organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(S)-Alanine ethyl ester tetra­cyanidoborate, (C5H12NO)[B(CN)4]

crossmark logo

aLeibniz-Institut für Katalyse e.V. (LIKAT), Heterogene Photokatalyse, Albert-Einstein-Str. 29a, D-18059 Rostock, Germany, and bUniversität Rostock, Institut für Chemie, Anorganische Festkörperchemie, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany
*Correspondence e-mail: tim.peppel@catalysis.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 May 2021; accepted 1 June 2021; online 4 June 2021)

The title mol­ecular salt, C5H12NO+·C4BN4 or (C5H12NO)[B(CN)4], was obtained as single crystals by slow evaporation of a solution of the compound in aceto­nitrile over several weeks. The asymmetric unit contains two (S)-alanine ethyl ester cations and two tetra­cyanidoborate anions, which are linked by N—H⋯N hydrogen bonds. The compound exhibits a relatively low melting point of 110°C and shows a solid–solid phase transition near room temperature (Ts–s = 29°C) on the basis of DSC measurements.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

For more than 20 years, ionic liquids as salts with low melting points have attracted great inter­est because of their unique properties and applications. These properties include for instance large liquid ranges, broad electrochemical windows as well as low vapour pressures (Hallett & Welton, 2011[Hallett, J. P. & Welton, T. (2011). Chem. Rev. 111, 3508-3576.]; Welton, 1999[Welton, T. (1999). Chem. Rev. 99, 2071-2084.]). The title compound acts as a first example of a low-melting chiral substance in our ongoing efforts to investigate tetra­cyanidoborate-based ionic liquids (Bernsdorf et al., 2009[Bernsdorf, A., Brand, H., Hellmann, R., Köckerling, M., Schulz, A., Villinger, A. & Voss, K. (2009). J. Am. Chem. Soc. 131, 8958-8970.]; Flemming et al., 2010[Flemming, A., Hoffmann, M. & Köckerling, M. (2010). Z. Anorg. Allg. Chem. 636, 562-568.]; Siegesmund et al., 2017[Siegesmund, A., Topp, A., Nitschke, C. & Köckerling, M. (2017). ChemistrySelect, 2, 11328-11335.]).

The asymmetric unit of the title compound consists of two (S)-alanine ethyl ester cations and two tetra­cyanidoborate anions (Fig. 1[link]). The conformations of the cations about the stereogenic centres (C10 and C15) are almost the same, as indicated by the C9—C10—C11—O2 and C14—C15—C16—O4 torsion angles of −61.9 (3) and −63.0 (3)°, respectively, but the conformations of the ethyl side chains differ substanti­ally: C11—O2—C12—C13 = −86.1 (3) and C16—O4—C17—C18 = 136.5 (3)°. Otherwise, all bond lengths and angles within the cation are in the expected ranges (Dimitrijević et al., 2013[Dimitrijević, D. P., Novaković, S. B., Radić, G. R., Jevtić, V. V., Menéndez-Taboada, L., García-Granda, S. & Trifunović, S. R. (2013). J. Serb. Chem. Soc. 78, 1531-1537.]). The geometry around the B atoms is close to tetra­hedral with C—B—C angles ranging from 107.8 (2) to 111.2 (2)°.

[Figure 1]
Figure 1
The asymmetric unit of (C5H12NO)[B(CN)4] with atom labelling.

In the extended structure, the shortest hydrogen-bond contacts are found between the N-bonded H atoms of the cations (N9 and N10) and the N atoms of the tetra­cyanidoborate anions: the shortest N⋯N donor–acceptor distance is 2.920 (3) Å (Table 1[link]). Fig. 2[link] shows the packing of the ions within and around the unit cell.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9F⋯N6i 0.91 2.16 2.920 (3) 141
N10—H10B⋯N4ii 0.91 2.05 2.953 (3) 174
N10—H10D⋯N1 0.91 2.07 2.961 (3) 166
N9—H9E⋯N8iii 0.91 2.14 3.001 (3) 158
N10—H10C⋯N2iv 0.91 2.15 3.015 (3) 159
N9—H9D⋯N5v 0.91 2.14 3.017 (3) 161
N9—H9F⋯N3vi 0.91 2.64 3.147 (3) 116
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z-1]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x, y, z-1]; (iv) x, y+1, z; (v) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z-1]; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z].
[Figure 2]
Figure 2
A view of the unit-cell contents in projection down the b axis.

Synthesis and crystallization

The title compound, (C5H12NO)[B(CN)4], was obtained in high purity as a colorless solid on a multi-gram scale from the salt metathesis of (S)-alanine ethyl ester hydro­chloride and K[B(CN)4] in acetonic solution at room temperature. (S)-Alanine ethyl ester hydro­chloride (2.0 g, 13.0 mmol) was added in one portion to a vigorously stirred solution of K[B(CN)4] (2.2 g, 14.3 mmol) in 100 ml acetone at room temperature and was further stirred overnight. The precipitate was filtered off and the solvent of the filtrate was removed in vacuum. The residue was dissolved in a minimum amount of di­chloro­methane, filtered again and the solvent was removed in vacuum. The final product was obtained as a colourless solid in high yield (2.8 g, 91%); m.p. = 110°C, Ts–s = 29°C. The thermal behaviour was determined by means of differential scanning calorimetry (DSC) in the temperature range from −100 to 200°C with a heating rate of 10 K min−1. Analytical data for C9H12BN5O2 % (calc.): C 46.43 (46.39); H 5.25 (5.19); N 26.53 (30.05).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Sixteen reflections were omitted from the refinement because their intensities were affected by the beam stop. Details can be found in the refine_ special_details field in the CIF. The refined value of the Flack absolute structure parameter of 0.2 (8) was ambiguous, and the absolute structure was assigned on the basis of the enanti­omeric pure (S)-alanine ethyl ester hydro­chloride used in the synthesis.

Table 2
Experimental details

Crystal data
Chemical formula C5H12NO2+·C4N4B
Mr 233.05
Crystal system, space group Monoclinic, C2
Temperature (K) 173
a, b, c (Å) 17.059 (1), 8.7467 (4), 18.855 (1)
β (°) 111.468 (4)
V3) 2618.2 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.27 × 0.18 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 11976, 7354, 5158
Rint 0.038
(sin θ/λ)max−1) 0.725
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.133, 1.00
No. of reflections 7354
No. of parameters 307
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.24
Absolute structure Flack x determined using 1751 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.2 (8)
Computer programs: APEX2 and SAINT (Bruker, 2017[Bruker (2017). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), DIAMOND (Brandenburg & Putz, 2019[Brandenburg, K. & Putz, H. (2019). Diamond. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXS (Sheldrick, 2015b); program(s) used to refine structure: SHELXT (Sheldrick, 2015a); molecular graphics: DIAMOND (Brandenburg & Putz, 2019); software used to prepare material for publication: publCIF (Westrip, 2010).

1-Ethoxy-1-oxopropan-2-aminium tetracyanoborate top
Crystal data top
C5H12NO2+·C4N4BF(000) = 976
Mr = 233.05Dx = 1.182 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 17.059 (1) ÅCell parameters from 2564 reflections
b = 8.7467 (4) Åθ = 4.3–25.5°
c = 18.855 (1) ŵ = 0.09 mm1
β = 111.468 (4)°T = 173 K
V = 2618.2 (3) Å3Block, colourless
Z = 80.27 × 0.18 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
5158 reflections with I > 2σ(I)
Radiation source: microfocus sealed tubeRint = 0.038
φ and ω scansθmax = 31.0°, θmin = 4.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 2424
k = 1012
11976 measured reflectionsl = 2526
7354 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0649P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
7354 reflectionsΔρmax = 0.38 e Å3
307 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack x determined using 1751 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.4401 (2)0.0236 (3)0.3575 (2)0.0267 (6)
C10.4986 (2)0.1670 (3)0.3916 (2)0.0327 (6)
N10.5418 (2)0.2686 (3)0.4167 (2)0.0494 (7)
C20.4971 (2)0.1273 (3)0.3745 (2)0.0281 (5)
N20.5371 (2)0.2346 (3)0.3855 (1)0.0405 (6)
C30.3940 (2)0.0381 (3)0.2677 (2)0.0326 (6)
N30.3621 (2)0.0434 (3)0.2032 (2)0.0505 (7)
C40.3729 (2)0.0061 (3)0.3968 (2)0.0343 (6)
N40.3242 (2)0.0082 (4)0.4246 (2)0.0524 (7)
B20.4421 (2)0.4179 (3)0.8626 (2)0.0288 (6)
C50.4893 (2)0.5759 (3)0.8893 (2)0.0378 (6)
N50.5235 (2)0.6898 (3)0.9064 (2)0.0574 (8)
C60.5081 (2)0.2830 (3)0.8927 (2)0.0345 (6)
N60.5555 (2)0.1866 (3)0.9158 (2)0.0505 (7)
C70.4013 (2)0.4174 (4)0.7723 (2)0.0396 (7)
N70.3728 (2)0.4224 (4)0.7078 (2)0.068 (1)
C80.3709 (2)0.3968 (3)0.8974 (2)0.0304 (5)
N80.3198 (2)0.3818 (3)0.9222 (2)0.0423 (6)
C90.1899 (2)0.2660 (3)0.0774 (2)0.0485 (8)
H9A0.19330.27210.13040.073*
H9B0.24360.22900.07620.073*
H9C0.14470.19520.04910.073*
C100.1714 (2)0.4213 (3)0.0417 (1)0.0284 (5)
H10A0.11680.45820.04360.034*
N90.1651 (1)0.4193 (2)0.0392 (1)0.0251 (4)
H9D0.12360.35360.06630.038*
H9E0.21500.38810.04140.038*
H9F0.15290.51490.05920.038*
C110.2398 (2)0.5319 (3)0.0848 (1)0.0290 (5)
O10.2858 (1)0.5932 (2)0.0589 (1)0.0390 (5)
O20.2429 (1)0.5455 (2)0.1560 (1)0.0417 (5)
C120.3156 (2)0.6236 (4)0.2100 (2)0.0534 (9)
H12A0.30040.66990.25110.064*
H12B0.33400.70640.18380.064*
C130.3855 (2)0.5119 (6)0.2431 (2)0.069 (1)
H13A0.43470.56460.27910.103*
H13B0.40030.46630.20220.103*
H13C0.36740.43130.26990.103*
C140.6152 (2)0.5843 (4)0.5570 (2)0.0447 (7)
H14A0.63290.61070.61110.067*
H14B0.58160.49040.54700.067*
H14C0.58130.66780.52610.067*
C150.6923 (2)0.5598 (3)0.5365 (1)0.0262 (5)
H15A0.72550.65690.54620.031*
N100.6667 (1)0.5199 (2)0.4547 (1)0.0228 (4)
H10B0.71350.50580.44300.034*
H10C0.63520.59710.42580.034*
H10D0.63580.43230.44510.034*
C160.7477 (2)0.4339 (3)0.5836 (1)0.0246 (5)
O30.7610 (1)0.3169 (2)0.5581 (1)0.0429 (5)
O40.7763 (2)0.4724 (3)0.6559 (1)0.0500 (6)
C170.8324 (2)0.3692 (4)0.7118 (2)0.0477 (8)
H17A0.85570.29220.68640.057*
H17B0.80150.31510.73970.057*
C180.9012 (2)0.4620 (6)0.7653 (2)0.065 (1)
H18A0.94050.39520.80370.097*
H18B0.87760.53720.79040.097*
H18C0.93130.51530.73710.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.024 (1)0.028 (1)0.028 (2)0.001 (1)0.010 (1)0.001 (1)
C10.035 (1)0.033 (1)0.030 (1)0.001 (1)0.012 (1)0.001 (1)
N10.057 (2)0.042 (1)0.045 (2)0.017 (1)0.014 (1)0.006 (1)
C20.027 (1)0.031 (1)0.029 (1)0.001 (1)0.013 (1)0.004 (1)
N20.038 (1)0.041 (1)0.045 (2)0.007 (1)0.018 (1)0.009 (1)
C30.032 (1)0.031 (1)0.033 (2)0.001 (1)0.010 (1)0.002 (1)
N30.051 (2)0.060 (2)0.033 (1)0.004 (1)0.006 (1)0.003 (1)
C40.029 (1)0.038 (1)0.037 (2)0.001 (1)0.014 (1)0.000 (1)
N40.041 (1)0.070 (2)0.055 (2)0.002 (1)0.028 (1)0.001 (2)
B20.028 (1)0.028 (1)0.029 (2)0.004 (1)0.009 (1)0.001 (1)
C50.027 (1)0.036 (1)0.048 (2)0.002 (1)0.011 (1)0.006 (1)
N50.039 (1)0.041 (2)0.081 (2)0.006 (1)0.009 (1)0.003 (2)
C60.037 (1)0.035 (1)0.029 (2)0.006 (1)0.010 (1)0.002 (1)
N60.053 (2)0.046 (2)0.043 (2)0.019 (1)0.007 (1)0.003 (1)
C70.040 (2)0.045 (2)0.035 (2)0.010 (1)0.014 (1)0.007 (1)
N70.070 (2)0.098 (3)0.034 (2)0.023 (2)0.015 (1)0.012 (2)
C80.029 (1)0.028 (1)0.030 (1)0.002 (1)0.006 (1)0.002 (1)
N80.036 (1)0.047 (1)0.046 (2)0.001 (1)0.019 (1)0.001 (1)
C90.077 (2)0.033 (2)0.034 (2)0.009 (2)0.018 (2)0.002 (1)
C100.028 (1)0.032 (1)0.026 (1)0.002 (1)0.012 (1)0.002 (1)
N90.026 (1)0.0231 (9)0.025 (1)0.0002 (8)0.0083 (8)0.0007 (8)
C110.035 (1)0.028 (1)0.024 (1)0.001 (1)0.011 (1)0.002 (1)
O10.047 (1)0.041 (1)0.033 (1)0.0185 (9)0.0192 (9)0.0055 (8)
O20.054 (1)0.047 (1)0.026 (1)0.016 (1)0.0161 (8)0.0048 (8)
C120.073 (2)0.056 (2)0.026 (2)0.030 (2)0.012 (2)0.010 (1)
C130.054 (2)0.100 (3)0.046 (2)0.014 (2)0.010 (2)0.022 (2)
C140.049 (2)0.060 (2)0.030 (1)0.027 (2)0.020 (1)0.009 (1)
C150.035 (1)0.022 (1)0.021 (1)0.004 (1)0.0097 (9)0.0004 (9)
N100.0255 (9)0.0230 (9)0.021 (1)0.0000 (8)0.0092 (7)0.0005 (7)
C160.025 (1)0.027 (1)0.022 (1)0.0028 (9)0.0096 (9)0.0022 (9)
O30.059 (1)0.032 (1)0.032 (1)0.0192 (9)0.0095 (9)0.0016 (8)
O40.068 (1)0.049 (1)0.023 (1)0.026 (1)0.0046 (9)0.0007 (9)
C170.052 (2)0.062 (2)0.026 (2)0.027 (2)0.010 (1)0.013 (1)
C180.041 (2)0.104 (3)0.048 (2)0.015 (2)0.014 (2)0.014 (2)
Geometric parameters (Å, º) top
B1—C41.585 (4)C11—O21.330 (3)
B1—C11.585 (4)O2—C121.455 (3)
B1—C31.591 (4)C12—C131.490 (6)
B1—C21.600 (4)C12—H12A0.9900
C1—N11.142 (4)C12—H12B0.9900
C2—N21.135 (3)C13—H13A0.9800
C3—N31.137 (3)C13—H13B0.9800
C4—N41.138 (4)C13—H13C0.9800
B2—C71.585 (4)C14—C151.514 (4)
B2—C61.586 (4)C14—H14A0.9800
B2—C51.586 (4)C14—H14B0.9800
B2—C81.590 (4)C14—H14C0.9800
C5—N51.140 (4)C15—N101.482 (3)
C6—N61.139 (4)C15—C161.510 (3)
C7—N71.134 (4)C15—H15A1.0000
C8—N81.138 (3)N10—H10B0.9100
C9—C101.497 (4)N10—H10C0.9100
C9—H9A0.9800N10—H10D0.9100
C9—H9B0.9800C16—O31.188 (3)
C9—H9C0.9800C16—O41.312 (3)
C10—N91.489 (3)O4—C171.451 (3)
C10—C111.505 (4)C17—C181.479 (5)
C10—H10A1.0000C17—H17A0.9900
N9—H9D0.9100C17—H17B0.9900
N9—H9E0.9100C18—H18A0.9800
N9—H9F0.9100C18—H18B0.9800
C11—O11.192 (3)C18—H18C0.9800
C4—B1—C1110.0 (2)C13—C12—H12A109.8
C4—B1—C3110.2 (2)O2—C12—H12B109.8
C1—B1—C3111.2 (2)C13—C12—H12B109.8
C4—B1—C2108.5 (2)H12A—C12—H12B108.2
C1—B1—C2109.0 (2)C12—C13—H13A109.5
C3—B1—C2107.8 (2)C12—C13—H13B109.5
N1—C1—B1178.8 (3)H13A—C13—H13B109.5
N2—C2—B1179.0 (3)C12—C13—H13C109.5
N3—C3—B1177.5 (3)H13A—C13—H13C109.5
N4—C4—B1179.1 (3)H13B—C13—H13C109.5
C7—B2—C6111.0 (2)C15—C14—H14A109.5
C7—B2—C5108.4 (2)C15—C14—H14B109.5
C6—B2—C5108.9 (2)H14A—C14—H14B109.5
C7—B2—C8110.0 (2)C15—C14—H14C109.5
C6—B2—C8108.3 (2)H14A—C14—H14C109.5
C5—B2—C8110.2 (2)H14B—C14—H14C109.5
N5—C5—B2177.8 (3)N10—C15—C16108.8 (2)
N6—C6—B2178.7 (3)N10—C15—C14110.3 (2)
N7—C7—B2177.6 (4)C16—C15—C14111.6 (2)
N8—C8—B2179.8 (3)N10—C15—H15A108.7
C10—C9—H9A109.5C16—C15—H15A108.7
C10—C9—H9B109.5C14—C15—H15A108.7
H9A—C9—H9B109.5C15—N10—H10B109.5
C10—C9—H9C109.5C15—N10—H10C109.5
H9A—C9—H9C109.5H10B—N10—H10C109.5
H9B—C9—H9C109.5C15—N10—H10D109.5
N9—C10—C9112.0 (2)H10B—N10—H10D109.5
N9—C10—C11108.2 (2)H10C—N10—H10D109.5
C9—C10—C11110.3 (2)O3—C16—O4126.0 (2)
N9—C10—H10A108.8O3—C16—C15124.2 (2)
C9—C10—H10A108.8O4—C16—C15109.8 (2)
C11—C10—H10A108.8C16—O4—C17119.4 (2)
C10—N9—H9D109.5O4—C17—C18107.6 (3)
C10—N9—H9E109.5O4—C17—H17A110.2
H9D—N9—H9E109.5C18—C17—H17A110.2
C10—N9—H9F109.5O4—C17—H17B110.2
H9D—N9—H9F109.5C18—C17—H17B110.2
H9E—N9—H9F109.5H17A—C17—H17B108.5
O1—C11—O2125.8 (2)C17—C18—H18A109.5
O1—C11—C10124.3 (2)C17—C18—H18B109.5
O2—C11—C10109.8 (2)H18A—C18—H18B109.5
C11—O2—C12117.2 (2)C17—C18—H18C109.5
O2—C12—C13109.4 (3)H18A—C18—H18C109.5
O2—C12—H12A109.8H18B—C18—H18C109.5
N9—C10—C11—O17.2 (3)N10—C15—C16—O36.3 (3)
C9—C10—C11—O1115.7 (3)C14—C15—C16—O3115.6 (3)
N9—C10—C11—O2175.3 (2)N10—C15—C16—O4175.1 (2)
C9—C10—C11—O261.9 (3)C14—C15—C16—O463.0 (3)
O1—C11—O2—C129.5 (4)O3—C16—O4—C172.5 (4)
C10—C11—O2—C12168.1 (2)C15—C16—O4—C17178.9 (3)
C11—O2—C12—C1386.1 (3)C16—O4—C17—C18136.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9F···N6i0.912.162.920 (3)141
N10—H10B···N4ii0.912.052.953 (3)174
N10—H10D···N10.912.072.961 (3)166
N9—H9E···N8iii0.912.143.001 (3)158
N10—H10C···N2iv0.912.153.015 (3)159
N9—H9D···N5v0.912.143.017 (3)161
N9—H9F···N3vi0.912.643.147 (3)116
Symmetry codes: (i) x1/2, y+1/2, z1; (ii) x+1/2, y+1/2, z; (iii) x, y, z1; (iv) x, y+1, z; (v) x1/2, y1/2, z1; (vi) x+1/2, y+1/2, z.
 

Acknowledgements

The authors thank Dr A. Villinger (Universität Rostock) for maintaining the functionality of the X-ray facilities. The publication of this article was funded by the Open Access Fund of the Leibniz Association.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. KO-1616-4 to MK).

References

First citationBernsdorf, A., Brand, H., Hellmann, R., Köckerling, M., Schulz, A., Villinger, A. & Voss, K. (2009). J. Am. Chem. Soc. 131, 8958–8970.  CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2019). Diamond. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2017). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDimitrijević, D. P., Novaković, S. B., Radić, G. R., Jevtić, V. V., Menéndez-Taboada, L., García-Granda, S. & Trifunović, S. R. (2013). J. Serb. Chem. Soc. 78, 1531–1537.  Google Scholar
First citationFlemming, A., Hoffmann, M. & Köckerling, M. (2010). Z. Anorg. Allg. Chem. 636, 562–568.  CSD CrossRef CAS Google Scholar
First citationHallett, J. P. & Welton, T. (2011). Chem. Rev. 111, 3508–3576.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiegesmund, A., Topp, A., Nitschke, C. & Köckerling, M. (2017). ChemistrySelect, 2, 11328–11335.  CSD CrossRef CAS Google Scholar
First citationWelton, T. (1999). Chem. Rev. 99, 2071–2084.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds