2—N3123.49 (10)
O10—V3—O1480.55 (3)N5—C2—N3117.62 (10)
O3—V3—O14i166.38 (3)N5—C3—H3A109.5
O7—V3—O14i86.51 (3)N5—C3—H3B109.5
O11—V3—O14i80.29 (3)H3A—C3—H3B109.5
O10—V3—O14i80.39 (3)N5—C3—H3C109.5
O14—V3—O14i77.96 (3)H3A—C3—H3C109.5
O3—V3—V5i39.06 (2)H3B—C3—H3C109.5
O7—V3—V5i146.17 (2)N5—C4—H4A109.5
O11—V3—V5i89.66 (2)N5—C4—H4B109.5
O10—V3—V5i90.04 (2)H4A—C4—H4B109.5
O14—V3—V5i49.358 (17)N5—C4—H4C109.5
O14i—V3—V5i127.319 (17)H4A—C4—H4C109.5
O3—V3—V1145.30 (3)H4B—C4—H4C109.5
O7—V3—V138.19 (2)C1—N1—H1A115.0 (14)
O11—V3—V189.69 (2)C1—N1—H1B119.0 (15)
O10—V3—V188.75 (2)H1A—N1—H1B126 (2)
O14—V3—V1126.279 (18)C1—N2—H2A122.6 (12)
O14i—V3—V148.321 (17)C1—N2—H2B119.7 (12)
V5i—V3—V1175.629 (6)H2A—N2—H2B114.9 (17)
O4—V4—O8102.13 (4)C1—N3—C2122.59 (10)
O4—V4—O12102.49 (4)C2—N4—H4D118.1 (12)
O8—V4—O1295.66 (3)C2—N4—H4E117.1 (15)
O4—V4—O10i99.74 (4)H4D—N4—H4E124.7 (19)
O8—V4—O10i155.62 (3)C2—N5—C3122.03 (10)
O12—V4—O10i89.99 (3)C2—N5—C4120.63 (11)
O4—V4—O1199.12 (4)C3—N5—C4117.34 (10)
O8—V4—O1189.83 (3)H6A—N6—H6B106.4 (16)
O12—V4—O11156.02 (3)H6A—N6—H6C108.3 (17)
O10i—V4—O1176.13 (3)H6B—N6—H6C117.5 (17)
O4—V4—O14i174.28 (3)H6A—N6—H6D109.4 (17)
O8—V4—O14i81.05 (3)H6B—N6—H6D107.1 (16)
O12—V4—O14i81.78 (3)H6C—N6—H6D108.0 (17)
O10i—V4—O14i76.30 (2)H7A—N7—H7B109.0 (16)
O11—V4—O14i76.03 (3)H7A—N7—H7C109.8 (16)
O4—V4—V2i89.60 (3)H7B—N7—H7C109.4 (16)
O8—V4—V2i130.07 (2)H7A—N7—H7D112.0 (16)
O12—V4—V2i129.23 (2)H7B—N7—H7D111.8 (15)
O10i—V4—V2i39.240 (19)H7C—N7—H7D104.8 (16)
O11—V4—V2i40.246 (19)H15A—O15—H15B112 (2)
O14i—V4—V2i84.733 (17)H16A—O16—H16B112 (2)
O4—V4—V1135.49 (3)H17A—O17—H17B102.5 (18)
O8—V4—V133.55 (2)
O7—V3—O3—V5i179.48 (4)V3—V1—O9—V52.25 (5)
O11—V3—O3—V5i79.82 (4)V4—V1—O9—V547.45 (3)
O10—V3—O3—V5i80.77 (4)O5—V5—O9—V1178.29 (5)
O14—V3—O3—V5i0.51 (4)O13—V5—O9—V175.08 (4)
O14i—V3—O3—V5i0.80 (16)O12—V5—O9—V178.29 (4)
V1—V3—O3—V5i179.443 (13)O3i—V5—O9—V13.32 (11)
O2—V2—O6—V1175.89 (4)O14i—V5—O9—V11.51 (4)
O13—V2—O6—V171.55 (4)V3i—V5—O9—V11.85 (5)
O10—V2—O6—V184.11 (4)V4—V5—O9—V147.36 (3)
O11i—V2—O6—V123.77 (10)O4—V4—O12—V5174.54 (4)
O14i—V2—O6—V17.80 (4)O8—V4—O12—V570.76 (4)
V4i—V2—O6—V183.24 (4)O10i—V4—O12—V585.48 (4)
O1—V1—O6—V2179.64 (4)O11—V4—O12—V531.67 (9)
O9—V1—O6—V274.06 (4)O14i—V4—O12—V59.32 (4)
O8—V1—O6—V223.07 (10)V2i—V4—O12—V585.57 (4)
O7—V1—O6—V282.65 (4)V1—V4—O12—V539.17 (3)
O14i—V1—O6—V27.60 (4)O5—V5—O12—V4176.70 (5)
V5—V1—O6—V241.65 (4)O9—V5—O12—V472.14 (4)
V3—V1—O6—V251.93 (3)O13—V5—O12—V422.59 (9)
V4—V1—O6—V27.11 (5)O3i—V5—O12—V484.33 (4)
O3—V3—O7—V1179.96 (4)O14i—V5—O12—V48.99 (3)
O11—V3—O7—V179.41 (4)V1—V5—O12—V439.76 (3)
O10—V3—O7—V180.21 (4)V3i—V5—O12—V453.35 (3)
O14—V3—O7—V13.81 (14)O2—V2—O13—V5175.65 (4)
O14i—V3—O7—V10.27 (4)O6—V2—O13—V571.08 (4)
V5i—V3—O7—V1179.378 (13)O10—V2—O13—V533.02 (10)
O4—V4—O8—V1174.69 (4)O11i—V2—O13—V585.55 (4)
O12—V4—O8—V170.60 (4)O14i—V2—O13—V510.04 (4)
O10i—V4—O8—V132.00 (10)V1—V2—O13—V539.04 (3)
O11—V4—O8—V186.02 (4)V4i—V2—O13—V585.02 (4)
O14i—V4—O8—V110.14 (4)O5—V5—O13—V2175.94 (5)
V2i—V4—O8—V185.43 (4)O9—V5—O13—V271.13 (4)
V5—V4—O8—V138.66 (3)O12—V5—O13—V223.31 (10)
O1—V1—O8—V4177.47 (4)O3i—V5—O13—V285.00 (4)
O9—V1—O8—V472.00 (4)O14i—V5—O13—V29.71 (4)
O6—V1—O8—V425.37 (10)V1—V5—O13—V239.18 (3)
O7—V1—O8—V485.10 (4)V3i—V5—O13—V254.11 (3)
O14i—V1—O8—V49.83 (3)V4—V5—O13—V29.28 (5)
V5—V1—O8—V439.33 (3)N2—C1—N3—C230.11 (19)
V2—V1—O8—V410.82 (5)N1—C1—N3—C2154.27 (13)
V3—V1—O8—V454.39 (3)N4—C2—N3—C134.71 (19)
O1—V1—O9—V5178.43 (4)N5—C2—N3—C1150.09 (12)
O6—V1—O9—V576.42 (4)N4—C2—N5—C3178.69 (15)
O8—V1—O9—V578.31 (4)N3—C2—N5—C35.88 (19)
O7—V1—O9—V53.13 (11)N4—C2—N5—C42.39 (18)
O14i—V1—O9—V51.52 (4)N3—C2—N5—C4173.04 (12)
V2—V1—O9—V545.22 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10ii0.818 (19)2.080 (19)2.8981 (12)178 (2)
N1—H1B···O60.76 (2)2.71 (2)3.4507 (15)163.9 (19)
N2—H2A···O12iii0.854 (18)2.112 (18)2.9457 (12)165.4 (17)
N2—H2B···O15iv0.849 (19)2.072 (19)2.9164 (16)172.9 (17)
N4—H4D···O9iv0.912 (19)2.423 (19)3.2993 (14)161.1 (16)
N4—H4E···O16v0.736 (19)2.269 (19)2.9686 (16)159.2 (19)
N6—H6A···O8vi0.882 (19)1.865 (19)2.7463 (13)176.7 (17)
N6—H6B···O17ii0.874 (18)1.921 (19)2.7871 (13)170.7 (17)
N6—H6C···O70.808 (19)1.990 (19)2.7922 (11)172.2 (18)
N6—H6D···O2ii0.873 (19)2.074 (19)2.8541 (13)148.3 (16)
N7—H7A···O160.835 (18)2.083 (18)2.8810 (14)159.8 (17)
N7—H7B···O2vii0.880 (18)2.367 (17)2.9194 (12)121.1 (14)
N7—H7B···O4viii0.880 (18)2.056 (18)2.8627 (12)152.1 (16)
N7—H7C···O1ix0.843 (19)2.072 (19)2.9050 (12)169.7 (17)
N7—H7D···O11i0.873 (18)1.928 (18)2.7957 (12)172.1 (16)
O15—H15A···O40.81 (2)2.52 (2)3.0266 (14)122 (2)
O15—H15A···O120.81 (2)2.38 (2)3.1833 (16)171 (2)
O15—H15B···O17x0.78 (2)2.03 (2)2.8046 (18)177 (3)
O16—H16A···O15viii0.80 (2)2.05 (2)2.8477 (18)176 (2)
O16—H16B···O5xi0.83 (2)2.23 (2)2.8937 (13)137 (2)
O17—H17A···O130.85 (1)1.87 (2)2.7130 (12)172 (2)
O17—H17B···N30.82 (2)2.07 (2)2.8830 (15)170 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z+1; (iii) x1, y+1, z; (iv) x+1, y+2, z; (v) x, y+1, z; (vi) x+1, y+2, z+1; (vii) x, y+1, z+1; (viii) x1, y, z; (ix) x, y1, z; (x) x+1, y, z; (xi) x+1, y+1, z.
 

Acknowledgements

APB thanks Rosa Elena Arroyo-Carmona for carrying out the fractional crystallization of the title compound. X-ray data were collected remotely, during the current pandemic, as part of a course. We thank the Comisión para el seguimiento y evaluación de la pandemia COVID-19 (BUAP, Puebla), who allowed one of us to switch the diffractometer on and off.

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología [grant No. 268178; CVU No. 869373 (JANA); CVU No. 861219 (JAPL)].

References

First citationBošnjaković-Pavlović, N., Prévost, J. & Spasojević-de Biré, A. (2011). Cryst. Growth Des. 11, 3778–3789.  Google Scholar
First citationDomingo, J. L. & Gómez, M. (2016). Food Chem. Toxicol. 95, 137–141.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKitaigorodskii, A. I. (1965). Acta Cryst. 18, 585–590.  CAS Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNiranjana Devi, R., Jelsch, C., Israel, S., Aubert, E., Anzline, C. & Hosamani, A. A. (2017). Acta Cryst. B73, 10–22.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPérez-Benítez, A. & Bernès, S. (2018). IUCrData, 3, x181080.  Google Scholar
First citationSánchez-Lombardo, I., Sánchez-Lara, E., Pérez-Benítez, A., Mendoza, Á., Bernès, S. & González-Vergara, E. (2014). Eur. J. Inorg. Chem. pp. 4581–4588.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2020). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds